# Chapter Two <br> GENERAL PRINCIPLES <br> IN RANDOM VARIATE GENERATION 

## 1. INTRODUCTION.

In this chapter we introduce the reader to the fundamental principles in non-unlform random varlate generation. This chapter is a must for the serlous reader. On its own it can be used as part of a course in slmulation.

These basic princlples apply often, but not always, to both contlnuous and discrete random variables. For a structured development it is perhaps best to develop the material according to the guiding principle rather than according to the type of random varlable involved. The reader is also cautloned that we do not make any recommendations at thls point about generators for varlous distributlons. All the examples found in thls chapter are of a didactical nature, and the most important familles of distributions will be studied in chapters LX,X,XI In more detall.

## 2. THE INVERSION METHOD.

### 2.1. The inversion principle.

The Inversion method is based upon the following property:

## Theorem 2.1.

Let $F$ be a continuous distribution function on $R$ with inverse $F^{-1}$ deflned by

$$
F^{-1}(u)=\operatorname{lnf}\{x: F(x)=u, 0<u<1\}
$$

If $U$ is a uniform $[0,1]$ random varlable, then $F^{-1}(U)$ has distribution function $F$. Also, if $X$ has distribution function $F$, then $F(X)$ is unlformly distributed on $[0,1]$.

## Proof of Theorem 2.1.

The first statement follows after noting that for all $x \in R$,

$$
\begin{aligned}
& P\left(F^{-1}(U) \leq x\right)=P(\operatorname{lnf}\{y: F(y)=U\} \leq x) \\
& =P(U \leq F(x))=F(x)
\end{aligned}
$$

The second statement follows from the fact that for all $0<u<1$,

$$
\begin{aligned}
& P(F(X) \leq u)=P\left(X \leq F^{-1}(u)\right) \\
& =F\left(F^{-1}(u)\right)=u
\end{aligned}
$$

Theorem 2.1 can be used to generate random varlates with an arbitrary continuous distribution function $F$ provided that $F^{-1}$ is expllcitly known. The faster the Inverse can be computed, the faster we can compute $X$ from a given unlform $[0,1]$ random varlate $U$. Formally, we have

## The inversion method

Generate a uniform $[0,1]$ random variate $U$.
RETURN $X \leftarrow F^{-1}(U)$

In the next table, we glve a few Important examples. Often, the formulas for
$F^{-1}(U)$ can be simplifled, by noting for example that $1-U$ is distributed as $U$.

| Density $f(x)$ | $F(x)$ | $X=F^{-1}(U)$ | Simplifled form |
| :---: | :---: | :---: | :---: |
| Exponential $(\lambda)$ <br> $\lambda e^{-\lambda x}, x \geq 0$ | $1-e^{-\lambda z}$ | $-\frac{1}{\lambda} \log (1-U)$ | $-\frac{1}{\lambda} \log (U)$ |
| Cauchy $(\sigma)$ <br> $\frac{\sigma}{\pi\left(x^{2}+\sigma^{2}\right)}$ | $\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x}{\sigma}\right)$ | $\sigma \tan \left(\pi\left(U-\frac{1}{2}\right)\right)$ | $\sigma \tan (\pi U)$ |
| Rayleigh $(\sigma)$ <br> $\frac{x}{\sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}}, x \geq 0$ | $1-e^{-\frac{x^{2}}{2 \sigma^{2}}}$ | $\sigma \sqrt{-\log (1-U)}$ | $\sigma \sqrt{-\log (U)}$ |
| $\frac{2}{a}\left(1-\frac{x}{a}\right), 0 \leq x \leq a$ | $\frac{2}{a}\left(x-\frac{x^{2}}{2 a}\right)$ | $a(1-\sqrt{1-U})$ | $a(1-\sqrt{U})$ |
| Triangular on $(0, a)$ <br> $x e^{\frac{a^{2}-x^{2}}{2}}, x \geq a>0$ | $1-e^{\frac{a^{2}-x^{2}}{2}}$ | $\sqrt{a^{2}-2 \log (1-U)}$ | $\sqrt{a^{2}-2 \log U}$ |
| Pareto $(a, b)$ <br> $\frac{a b^{a}}{x^{a+1}}, x \geq b>0$ | $1-\left(\frac{b}{x}\right)^{a}$ | $\frac{b}{(1-U)^{1 / a}}$ | $\frac{b}{U^{1 / a}}$ |

There are many areas in random variate generation where the inversion method is of particular importance. We cite four examples:

## Example 2.1. Generating correlated random variates.

When two random varlates $X$ and $Y$ are needed with distribution functions $F$ and $G$ respectively, then these can be obtalned as $F^{-1}(U)$ and $G^{-1}(V)$ where $U$ and $V$ are unlform $[0,1]$ random varlates. If $U$ and $V$ are dependent, then so are $F^{-1}(U)$ and $G^{-1}(V)$. Maximal correlation is achleved by using $V=U$, and maximal negative correlation is obtalned by setting $V=-U$. While other methods may be avallable for generating $X$ and/or $Y$ individually, few methods allow the flexibllity of controlling the correlation as described here. In varlance reduction, negatively correlated random varlates are very useful (see e.g. Hammersley and Handscomb, 1884, or Bratley, Fox and Schrage, 1984).

## Example 2.2. Generating maxima.

To generate $X=\max \left(X_{1}, \ldots, X_{n}\right)$, where the $X_{i}$ 's are Ild random varlates with distribution function $F$, we could:
(1) Generate $X_{1}, \ldots, X_{n}$, and take the maximum.
(i1) Generate a uniform $[0,1]$ random varlate $U$ and find the solution $X$ of $F^{n}(X)=U$.
(ili) Generate $V$, a random varlate distributed as the maximum of $n$ ild unlform $[0,1]$ random varlates, and find the solution $X$ of $F(X)=V$.
Thus, the elegant solutions (i1) and (iii) Involve inversion.

## Example 2.3. Generating all order statistics.

A sample $X_{(1)}, \ldots, X_{(n)}$ of order statistics of a sequence $X_{1}, \ldots, X_{n}$ of ild random varlables with distribution function $F$ can be obtalned as $F^{-1}\left(U_{(1)}\right), \ldots, F^{-1}\left(U_{(n)}\right)$, where the $U_{(i)}$ 's are the order statistics of a unlform sample. As we will see further on, this is often more efficlent than generating the $X_{i}$ sample and sorting it.

## Example 2.4. A general purpose generator.

The inverston method is the only truly universal method: if all we can do is compute $F(x)$ for all $x$, and we have enough (i.e., infinte) time on our hands, then we can generate random varlates with distribution function $F$. All the other methods described in this book require additional information in one form or another.

### 2.2. Inversion by numerical solution of $F(X)=U$.

The inversion method is exact when an explicit form of $F^{-1}$ is known. In other cases, we must solve the equation $F(X)=U$ numerically, and this requires an inflite amount of time when $F$ is continuous. Any stopping rule that we use with the numerical method leads necessarlly to an Inexact algorithm. In thls section we will brlefly describe a few numerical inversion algorithms and stopping rules. Despite the fact that the algorithms are Inexact, there are situatlons in which we are virtually forced to use numerical inversion, and it is important to compare different inversion algorithms from varlous polnts of vlew.

In what follows, $X$ is the (unknown, but exact) solution of $F(X)=U$, and $X *$ is the value returned by the numerlcal inversion algorithm. A stopping rule which Insists that $|X *-X|<\delta$ for some small $\delta>0$ is not reallstic because for large values of $X$, this would probably imply that the number of significant diglts is greater than the bullt-in llmit dictated by the wordsize of the computer. A second choice for our stopping rule would by $|F(X *)-F(X)|<\epsilon$, where $\epsilon>0$ is a small number. Since all $F$ values are in the range $[0,1]$, we do not face the above-mentloned problem any more, were it not for the fact that small varlations In $X$ can lead to large varlations in $F(X)$-values. Thus, it is possible that even the smallest realizable increment in $X$ yields a change in $F(X)$ that exceeds the given constant $\epsilon$. A third possibllity for our stopping rule would be $|X *-X|<\delta|X|$ where the value of $\delta$ is determined by the wordsize of the computer. While this addresses the problem of relatlve accuracy correctly, it will lead to more accuracy than is orinarily required for values of $X$ near 0. Thus, no stopping rule seems unlversally recommendable. If we know that $X$ takes values in $[-1,1]$, then the rule $|X *-X|<\delta$ seems both practical and amenable to theoretical analysis. Let us first see what we could do when the support of $F$ falls outside [-1,1].

Let $h: R \rightarrow(-1,1)$ be a strictly monotone continuous transformation. Assume now that we obtaln $X *$ by the following method:

Let $Y^{*}$ be the numerical solution of $F\left(h^{-1}(y)\right)=U$, where $U$ is a uniform [0,1] random variable and $Y *$ is such that it is within $\delta$ of the exact solution $Y$ of the given equation.

$$
X^{*} \leftarrow h^{-1}\left(Y^{*}\right)
$$

Here we used the fact that $Y$ has distribution function $F\left(h^{-1}(y)\right),|y| \leq 1$. Let us now look at what happens to the accuracy of the solution. A varlation of $d y$ on the value of $y$ leads to variation of $h^{-1 /}(y) d x=h^{-1 /}(h(x)) d x$ on the corresponding value of $x$. The expected variation thus is about equal to $V \delta$ where

$$
V=E\left(h^{-1 \prime}(h(X))\right)=E\left(\frac{1}{h^{\prime}(X)}\right)
$$

Unfortunately, the best transformation $h$, l.e. the one that minimizes $V$, depends upon the distribution of $X$. We can glve the reader some insight in how to choose $h$ by an example. Consider for example the class if transformations

$$
h(x)=\frac{x-m}{s+|x-m|}
$$

where $s>0$ and $m \in R$ are constants. Thus, we have $h^{-1}(y)=m+s y /(1-|y|)$, and

$$
V=E\left(\frac{1}{s}(s+|X-m|)^{2}\right)=s+2 E(|X-m|)+\frac{1}{s} E\left((X-m)^{2}\right)
$$

For symmetrlc random variables $X$, thls expression is minimlzed by setting $m=0$ and $s=\sqrt{\operatorname{Var}(X)}$. For asymmetric $X$, the minimization problem is very difficult. The next best thing we could do is minimize a good upper bound for $V$, such as the one provided by applying the Cauchy-Schwarz Inequallty,

$$
V \leq s+2 \sqrt{\left.E(X-m)^{2}\right)}+\frac{1}{s} E\left((X-m)^{2}\right)
$$

Thls upper bound is minimal when

$$
m=E(X), s=\sqrt{\operatorname{Var}(X)}
$$

The upper bound for $V$ then becomes $4 \sqrt{\operatorname{Var}(X)}$. Thls approach requires elther exact values or good approximations for $m$ and $s$. We refer to Exerclse 1 for a detalled comparison of the average accuracy of this method with that of the direct solution of $F(X)=U$ given that the same stopping rule is used.

We will discuss three popular numerical inversion algorithms for $F(X)=U$ :

## The bisection method

Find an initial interval $[a, b]$ to which the solution belongs.
REPEAT

$$
X \leftarrow(a+b) / 2
$$

IF $F(X) \leq U$

$$
\text { THEN } a-X
$$

$$
\text { ELSE } b \leftarrow X
$$

UNTLL $b-a \leq 2 \delta$
RETURN $X$

## The secant method (regula falsi method)

Find an interval $[a, b]$ to which the solution belongs.

## REPEAT

$$
\begin{gathered}
X \leftarrow a+(b-a) \frac{U-F(a)}{F(b)-F(a)} \\
\text { IF } F(X) \leq U \\
\text { THEN } a \leftarrow X \\
\text { ELSE } b \leftarrow X
\end{gathered}
$$

UNTIL $b-a \leq \delta$
RETURN $X$

## The Newton-Raphson method

Choose an initial guess $X$.

## REPEAT

$$
X-X-\frac{(F(X)-U)}{f(X)}
$$

UNTLL stopping rule is satisfled. (Note: $f$ is the density corresponding to $F$.) RETURN $X$.

In the first two methods, we need an Initial Interval [ $a, b$ ] known to contaln the solution. If the user knows functions $G$ and $H$ such that $G(x) \geq F(x) \geq H(x)$ for all $x$, then we could start with $[a, b]=\left[G^{-1}(U), H^{-1}(U)\right]$. In particular, if the support of $F$ is known, then we can set [ $a, b$ ] equal to It. Because it is Important to have reasonably small intervals, any a priori Information should be used to select $[a, b]$. For example, if $F$ has varlance $\sigma^{2}$ and is symmetric about 0 , then by Cantelli's extension of Chebyshev's Inequallty,

$$
F(x) \geq \frac{x^{2}}{x^{2}+\sigma^{2}} \quad(x>0)
$$

This suggests that when $U>\frac{1}{2}$, we take

$$
[a, b]=\left[0, \sigma \sqrt{\frac{U}{1-U}}\right]
$$

When $U \leq \frac{1}{2}$, we argue by symmetry. Thus, Information about moments and quantlles of $F$ can be valuable for Initial guesswork. For the Newton-Raphson method, we can often take an arbltrary polnt such as 0 as our inltial guess.

The actual choice of an algorithm depends upon many factors such as
(1) Guaranteed convergence.
(II) Speed of convergence.
(ili) A priorl Informatlon.
(iv) Knowledge of the density $f$.

If $f$ is not explicitly known, then the Newton-Raphson method should be avolded because the approximation of $f(x)$ by $\frac{1}{\delta}(F(x+\delta)-F(x))$ is rather inaccurate because of cancelation errors.

Only the bisection method is guaranteed to converge in all cases. If $F(X)=U$ has a unlque solution, then the secant method converges too. By "convergence" we mean of course that the returned varlable $X *$ would approach the exact solution $X$ if we would let the number of iterations tend to $\infty$. The Newton-Raphson method converges when $F$ is convex or concave. Often, the density $f$ is unlmodal with peak at $m$. Then, clearly, $F$ is convex on ( $-\infty, m$ ], and concave on $(m, \infty)$, and the Newton-Raphson method started at $m$ converges.

Let us consider the speed of convergence now. For the blsection method started at $[a, b]=\left[g_{1}(U), g_{2}(U)\right]$ (where $g_{1,} g_{2}$ are given functions), we need $N$ iterations if and only if

$$
2^{N-1}<g_{2}(U)-g_{1}(U) \leq 2^{N}
$$

The solution of this is

$$
N=1+\left\{\log _{+}\left(\left(g_{2}(U)-g_{1}(U)\right) / \delta\right)\right\}
$$

where $\log _{+}$is the positive part of the logarithm with base 2 . From thls expresslon, we retaln that $E(N)$ can be infinite for some long-talled distributions. If the solution is known to belong to $[-1,1]$, then we have deterministically,

$$
N \leq 1+\log _{+}\left(\frac{1}{\delta}\right)
$$

And in all cases in which $E(N)<\infty$, we have as $\delta \downarrow 0, E(N) \sim \log \left(\frac{1}{\delta}\right)$. Essentlally, adding one blt of accuracy to the solution is equivalent to adding one iteration. As an example, let us take $\delta=10^{-7}$, which corresponds to the standard cholce for problems with solutlons in $[-1,1]$ when a 32 -blt computer is used. The value of $N$ in that case is in the nelghborhood of 24, and this is often inacceptable.

The secant and Newton-Raphson methods are both faster, albelt less robust, than the bisectlon method. For a good discussion of the convergence and rate of convergence of the glven methods, we refer to Ostrowskl (1973). Let us merely
state one of the results for $E(N)$, the quantity of interest to us, where $N$ is the number of iteratlons needed to get to within $\delta$ of the solution (note that this is impossible to verlfy when an algorithm is running !). Also, let $F$ be the distribution function corresponding to a unlmodal density with absolutely bounded derlvative $f^{\prime}$. The Newton-Raphson method started at the mode converges, and for some number $N_{0}$ depending only upon $F$ (but possibly $\infty$ ) we have

$$
E(N) \leq N_{0}+\log \log \left(\frac{1}{\delta}\right)
$$

where all logarithms are base 2. For the secant method, a simllar statement can be made but the base should be replaced by the golden ratio, $\frac{1}{2}(1+\sqrt{5})$. In both cases, the influence of $\delta$ on the average number of iterations is practically nil, and the asymptotlc expression for $E(N)$ is smaller than in the blsection method (when $\delta \downarrow 0$ ). Obvlously, the secant and Newton-Raphson methods are not universally faster than the blsection method. For ways of accelerating these methods, see for example Ostrowski (1973, Appendix I, Appendix G).

### 2.3. Explicit approximations.

When $F^{-1}$ is not explicttly known, it can sometlmes be well approximated by another explicitly known function $g(U)$. In iterative methods, the stopping rule usually takes care of the accuracy problem. Now, by resorting to a one-step procedure, we squarely put the burden of verifying the accuracy of the solution on the shoulders of the theoretlclan. Also, we should define once again what we mean by accuracy (see Devroye (1882) for a crltical dlscussion of varlous definitions). Iterative methods can be notoriously slow, but this is a small price to pay for their conclseness, slmpllcity, flexibllity and accuracy. The four maln limitatlons of the direct approximation method are:
(1) The approximation is valld for a given $F$ : to use it when $F$ changes frequently during the stmulation experiment would probably require extraordlnary set-up tlmes.
(11) The function $g$ must be stored. For example, $g$ is often a ratio of two polynomlals, In which case all the coefficlents must be put in a long table.
(1i1) The accuracy of the approximation is fixed. If a better accuracy is needed, the entlre function $g$ must be replaced. This happens for example when one switches to a computer with a larger wordsize. In other words, future computer upgrades will be expensive.
(iv) Certain functions cannot be approximated very well by standard approximation technlques, except posslbly by inacceptably complicated functions. Also, approximations are difficult to develop for multiparameter famlles of functlons.

How one actually goes about designing approximations $g$ will not be explalned here. For example, we could start from a very rough approximation of $F^{-1}$, and then explicitly compute the function that corresponds to one or two or a fixed number of Newton-Raphson iterations. This is not systematic enough in general. A spllne method was developed in Kohrt (1980) and Ahrens and Kohrt (1981). In the general llterature, one can find many examples of approximations by ratios of polynomials. For example, for the inverse of the normal distribution function, Odeh and Evans (1874) suggest

$$
g(u)=\sqrt{-2 \log (u)}+\frac{A(\sqrt{-2 \log (u)})}{B(\sqrt{-2 \log (u)})}, \frac{1}{2} \geq u \geq 10^{-20},
$$

where $A(x)=\sum_{i=0}^{4} a_{i} x^{i}$, and $B(x)=\sum_{i=0}^{4} b_{i} x^{i}$, and the coefflcients are as shown $\ln$ the table below:

| $i$ | $a_{i}$ | $b_{i}$ |
| :--- | :--- | :--- |
| 0 | -0.322232431088 | 0.0993484626060 |
| 1 | -1.0 | 0.588581570495 |
| 2 | -0.342242088547 | 0.531103462366 |
| 3 | -0.0204231210245 | 0.103537752850 |
| 4 | -0.0000453642210148 | 0.0038560700634 |

For $u \ln$ the range $\left[\frac{1}{2}, 1-10^{-20}\right]$, we take $-g(1-u)$, and for $u$ in the two tiny leftover intervals near 0 and 1 , the approximation should not be used. Rougher approximations can be found in Hastings (1955) and Balley (1981). Balley's approximation requires fewer constants and is very fast. The approximation of Beasley and Springer (1977) is also very fast, although not as accurate as the Odeh-Evans approximation given here. Similar methods exist for the Inversion of beta and gamma distribution functions.

### 2.4. Exercises.

1. Most stopping rules for the numerical lterative solution of $F(X)=U$ are of the type $b-a \leq \delta$ where $[a, b]$ is an interval contalning the solution $X$, and $\delta>0$ is a small number. These algorlthms may never halt if for some $u$, there is an interval of solutions of $F(X)=u$ (this applles espectally to the secant method). Let $A$ be the set of all $u$ for which we have for some $x<y, F(x)=F(y)=u$. Show that $P(U \in A)=0$, i.e. the probabllity of ending up in an infinite loop is zero. Thus, we can safely lift the restriction imposed throughout thls section that $F(X)=u$ has one solution for all $u$.
2. Show that the secant method converges if $F(X)=U$ has one solution for the given value of $U$.
3. Show that if $F(0)=0$ and $F$ is concave on $[0, \infty)$, then the Newton-Raphson method started at 0 converges.
4. Student's $\mathbf{t}$ distribution with $\mathbf{3}$ degrees of freedom.

Consider the density

$$
f(x)=\frac{2}{\pi\left(1+x^{2}\right)^{2}}
$$

and the corresponding distribution function

$$
F(x)=\frac{1}{2}+\frac{1}{\pi}\left(\arctan x+\frac{x}{1+x^{2}}\right) .
$$

These functlons define the $t$ distribution with 3 degrees of freedom. Elsewhere we will see very effcient methods for generating random varlates from this distribution. Nevertheless, because $F^{-1}$ is not known expllcitly (except perhaps as an infinite serles), this distribution can be used to lllustrate many points made in the text. Note first that the distribution is symmetric about o. Prove first that

$$
\frac{1}{2}+\frac{1}{\pi} \arctan x \leq F(x) \leq \frac{1}{2}+\frac{2}{\pi} \arctan x \quad(x \geq 0) .
$$

Thus, for $U \geq \frac{1}{2}$, the solution of $F(X)=U$ lies in the interval

$$
\left[\tan \left(\frac{\pi}{2}\left(U-\frac{1}{2}\right)\right), \tan \left(\pi\left(U-\frac{1}{2}\right)\right)\right] .
$$

Using this Interval as a starting Interval, compare and time the bisection method, the secant method and the Newton-Raphson method (in the latter method, start at 0 and keep lterating untll $X$ does not change in value any further). Finally, assume that we have an efficlent Cauchy random varlate generator at our disposal. Recalling that a Cauchy random varlable $C$ is distributed as $\tan \left(\pi\left(U-\frac{1}{2}\right)\right)$, show that we can generate $X$ by solving the equation

$$
\arctan X+\frac{X}{1+X^{2}}=\arctan C
$$

and by starting with initial interval

$$
\left[\sqrt{\frac{\sqrt{1+C^{2}}-1}{\sqrt{1+C^{2}}+1}}, C\right]
$$

when $C>0$ (use symmetry in the other case). Prove that this is a valld method.
5. Develop a general purpose random varlate generator which is based upon Inversion by the Newton-Raphson method, and assumes only that $F$ and the corresponding density $f$ can be computed at all points, and that $f$ is unlmodal. Verlfy that your method is convergent. Allow the user to specify a mode if thls information is avallable.
6. Write general purpose generators for the bisection and secant methods in which the user specifles an initial interval $\left[g_{1}(U), g_{2}(U)\right]$.
7. Discuss how you would solve $F(X)=U$ for $X$ by the bisection method if no initlal interval is avallable. In a first stage, you could look for an interval $[a, b]$ which contalns the solution $X$. In a second stage, you proceed by ordinary blsectlon untll the interval's length drops below $\delta$. Show that regardless of how you organize the original search (this could be by looking at adjacent intervals of equal length, or adjacent intervals with geometrically increasing lengths, or adjacent intervals growing as $2,2^{2}, 2^{2^{2}}, \ldots$ ), the expected time taken by the entire algorithm is $\infty$ whenever $E\left(\log _{+}|X|\right)=\infty$. Show that for extrapolatory search, it is not a bad strategy to double the interval sizes. Finally, exhlbit a distribution for which the given expected search time is $\infty$. (Note that for such distributions, the expected number of bits needed to represent the integer portion is infintte.)
8. An exponential class of distributions. Conslder the distribution function $F(x)=1-e^{-A_{n}(x)}$ where $A_{n}(x)=\sum_{i=1}^{n} a_{i} x^{i}$ for $x \geq 0$ and $A_{n}(x)=0$ for $x<0$. Assume that all coeffcients $a_{i}$ are nonnegative and that $a_{1}>0$. If $U$ is a unlform $[0,1]$ random variate, and $E$ is an exponential random varlate, then it is easy to see that the solution of $1-e^{-A_{n}(X)}=U$ is distributed as the solution of $A_{n}(X)=E$. The baslc Newton-Raphson step for the solution of the second equatlon is

$$
X \leftarrow X-\frac{A_{n}(X)-E}{A_{n}^{\prime}(X)}
$$

Since $a_{1}>0$ and $A_{n}$ is convex, any starting point $X \geq 0$ will yleld a convergent sequence of values. We can thus start at $X=0$ or at $X=E / a_{1}$ (which is the first value obtained in the Newton-Raphson sequence started at 0 ). Compare thls algorithm with the algorlthm in which $X$ is generated as

$$
\min _{1 \leq i \leq n}\left(\frac{E_{i}}{a_{i}}\right)^{\frac{1}{i}}
$$

where $E_{1}, \ldots, E_{n}$ are ild exponential random varlates.
9. Adaptive inversion. Consider the situation in which we need to generate a sequence of $n$ lid random varlables with continuous distribution function $F$ by the method of inversion. The generated couples ( $X_{1}, U_{1}$ ) ,.. are stored ( $X_{1}=F^{-1}\left(U_{1}\right)$ and $U_{1}$ is unlform [0,1]). Deflne an algorlthm based upon a dynamic hash table for the $U_{i}$ 's in which the table is used to find a good starting interval for inversion. Implement, and compare thls adaptive method with memoryless algorithms (Yuen, 1981).
10. Truncated distributions. Let $X$ be a random varlable with distribution function $F$. Deflne the truncated random varlable $Y$ by its distribution
function

$$
G(x)= \begin{cases}0 & x<a \\ \frac{F(x)-F(a)}{F(b)-F(a)} & a \leq x \leq b \\ 1 & x>b\end{cases}
$$

Here $-\infty \leq a<b \leq \infty$. Show that $Y$ can be generated as $F^{-1}(F(a)+U(F(b)-F(a)))$ where $U$ is a unlform $[0,1]$ random varlate.
11. Find a monotonically decreasing density $f$ on $[0, \infty)$ such that the NewtonRaphson procedure started at $X=0$ needs $N$ steps to get within $\delta$ of the solutlon of $F(X)=U$ where $N$ is a random varlable with mean $E(N)=\infty$ for all $\delta>0$.
12. The logistic distribution. A random varlable $X$ is sald to have the loglstlc distribution with parameters $a \in R$ and $b>0$ when

$$
F(x)=\frac{1}{1+e^{-\frac{x-a}{b}}}
$$

It is obvious that $a$ is a translation parameter and that $b$ is a scale parameter. The standardized logistic distribution has $a=0, b=1$. The density is

$$
f(x)=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=F(x)(1-F(x))
$$

The logistic density is symmetric about 0 and resembles in several respects the normal density. Show the following:
A. When $U$ is unlformly distributed on $[0,1]$, then $X=\log \left(\frac{U}{1-U}\right)$ has the standard $\log$ istic distribution.
B. $\frac{U}{1-U}$ is distributed as the ratlo of two ild exponentlal random variables.
C. We say that a random variable $Z$ has the extremal value distribution with parameter $a$ when $F(x)=e^{-a e^{-s}}$. If $X$ is distributed as $Z$ with parameter $Y$ where $Y$ is exponentlally distrlbuted, then $X$ has the standard logistic distribution.
D. $E\left(X^{2}\right)=\frac{\pi^{2}}{3}$, and $E\left(X^{4}\right)=\frac{7 \pi^{4}}{15}$.
E. If $X_{1}, X_{2}$ are independent extremal value distributed random varlables with the same parameter $a$, then $X_{1}-X_{2}$ has a logistlc distribution.

## 3. THE REJECTION METHOD.

### 3.1. Definition.

The rejection method is based upon the following fundamental property of denstites:

## Theorem 3.1.

Let $X$ be a random vector with density $f$ on $R^{d}$, and let $U$ be an independent unlform $[0,1]$ random variable. Then ( $X, c U f(X)$ ) is uniformly distributed on $A=\left\{(x, u): x \in R^{d}, 0 \leq u \leq c f(x)\right\}$, where $c>0$ is an arbltrary constant. Vice versa, if $(X, U)$ is a random vector in $R^{d+1}$ unlformly distributed on $A$, then $X$ has density $f$ on $R^{d}$.

## Proof of Theorem 3.1.

For the first statement, take a Borel set $B \subseteq A$, and let $B_{x}$ be the section of $B$ at $x$, 1.e. $B_{x}=\{u:(x, u) \in B\}$. By Tonelll's theorem,

$$
P((X, c U f(X)) \in B)=\iint_{B_{x}} \frac{1}{c f(x)} d u f(x) d x=\frac{1}{c} \int_{B} d u d x
$$

Since the area of $A$ is $c$, we have shown the flrst part of the Theorem. The second part follows if we can show that for all Borel sets $B$ of $R^{d}$, $P(X \in B)=\int_{B} f(x) d x$ (recall the definition of a density). But

$$
\begin{aligned}
& P(X \in B)=P\left((X, U) \in B_{1}=\{(x, u): x \in B, 0 \leq u \leq c f(x)\}\right) \\
& =\frac{\iint_{B_{1}} d u d x}{\iint_{A} d u d x}=\frac{1}{c} \int_{B} c f(x) d x=\int_{B} f(x) d x
\end{aligned}
$$

whlch was to be shown.

## Theorem 3.2.

Let $X_{1}, X_{2}, \ldots$ be a sequence of lld random vectors taking values $\ln R^{d}$, and let $A \subseteq R^{d}$ be a Borel set such that $P\left(X_{1} \in A\right)=p>0$. Let $Y$ be the flrst $X_{i}$ taking values in $A$. Then $Y$ has a distribution that is determined by

$$
P(Y \in B)=\frac{P\left(X_{1} \in A \cap B\right)}{p}, B \text { Borel set of } R^{d}
$$

In particular, if $X_{1}$ is uniformly distributed in $A_{0}$ where $A_{0} \supseteq A$, then $Y$ is unlformly distrlbuted in $A$.

## Proof of Theorem 3.2.

For arbltrary Borel sets $B$, we observe that

$$
\begin{aligned}
& P(Y \in B)=\sum_{i=1}^{\infty} P\left(X_{1} \notin A, \ldots, X_{i-1} \notin A, X_{i} \in B \cap A\right) \\
& =\sum_{i=1}^{\infty}(1-p)^{i-1} P\left(X_{1} \in A \cap B\right) \\
& =\frac{1}{1-(1-p)} P\left(X_{1} \in A \cap B\right)
\end{aligned}
$$

which was to be shown. If $X_{1}$ is unlformly distributed in $A_{0}$, then

$$
P(Y \in B)=\frac{P\left(X_{1} \in A \cap B\right)}{P\left(X_{1} \in A\right)}=\frac{\int_{A_{0} A B} d x}{\int_{A_{0}} d x} \cdot \frac{\int_{A_{0}} d x}{\int_{A A_{0}} d x}=\frac{\int_{A B} d x}{\int_{A} d x}
$$

This concludes the proof of Theorem 3.2.

The basic version of the rejection algorithm assumes the existence of a density $g$ and the knowledge of a constant $c \geq 1$ such that

$$
f(x) \leq c g(x) \quad(\text { all } x)
$$

Random varlates with density $f$ on $R^{d}$ can be obtalned as follows:

## The rejection method

## REPEAT

Generate two independent random variates $X$ (with density $g$ on $R^{d}$ ) and $U$ (uniformly distributed on $[0,1]$ ).
Set $T \leftarrow c \frac{g(X)}{f(X)}$.
UNTIL $U T \leq 1$
RETURN $X$

By Theorem 3.1, $(X, c U g(X)$ ) (where $X$ and $U$ are as explained in the first line of the REPEAT loop) is unlformly distributed under the curve of cg in $R^{d+1}$. By Theorem 3.2, we conclude that the random variate ( $X, c U g(X)$ ) generated by this algorithm (i.e. at time of exit) is uniformly distributed under the curve of $f$. By the second part of Theorem 3.1, we can then conclude that its $d$-dimensional projection $X$ must have density $f$.

The three thlngs we need before we can apply the refection algorithm are (1) a dominating density $g$; (il) a slmple method for generating random varlates with density $g$; and (1i1) knowledge of $c$. Often, (1) and (iil) can be satisfled by a priorl inspection of the analytical form of $f$. Baslcally, $g$ must have heavier talls and sharper Infinlte peaks than $f$. In some situations, we can determine $c g$ for entire classes of densities $f$. The dominating curves $c g$ should always be picked with care: not only do we need a slmple generator for $g$ (requirement (II)), but we must make sure that the computation of $\frac{g(X)}{f(X)}$ is simple. Finally, $c g$ must be such that the algorithm is efficlent.

Let $N$ be the number of iterations in the algorithm, i.e. the number of palrs $(X, U)$ required before the algorithm halts. We have

$$
P(N=i)=(1-p)^{i-1} p ; P(N \geq i)=(1-p)^{i-1} \quad(i \geq 1)
$$

where

$$
\begin{aligned}
& p=P(f(X) \geq c U g(X))=\int P\left(U \leq \frac{f(x)}{c g(x)}\right) d x \\
& =\int \frac{f(x)}{c g(x)} g(x) d x=\frac{1}{c} \int f(x) d x=\frac{1}{c}
\end{aligned}
$$

Thus, $E(N)=\frac{1}{p}=c, E\left(N^{2}\right)=\frac{2}{p^{2}}-\frac{1}{p}$ and $\operatorname{Var}(N)=\frac{1-p}{p^{2}}=c^{2}-c$. In other words, $E(N)$ is one over the probabllity of accepting $X$. From this we conclude that we should keep $c$ as small as possible. Note that the distribution of $N$ is geometric with parameter $p=\frac{1}{c}$. This is good, because the probabilitles
$P(N=i)$ decrease monotonically, and at an exponentlal rate (note that $\left.P(N>i)=(1-p)^{i} \leq e^{-p i}\right)$.

The rejection method has an almost unllmited potentlal. We have given up the princlple that one unlform $[0,1]$ random varlate ylelds one variate $X$ (as in the inversion method), but what we receive in return is a powerful, simple and exact algorlthm.

## Example 3.1. Bounded densities of compact support.

Let $C_{M, a, b}$ be the class of all denslties on $[a, b]$ bounded by $M$. Any such density is clearly bounded by $M$. Thus, the rejection algorlthm can be used with uniform dominating denslty $g(x)=(b-a)^{-1}(a \leq x \leq b)$, and the constant $c$ becomes $M(b-a)$. Formally, we have

The rejection method for $C_{M, a, b}$
REPEAT
Generate two independent uniform $[0,1]$ random variates $U$ and $V$.
Set $X \leftarrow a+(b-a) V$.
UNTIL $U M \leq f(X)$
RETURN $X$

The reader should be warned here that thls algorithm can be horribly Inefficient, and that the cholce of a constant dominating curve should be avolded except in a few cases.

### 3.2. Development of good rejection algorithms.

Generally speaking, $g$ is chosen from a class of easy densitles. This class Includes the uniform density, triangular densitles, and most densitles that can be generated quickly by the inversion method. The situation usually dictates which densitles are considered as "easy". There are two major techniques for determinIng $c$ and $g$ in the Inequallty $f \leq c g$ : one could first study the form of $f$ and apply one of many analytical devices for obtaining inequalities. Many of these are lllustrated throughout thls book (collecting them in a spectal chapter would have forced us to dupllcate too much materlal). Whlle this approach glves often
quick results (see Example 3.2 below), it is ad hoc, and depends a lot on the mathematical background and insight of the designer. In a second approach, which is also mlustrated in this section, one starts with a famlly of dominating densitles $g$ and chooses the density within that class for which $c$ is smallest. This approach is more structured but could sometlmes lead to difficult optimizatlon problems.

Example 3.2. A normal generator by rejection from the Laplace density.
Let $f$ be the normal density. Obtaining an upper bound for $f$ bolls down to obtaining a lower bound for $\frac{x^{2}}{2}$. But we have of course

$$
\frac{1}{2}(|x|-1)^{2}=\frac{x^{2}}{2}+\frac{1}{2}-|x| \geq 0
$$

Thus,

$$
\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \leq \frac{1}{\sqrt{2 \pi}} e^{\frac{1}{2}-|x|}=c g(x)
$$

where $g(x)=\frac{1}{2} e^{-|x|}$ is the Laplace density, and $c=\sqrt{\frac{2 e}{\pi}}$ is the rejection constant. This suggests the following algorlthm:

A normal generator by the rejection method
REPEAT
Generate an exponential random variate $X$ and two independent uniform $[0,1]$ random variates $U$ and $V$. If $U<\frac{1}{2}$, set $X \longleftarrow X$ ( $X$ is now distributed as a Laplace random variate).
UNTIL $V \frac{1}{\sqrt{2 \pi}} e^{\frac{1}{2}-|X|} \leq \frac{1}{\sqrt{2 \pi}} e^{-\frac{X^{2}}{2}}$.
RETURN $X$

The condition in the UNTIL statement can be cleaned up. The constant $\frac{1}{\sqrt{2 \pi}}$ cancels out on left and right hand sides. It is also better to take logarithms on both sides. Finally, we can move the sign change to the RETURN statement because there is no need for a sign change of a random variate that will be rejected. The random varlate $U$ can also be avolded by the trick implemented in the algorlthm glven below.

A normal generator by rejection from the Laplace density

## REPEAT

Generate an exponential random variate $X$ and an independent uniform $[-1,1]$ random variate $V$.
UNTH $(X-1)^{2} \leq-2 \log (|V|)$
RETURN $X \leftarrow X \operatorname{sign}(V)$

For given densitles $f$ and $g$, the rejection constant $c$ should be at least equal to

$$
\sup _{x} \frac{f(x)}{g(x)}
$$

We cannot loose anything by setting $c$ equal to this supremum, because this Insures us that the curves of $f$ and $c g$ touch each other somewhere. Instead of letting $g$ be determined by some inequallty which we happen to come across as In Example 3.2, It is often wiser to take the best $g_{\theta}$ in a family of densities parametrized by $\theta$. Here $\theta$ should be thought of as a subset of $R^{k}$ (ln which case we say that there are $k$ parameters). Deflne the optimal rejection constant by

$$
c_{\theta}=\sup _{x} \frac{f(x)}{g_{\theta}(x)}
$$

The optimal $\theta$ is that for which $c_{\theta}$ is minimal, l.e. for which $c_{\theta}$ is closest to 1.
We will now lllustrate thls optlmization process by an example. For the sake of argument, we take once again the normal denslty $f$. The family of dominatIng densitles is the Cauchy famlly with scale parameter $\theta$ :

$$
g_{\theta}(x)=\frac{\theta}{\pi} \frac{1}{\theta^{2}+x^{2}}
$$

There is no need to conslder a translation parameter as well because both $f$ and the Cauchy densitles are unlmodal with peak at 0 . Let us first compute the optlmal rejection constant $c_{\theta}$. We will prove that

$$
c_{\theta}=\left\{\begin{array}{ll}
\frac{\sqrt{2 \pi}}{e \theta} e^{\frac{\theta^{2}}{2}} & , \theta<\sqrt{2} \\
\theta \sqrt{\frac{\pi}{2}} & , \theta \geq \sqrt{2}
\end{array} .\right.
$$

We argue as follows: $f / g_{\theta}$ is maximal when $\log \left(f / g_{\theta}\right)$ is maximal. Setting the derivatlve with respect to $x$ of $\log \left(f / g_{\theta}\right)$ equal to 0 ylelds the equation

$$
-x+\frac{2 x}{\theta^{2}+x^{2}}=0
$$

This glves the values $x=0$ and $x= \pm \sqrt{2-\theta^{2}}$ (the latter case can only happen when $\theta^{2} \leq 2$ ). At $x=0, f / g_{\theta}$ takes the value $\theta \sqrt{\frac{\pi}{2}}$. At $x= \pm \sqrt{2-\theta^{2}}, f / g_{\theta}$ takes the value $\frac{\sqrt{2 \pi}}{e \theta} e^{\frac{\theta^{2}}{2}}$. It is easy to see that for $\theta<\sqrt{2}$, the maximum of $f / g_{\theta}$ is attalned at $x= \pm \sqrt{2-\theta^{2}}$ and the minimum at $x=0$. For $\theta \geq \sqrt{2}$, the maximum is attalned at $x=0$. This concludes the verification of the expression for $c_{\theta}$.

The remainder of the optimization is simple. The function $c_{\theta}$ has only one minimum, at $\theta=1$. The minimal value is $c_{1}=\sqrt{\frac{2 \pi}{e}}$. With this value, the condition of acceptance $U c_{\theta} g_{\theta}(X) \leq f(X)$ can be rewrltten as

$$
U \sqrt{\frac{2 \pi}{e}} \frac{1}{\pi} \frac{1}{1+X^{2}} \leq \frac{1}{\sqrt{2 \pi}} e^{-\frac{X^{2}}{2}},
$$

or as

$$
U \leq\left(1+X^{2}\right) \frac{\sqrt{e}}{2} e^{-\frac{X^{2}}{2}}
$$

## A normal generator by rejection from the Cauchy density

[SET-UP]
$\alpha \leftharpoondown \frac{\sqrt{e}}{2}$
[GENERATOR]

## REPEAT

Generate two independent uniform $[0,1]$ random variates $U$ and $V$.
Set $X \leftarrow \tan (\pi V), S \leftarrow X^{2}$ ( $X$ is now Cauchy distributed).
UNTIL $U \leq \alpha(1+S) e^{-\frac{S}{2}}$
RETURN $X$

The algorithm derived here, though it has a rejection constant near 1.4 is no match for most normal generators developed further on. The reason for this is that we need falrly expensive Cauchy random varlates, plus the evaluation of exp In the acceptance step.

### 3.3. Generalizations of the rejection method.

Some generallzations of the rejection method are important enough to warrant special treatment in this key chapter. The flrst generallzation concerns the following case:

$$
f(x)=c g(x) \psi(x)
$$

where the function $\psi$ is [ 0,1 ]-valued, $g$ is an easy density and $c$ is a normalizatlon constant at least equal to 1 . The rejection algorithm for thls case can be rewritten as follows:

## The rejection method

REPEAT
Generate independent random variates $X, U$ where $X$ has density $g$ and $U$ is uniformly distributed on $[0,1]$.
UNTIL $U \leq \psi(x)$
RETURN $X$

Vaduva (1977) observed that for speclal forms of $\psi$, there is another way of proceeding. Thls occurs when $\psi=1-\Psi$ where $\Psi$ is a distribution function of an easy denslty.

## Vaduva's generalization of the rejection method

## REPEAT

Generate two independent random variates $X, Y$, where $X$ has density $g$ and $Y$ has distribution function $\Psi$.
UNTIL $X \leq Y$
RETURN $X$

For $\psi=\Psi$, we need to replace $X \leq Y$ in the acceptance step by $X \geq Y$.

## Theorem 3.3.

Vaduva's rejection method produces a random varlate $X$ with denslty $f=c g(1-\Psi)$, and the rejection constant (the expected number of iterations) is $c$.

## Proof of Theorem 3.3.

We prove this by showing that Vaduva's algorithm is entirely equivalent to the orlginal rejection algorithm. Note that the condition of acceptance, $X \leq Y$ is with probabllity one satisfled if and only if $1-\Psi(X) \geq 1-\Psi(Y)$. But by the probabillty integral transform, we know that $1-\Psi(Y)$ is distrlbuted as $U$, a unlform [ 0,1 ] random varlable. Thus, we need only verlfy whether $U \leq 1-\Psi(X)$, which yields the orlginal acceptance condition given at the beginning of this section.

The cholce between generating $U$ and computing $1-\Psi(X)$ on the one hand (the original rejection algorithm) and generating $Y$ with distribution function $\Psi$ on the other hand (Vaduva's method) depends malnly upon the relative speeds of computing a distribution function and generating a random varlate with that distrlbutlon.

## Example 3.3.

Consider the density

$$
f(x)=c\left(a x^{a-1}\right) e^{-x}, 0<x \leq 1
$$

where $a>0$ is a parameter and $c$ is a normalization constant. This density is part of the gamma ( $a$ ) density, written here in a form convenient to us. The dominating density is $g(x)=a x^{a-1}$, and the function $\psi$ is $e^{-x}$. Random variates with density $g$ can be obtained quite easily by inversion (take $V^{\frac{1}{a}}$ where $V$ is a uniform $[0,1]$ random variate). In thls case, the ordinary rejection algorithm would be

## REPEAT

Generate two iid uniform $[0,1]$ random variates $U, V$, and set $X \leftarrow V^{\frac{1}{a}}$.
UNTIL $U \leq e^{-X}$
RETURN $X$

Vaduva's modification essentially consists in generating $X$ and an exponential random varlate $E$ untll $E \geq X$. It is faster if we can generate $E$ faster than we can compute $e^{-X}$ (this is sometimes the case). Of course, In thls simple example, we could have deduced Vaduva's modification by taking the logarithm of the acceptance condition and noting that $E$ is distributed as $-\log (U)$.

We now proceed with another generallzation found In Devroye (1984):

## Theorem 3.4.

Assume that a density $f$ on $R^{d}$ can be decomposed as follows:

$$
f(x)=\int g(y, x) h(y, x) d y
$$

where $\int d y$ is an integral $\ln R^{k}, g(y, x)$ is a density $\ln y$ for all $x$, and there exists a function $H(x)$ such that $0 \leq h(y, x) \leq H(x)$ for all $y$, and $H / \int H$ is an easy density. Then the following algorlthm produces a random varlate with density $f$, and takes $N$ iterations where $N$ is geometrically distributed with parameter $\frac{1}{\int H}$ (and thus $\left.E(N)=\int H\right)$.

## Generalized rejection method

## REPEAT

Generate $X$ with density $H / \int H$ (on $R^{d}$ ).
Generate $Y$ with density $g(y, X), y \in R^{k}$ ( $X$ is fixed).
Generate a uniform $[0,1]$ random variate $U$.
UNTIL $U H(X) \leq h(Y, X)$
RETURN $X$

## Proof of Theorem 3.4.

We will prove that this Theorem follows directly from Theorem 3.2. Let us define the new random vector $W_{1}=(X, Y, U)$ where $W_{1}$ refers to the triple generated in the REPEAT loop. Then, if $A$ is the set of values $w_{1}=(x, y, u)$ for which $u H(x) \leq h(y, x)$, we have for all Borel sets $B \ln$ the space of $w_{1}$,

$$
P(W \in B)=\frac{P\left(W_{1} \in A \cap B\right)}{p}
$$

where $p=P\left(W_{1} \in A\right)$ and $W$ refers to the value of $W_{1}$ upon extt. Take $B=(-\infty, x] \times R^{k} \times[0,1]$, and conclude that

$$
\begin{aligned}
& P(X \text { (returned }) \leq x)=\frac{1}{p} P(X \leq x, U H(X) \leq h(Y, X)) . \\
& =\iint_{-\infty}^{x} g(y, z) \frac{h(y, z)}{H(z)} \frac{H(z)}{\int H} d z d y
\end{aligned}
$$

$$
=\frac{1}{p \int H} \int_{-\infty}^{x} f(z) d z
$$

We note first that by setting $x=\infty, p=\frac{1}{\int H}$. But then, clearly, the varlate produced by the algorithm has density $f$ as required.

### 3.4. Wald's equation.

We will rather often be asked to evaluate the expected value of

$$
\sum_{i=1}^{N} \psi\left(W_{i}\right)
$$

where $W_{i}$ is the collection of all random varlables used in the $i$-th iteration of the rejection algorithm, $\psi$ is some function, and $N$ is the number of iterations of the rejection method. The random varlable $N$ is known as a stopping rule because the probabllitles $P(N=n)$ are equal to the probabllities that $W_{1}, \ldots, W_{n}$ belong to some set $B_{n}$. The interesting fact is that, regardless of which stopping rule is used (i.e., whether we use the one suggested in the rejecthon method or not), as long as the $W_{i}$ 's are lid random varlables, the following remalns true:

## Theorem 3.5. (Wald's equation.)

Assume that $W_{1}, \ldots$ are lid $R^{d}$-valued random variables, and that $\psi$ is an arbltrary nonnegative Borel measurable function on $R^{d}$. Then, for all stopping rules $N$,

$$
E\left(\sum_{i=1}^{N} \psi\left(W_{i}\right)\right)=E(N) E\left(\psi\left(W_{1}\right)\right)
$$

## Proof of Theorem 3.5.

To simplify the notation we write $Z_{i}=\psi\left(W_{i}\right)$ and note that the $Z_{i}$ 's are nd nonnegative random variables. The proof glven here is standard (see e.g. Chow and Telcher (1978, pp. 137-138)), but will be given In its entirety. We start by noting that $Z_{i}$ and $I_{[N<i]}$ are Independent for all $i$. Thus, so are $Z_{i}$ and $I_{[N \geq i]}$. We will assume that $E\left(Z_{1}\right)<\infty$ and $E(N)<\infty$. It is easy to verlfy that the chain of equalltles given below remalns valld when one or both of these expectatlons is $\infty$.

$$
E\left(\sum_{i=1}^{N} Z_{i}\right)=E\left(\sum_{i=1}^{\infty} Z_{i} I_{[N \geq i]}\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} E\left(Z_{i} I_{\langle N \geq i|}\right) \\
& =\sum_{i=1}^{\infty} E\left(Z_{i}\right) P(N \geq i) \\
& =E\left(Z_{1}\right) \sum_{i=1}^{\infty} P(N \geq i) \\
& =E\left(Z_{1}\right) E(N)
\end{aligned}
$$

The exchange of the expectation and inflite sum is allowed by the monotone convergence theorem: just note that for any sequence of nonnegative random varlables $Y_{1}, \ldots, \sum_{i=1}^{n} E\left(Y_{i}\right)=E\left(\sum_{i=1}^{n} Y_{i}\right) \rightarrow E\left(\sum_{i=1}^{\infty} Y_{i}\right)$.

It should be noted that for the rejection method, we have a spectal case for which a shorter proof can be given because our stopping rule $N$ is an instantaneous stopping rule: we deflne a number of decisions $D_{i}$, all 0 or 1 valued and dependent upon $W_{i}$ only: $D_{1}=0$ indicates that we "reject" based upon $W_{1}$, etcetera. A 1 denotes acceptance. Thus, $N$ is equal to $n$ if and only if $D_{n}=1$ and $D_{i}=0$ for all $i<n$. Now,

$$
\begin{aligned}
& E\left(\sum_{i=1}^{N} \psi\left(W_{i}\right)\right) \\
& =E\left(\sum_{i<N} \psi\left(W_{i}\right)\right)+E\left(\psi\left(W_{N}\right)\right) \\
& =E(N-1) E\left(\psi\left(W_{1}\right) \mid D_{1}=0\right)+E\left(\psi\left(W_{1}\right) \mid D_{1}=1\right) \\
& =\left(\frac{1}{P\left(D_{1}=1\right)}-1\right) \frac{E\left(\psi\left(W_{1}\right) I_{D_{1}=0}\right)}{P\left(D_{1}=0\right)}+\frac{E\left(\psi\left(W_{1}\right) I_{D_{1}=1}\right)}{P\left(D_{1}=1\right)} \\
& =\frac{E\left(\psi\left(W_{1}\right)\right)}{P\left(D_{1}=1\right)},
\end{aligned}
$$

which proves this spectal case of Theorem 3.5.

### 3.5. Letac's lower bound.

In a profound but little publicized paper, Letac (1975) asks which distributlons can be obtalned for $X=U_{N}$ where $N$ is a stopping time and $U_{1}, U_{2}, \ldots$ is an ind sequence of unlform $[0,1]$ random variables. He shows among other things that all densitles on $[0,1]$ can be obtalned in this manner. In exercise 3.14 , one universal stopping time will be described. It does not colnclde with Letac's universal stopping rule, but will do for didactical purposes.

More Importantly, Letac has obtained lower bounds on the performance of any algorithm of thls type. His maln result is:

## Theorem 3.6. (Letac's lower bound)

Assume that $X=U_{N}$ has density $f$ on $[0,1]$, where $N$ and the $U_{i}$ 's are as defined above. For any such stopping rule $N$ (i.e., for any algorithm), we have

$$
E(N) \geq||f||_{\infty}
$$

where $||\cdot||_{\infty}$ is the essential supremum of $f$.

## Proof of Theorem 3.6.

By the independence of the events $[N \geq n]$ and $\left[U_{n} \in B\right]$ (which was also used in the proof of Wald's equation), we have

$$
P\left(N \geq n, U_{n} \in B\right)=P(N \geq n) P\left(U_{1} \in B\right)
$$

But,

$$
\begin{aligned}
& P(X \in B)=\sum_{n=1}^{\infty} P\left(N=n, U_{n} \in B\right) \\
& \leq \sum_{n=1}^{\infty} P\left(N \geq n, U_{n} \in B\right) \\
& =\sum_{n=1}^{\infty} P(N \geq n) P\left(U_{1} \in B\right) \\
& =E(N) P\left(U_{1} \in B\right) .
\end{aligned}
$$

Thus, for all Borel sets $B$,

$$
E(N) \geq \frac{P(X \in B)}{P\left(U_{1} \in B\right)}
$$

If we take the supremum of the rlght-hand-side over all $B$, then we obtaln $||f||_{\infty}$.

There are quite a few algorlthms that fall into thls category. In particular, if we use rejection with a constant dominating curve on $[0,1]$, then we use $N$ unlform random varlates where for continuous $f$,

$$
E(N) \geq \sup _{x} f(x)
$$

We have seen that in the rejection algorithm, we come within a factor of 2 of thls lower bound. If the $U_{i}$ 's have density $g$ on the real llne, then we can construct stopping times for all densitles $f$ that are absolutely continuous with respect to $g$, and the lower bound reads

$$
E(N) \geq\left|\left|\frac{f}{g}\right|\right|_{\infty}
$$

For continuous $\frac{f}{g}$, the lower bound is equal to $\sup \frac{f}{g}$ of course. Again, with the rejection method with $g$ as dominating density, we come within a factor of 2 of the lower bound.

There is another class of algorithms that fits the description given here, notably the Forsythe-von Neumann algorithms, which wlll be presented in section IV.2.

### 3.6. The squeeze principle.

In the rejection method based on the Inequally $f \leq c g$, we need to compute the ratio $\frac{f}{g} N$ times where $N$ is the number of iterations. In most cases, this is a slow operation because $f$ is presumably not a slmple function of its argument (for otherwise, we would know how to generate random varlates from $f$ by other means). In fact, sometimes $f$ is not known explicitly: in this book, we will encounter cases in which it is the Integral of another function or the solution of a nonllnear equation. In all these sltuations, we should try to avold the computation of $\frac{f}{g}$ elther entirely, or at least most of the time. For princlples leading to the total avoldance of the computation, we refer to the more advanced chapter IV. Here we will brlefly discuss the squeeze principle (a term introduced by George Marsaglia (1977)) designed to avold the computation of the ratlo with high probabillty. One should in fact try to find functlons $h_{1}$ and $h_{2}$ that are easy to evaluate and have the property that

$$
h_{1}(x) \leq f(x) \leq h_{2}(x)
$$

Then, we have:

## The squeeze method

## REPEAT

Generate a uniform $[0,1]$ random variate $U$.
Generate a random variate $X$ with density $g$.
Set $W \leftarrow U \operatorname{leg}(X)$.
Accept $\leftarrow\left[W \leq h_{1}(X)\right]$.
IF NOT Accept
THEN IF $W \leq h_{2}(X)$ THEN Accept $\leftarrow[W \leq f(X)]$.
UNTIL Accept
RETURN $X$

In thls algorithm, we introduced the boolean varlable "Accept" to streamline the exit from the REPEAT loop. Such boolean varlables come in handy whenever a program must remain structured and readable. In the algorithm, we count on the fact that "Accept" gets its value most of the time from the comparison between $W$ and $h_{1}(X)$, which from now on will be called a quick acceptance step. In the remaining cases, we use a quick rejection step ( $W>h_{2}(X)$ ), and in the rare cases that $W$ is sandwlched between $h_{1}(X)$ and $h_{2}(X)$, we resort to the expensive comparison of $W$ with $f(X)$ to set the value of "Accept".

The valldity of the algorithm is not jeopardized by dropping the quick acceptance and quick rejection steps. In that case, we simply have the statement Accept $\leftarrow[W \leq f(X)]$, and obtaln the standard rejection algorithm. In many cases, the quick rejection step is omitted slnce it has the smallest effect on the efflclency. Note also that it is not necessary that $h_{1} \geq 0$ or $h_{2} \leq c g$, although nothing will be galned by considering violations of these boundary conditions.

We note that $N$ is as in the rejection algorithm, and thus, $E(N)=c$. T galn will be in the number of computations $N_{f}$ of $f$, the dominating fac* the time complexity. The computation of $E\left(N_{f}\right)$ demonstrates the usefulne. Wald's equation once agaln. Indeed, we have

$$
N_{f}=\sum_{i=1}^{N} I_{\left\lfloor h_{1}\left(X_{i}\right)<W_{i}<h_{2}\left(X_{i}\right)\right]}
$$

where $W_{i}$ is the $W$ obtalned in the $i$-th iteration, and $X_{i}$ is the $X$ used in the $i$-th Iteration. To this sum, we can apply Wald's equation, and thus,

$$
\begin{aligned}
& E\left(N_{f}\right)=E(N) P\left(h_{1}\left(X_{1}\right)<W_{1}<h_{2}\left(X_{1}\right)\right) \\
& =c \int g(x) \frac{h_{2}(x)-h_{1}(x)}{c g(x)} d x \\
& =\int\left(h_{2}(x)-h_{1}(x)\right) d x
\end{aligned}
$$

Here we used the fact that we have proper sandwiching, i.e. $0 \leq h_{1} \leq f \leq h_{2} \leq c g$. If $h_{1} \equiv 0$ and $h_{2} \equiv c g$ (1.e., we have no squeezing), then we obtaln the result $E\left(N_{f}\right)=c$ for the rejection method. With only a quick acceptance step (i.e. $h_{2}=c g$ ), we have $E\left(N_{f}\right)=c-\int h_{1}$. When $h_{1} \geq 0$ and/or $h_{2} \leq c g$ are vlolated, equallty in the expression for $E\left(N_{f}\right)$ should be replaced by inequality (exerclse 3.13).

## Inequalities via Taylor's series expansion.

A good source of inequalities for functions $f$ in terms of simpler functions is provided by Taylor's serles expansion. If $f$ has $n$ continuous derivatives (denoted by $f^{(1)}, \ldots, f^{(n)}$ ), then it is known that

$$
f(x)=f(0)+\frac{x}{1!} f^{(1)}(0)+\cdots+\frac{x^{n-1}}{n-1!} f^{(n-1)}(0)+\frac{x^{n}}{n!} f^{(n)}(\xi)
$$

where $\xi$ is a number in the interval $[0, x]$ (or $[x, 0]$, depending upon the sign of $x$ ). From this, by Inspection of the last term, one can obtain Inequalitles whlch are polynomials, and thus prime candidates for $h_{1}$ and $h_{2}$. For example, we have

$$
e^{-x}=1-x+\frac{x^{2}}{2!}-\cdots+(-1)^{n-1} \frac{x^{n-1}}{n-1!}+(-1)^{n} \frac{x^{n}}{n!} e^{-\xi} .
$$

From this, we see that for $x \geq 0, e^{-x}$ is sandwiched between consecutive terms of the well-known expansion

$$
e^{-x}=\sum_{i=0}^{\infty}(-1)^{i} \frac{x^{i}}{i!}
$$

In particular,

$$
1-x \leq e^{-x} \leq 1-x+\frac{x^{2}}{2} \quad(x \geq 0)
$$

## Example 3.4. The normal density.

For the normal density $f$, we have developed an algorithm based upon rejection from the Cauchy density in Example 3.2. We used the Inequallty $f \leq c g$ where $c=\sqrt{\frac{2 \pi}{e}}$ and $g(x)=\frac{1}{\pi\left(1+x^{2}\right)}$. For $h_{1}$ and $h_{2}$ we should look for slmple functions of $x$. Applying the Taylor serles technlque described above, we see that

$$
1-\frac{x^{2}}{2} \leq \sqrt{2 \pi} f(x) \leq 1-\frac{x^{2}}{2}+\frac{x^{4}}{8}
$$

Using the lower bound for $h_{1}$, we can now accelerate our normal random varlate generator somewhat:

## Normal variate generator by rejection and squeezing

## REPEAT

Generate a uniform $[0,1]$ random variate $U$.
Generate a Cauchy random variate $X$.
Set $W-\frac{2 U}{\sqrt{e}\left(1+X^{2}\right)}$. (Note: $W \leftarrow c U g(X) \sqrt{2 \pi}$.)
Accept $\leftarrow\left[W \leq 1-\frac{X^{2}}{2}\right]$.
IF NOT Accept THEN Accept $\leftarrow\left[W \leq e^{-\frac{X^{2}}{2}}\right]$.
UNTIL Accept
RETURN $X$

This algorithm can be improved in many directions. We have already got rid of the annoying normallzation constant $\sqrt{2 \pi}$. For $|X|>\sqrt{2}$, the quick acceptance step is useless in vlew of $h_{1}(X)<0$. Some further savings in computer time result If we work with $Y \leftarrow \frac{1}{2} X^{2}$ throughout. The expected number of computations of $f$ is

$$
c-\int h_{1}=\sqrt{\frac{2 \pi}{e}}-\frac{1}{\sqrt{2 \pi}} \int_{|x| \leq \sqrt{2}}\left(1-\frac{x^{2}}{2}\right) d x=\sqrt{\frac{2 \pi}{e}}-\frac{4}{3 \sqrt{\pi}} . \square
$$

## Example 3.5. Proportional squeezing.

It is sometimes advantageous to sandwich $f$ between two functions of the same form as in

$$
b g \leq f \leq c g
$$

where $g$ is an easy density (as in the rejection method), and $b$ is a positive constant. When $b$ and $c$ are close to 1 , such a proportional squeeze can be very useful. For example, random varlates can be generated as follows:

## The proportional squeeze method

## REPEAT

Generate a uniform $[0,1]$ random variate $U$.
Generate a random variate $X$ with density $g$.
Accept $\leftarrow\left[U \leq \frac{b}{c}\right]$.
IF NOT Accept THEN Accept $\leftarrow\left[U \leq \frac{f(X)}{c g(X)}\right]$.
UNTIL Accept
RETURN $X$

Here the expected number of computations of $f$ is quite slmply $c-b$. The main area of application of this method is in the development of unlversally applicable algorithms in which the real line is first partitioned into many intervals. On each Interval, we have a nearly constant or nearly llnear plece of density. For this plece, proportlonal squeezing with dominating density of the form $g(x)=a_{0}+a_{1} x$ can usually be applled (see exerclses 3.10 and 3.11 below).

Example 3.6. Squeezing based upon an absolute deviation inequality.
Assume that a density $f$ is close to another denslty $h$ in the following sense:

$$
|f-h| \leq g
$$

Here $g$ is another function, typically with small Integral. Here we could Implement the rejection method with as dominating curve $g+h$, and apply a sueeze step based upon $f \geq h-g$. After some simpliffations, this leads to the following algorlthm:

## REPEAT

Generate a random variate $X$ with density proportional to $h+g$, and a uniform $[0,1]$ random variate $U$.
Accept $\leftarrow\left[\frac{g(X)}{h(X)} \leq \frac{1-U}{1+U}\right]$
IF NOT Accept THEN Accept $\leftarrow[U(g(X)+h(X)) \leq f(X)]$
UNTIL Accept
RETURN $X$

This algorlthm has rejection constant $1+\int g$, and the expected number of evaluations of $f$ is at most $2 \int g$. Algorithms of this type are mainly used when $g$ has very small integral. One instance is when the starting absolute deviation inequallty is known from the study of llmit theorems in mathematical statistics. For example, when $f$ is the gamma ( $n$ ) density normalized to have zero mean and unit variance, it is known that $f$ tends to the normal density as $n \rightarrow \infty$. This convergence is studled in more detall in local central llmit theorems (see e.g. Petrov (1975)). One of the by-products of this theory is an Inequallty of the form needed by us, where $g$ is a function depending upon $n$, with integral decreasing at the rate $1 / \sqrt{n}$ as $n \rightarrow \infty$. The rejection algorithm would thus have improved performance as $n \rightarrow \infty$. What is lntrigulng here is that this sort of inequality is not llmited to the gamma density, but applles to densitles of sums of lld random varlables satisfylng certaln regularlty conditions. In one sweep, one could thus deslgn general algorlthms for this class of densitles. See also sectlons XIV.3.3 and XIV. 4.

### 3.7. Recycling random variates.

In thls section we have emphasized the expected number of iterations in our algorlthms. Sometimes we have looked at the number of function evaluations. But by and large we have steered clear of making statements about the expected number of unlform random varlates needed before an algorlthm halts. One of the reasons is that we can always recycle unused parts of the unlform random varlate. The recycling principle is harmless for our infinite precision model, but should be used with extreme care in standard single precision arlthmetic on computers.

For the rejection method, based upon the Inequallty $f \leq c g$ where $g$ is the dominating density, and $c$ is a constant, we note that given a random variate $X$
with denslty $g$ and an Independent uniform $[0,1]$ random varlate $U$, the halting rule is $\operatorname{Ucg}(X) / f(X) \leq 1$. Given that we halt, then $\operatorname{Ucg}(X) / f(X)$ is again unlform on $[0,1]$. If we reject, then

$$
\frac{\frac{U c g(X)}{f(X)}-1}{\frac{g(X)}{f(X)}-1}
$$

is agaln unlformly distributed on $[0,1]$. These recycled unlforms can be used elther in the generation of the next random varlate (if more than one random varlate is needed), or in the next iteration of the rejection algorithm. Thus, in theory, the cost of uniform $[0,1]$ random variates becomes negliglble: it is one if only one random varlate must be generated, and it remalns one even if $n$ random varlates are needed. The following algorlthm incorporates these ideas:

## Rejection algorithm with recycling of one uniform random variate

Generate a uniform $[0,1]$ random variate $U$.
REPEAT
REPEAT
Generate a random variate $X$ with density $g$.
$T \leftarrow \frac{c g(X)}{f(X)}, V \leftarrow U T$
$U \leftarrow \frac{V-1}{T-1}$ (prepare for recycling)
UNTIL $U \leq 0$ (equivalent to $V \leq 1$ )
RETURN $X$ ( $X$ has density $f$ )
$U \leftarrow V$ (recycle)
UNTL False (this is an inflnite loop; add stopping rule)

In this example, we merely want to make a point about our idealized model. Recycling can be (and usually is) dangerous on finite-precision computers. When $f$ is close to $c g$, as in most good rejection algorlthms, the upper portion of $U$ (1.e. $(V-1) /(T-1)$ in the notation of the algorithm) should not be recycled since $T-1$ is close to 0 . The bottom part is more useful, but this is at the expense of less readable algorlthms. All programs should be set up as follows: a unlform random varlate should be provided upon input, and the output consists of the returned random varlate and another unlform random varlate. The input and output random varlates are dependent, but it should be stressed that the returned random varlate $X$ and the recycled uniform random varlate are independent! Another argument agalnst recycling is that it requires a few multiplicatlons and/or divisions. Typlcally, the time taken by these operations is longer than the time needed to generate one good unlform $[0,1]$ random varlate. For all these reasons, we do not pursue the recycling princlple any further.

### 3.8. Exercises.

1. Let $f$ and $g$ be easy densitles for which we have subprograms for computing $f(x)$ and $g(x)$ at all $x \in R^{d}$. These densities can be combined into other densities $\ln$ several manners, e.g.

$$
\begin{aligned}
& h=c \max (f, g) \\
& h=c \min (f, g) \\
& h=c \sqrt{f g}, \\
& h=c f^{\alpha} g^{1-\alpha}
\end{aligned}
$$

where $c$ is a normalization constant (different in each case) and $\alpha \in[0,1]$ is a constant. How would you generate random varlates with density $h$ ? Glve the expected time complexity (expected number of iterations, comparisons, etc.).
2. Decompose the density $h(x)=\frac{2}{\pi} \sqrt{1-x^{2}}$ on $[-1,1]$ as follows:

$$
h(x)=c \sqrt{f(x) g(x)}
$$

where $c=\frac{2}{\pi} \sqrt{\frac{8}{3}}, f(x)=\frac{3}{4}\left(1-x^{2}\right)$ and $g(x)=\frac{1}{2}$, and $|x| \leq 1$. Thus, $h$ Is in one of the forms specifled in exercise 3.1. Give a complete algorithm and analysis for generating random varlates with density $h$ by the general method of exerclse 3.1.
3. The algorithm

## REPEAT

Generate $X$ with density $g$.
Generate an exponential random variate $E$.
UNTIL $h(X) \leq E$
RETURN $X$
when used with a nonnegative function $h$ produces a random varlate $X$ with density

$$
c g(x) e^{-h(x)},
$$

where $c$ is a normalization constant. Show this.
4. How does $c$, the rejection constant, change with $n$ (i.e., what is its rate of increase as $n \rightarrow \infty$ ) when the rejection method is used on the beta ( $n, n$ ) density and the dominating density $g$ is the uniform density on $[0,1]$ ?
5. Lux (1979) has generalized the rejection method as follows. Let $g$ be a given density, and let $F$ be a glven distribution function. Furthermore, assume
that $r$ is a fixed positive-valued monotonically decreasing function on $[0, \infty)$. Then a random varlate $X$ with density

$$
f(x)=g(x) \int_{-\infty}^{r(x)}\left(\frac{1}{\int_{0}^{r^{-1}(y \cdot)} g(z) d z}\right) d F(y) \quad(x>0):
$$

## Lux's algorithm

## REPEAT

Generate a random variate $X$ with density $g$.
Generate a random variate $Y$ with distribution function $F$.
UNTM $Y \leq r(X)$
RETURN $X$

Also, the probabillty of acceptance of a random couple ( $X, Y$ ) in Lux's algorithm is $\int_{0}^{\infty} F(r(x)) g(x) d x$.
8. The following density on $[0, \infty)$ has both an infinite peak at 0 and a heavy tall:

$$
f(x)=\frac{2}{(1+x) \sqrt{x^{2}+2 x}} \quad(x>0)
$$

Consider as a possible candidate for a dominating curve $c_{\theta} g_{\theta}$ where

$$
c_{\theta} g_{\theta}(x)=\left\{\begin{array}{ll}
\frac{2}{\pi \sqrt{2 x}} & , 0 \leq x \leq \theta \\
\frac{2}{\pi x^{2}} & , x>\theta
\end{array},\right.
$$

where $c_{\theta}$ Is a constant depending upon $\theta$ only and $\theta>0$ is a design parameter. Prove first that indeed $f \leq c_{\theta} g_{\theta}$. Then show that $c_{\theta}$ is minimal for $\theta=2^{1 / 3}$ and takes the value $\frac{6}{\frac{1}{3}}$. Give also a description of the entire rejec$\pi 2^{\frac{1}{3}}$
tlon algorithm together with the values for the expected number of iteratlons, comparisons, square root operations, multiplications/divisions, and assignment statements. Repeat the same exercise when the dominating density is the density of the random variable $\theta U^{2} / V$ where $\theta>0$ is a parameter and $U$ and $V$ are two lid uniform $[0,1]$ random varlates. Prove that in thls case too we obtain the same rejection constant $\frac{6}{\pi 2^{\frac{1}{3}}}$.
7. Optimal rejection algorithms for the normal density. Assume that normal random varlates are generated by rejection from a density $g_{\theta}$ where $\theta$ is a design parameter. Depending upon the class of $g_{\theta}$ 's that is consldered, we may obtaln different optlmal rejection constants. Complete the following table:

| $g_{\theta}(x)$ | Optimal $\theta$ | Optimal rejection constant $c$ |
| :---: | :---: | :---: |
| Cauchy $(\theta): \frac{\theta}{\pi\left(\theta^{2}+x^{2}\right)}$ | 1 | $\sqrt{\frac{2 \pi}{e}}$ |
| Laplace $(\theta): \frac{\theta}{2} e^{-\theta\|x\|}$ | 1 | $\sqrt{\frac{2 e}{\pi}}$ |
| Logistic $(\theta): \frac{\theta e^{-\theta x}}{\left(1+e^{-\theta x}\right)^{2}}$ | $?$ | $?$ |
| $\min \left(\frac{1}{4 \theta}, \frac{\theta}{4 x^{2}}\right)$ | $?$ | $?$ |

8. Sibuya's modified rejection method. Slbuya (1982) noted that the number of unlform random varlates in the rejection algorlthm can be reduced to one by repeated use of the same uniform random varlate. His algorithm for generating a random varlate with density $f$ (known not to exceed $c g$ for an easy denslty $g$ ) Is:

Generate a uniform $[0,1]$ random variate $U$.
REPEAT
Generate a random variate $X$ with density $g$.
UNTL $\operatorname{cg}(X) U \leq f(X)$
RETURN $X$

Show the following:
(1) The algorithm is valld if and only if $c=\operatorname{ess} \sup (f(X) / g(X))$.
(11) If $N$ is the number of $X$ 's needed in Sibuya's algorlthm, and $N *$ is the number of $X$ 's needed in the original rejection algorithm, then

$$
E(N) \geq E\left(N^{*}\right)
$$

and

$$
P(N \geq i) \geq P(N * \geq i) \quad(\text { all } i)
$$

(Hint: use Jensen's inequallty.) We conclude from (11) that Sibuya's method is worse than the rejection method in terms of number of required iterations.
(iii) We can have $P(N=\infty)>0$ (Just take $g=f, c>1$ ). We can also have $P(N=\infty)=0, E(N)=\infty$ (Just take $f(x)=2(1-x)$ on $[0,1], c=2$
and $g(x)=1$ on $[0,1])$. Glve a necessary and sufficient condition for $P(N=\infty)=0$, and show that this requires that $c$ is chosen optimally.
See alsó Greenwood (1978).
9. There exlsts a second moment analog of Wald's equation which you should try to prove. Let $W_{1}, \ldots$, and $\psi \geq 0$ be as in Theorem 3.5. Assume further that $\psi\left(W_{1}\right)$ has mean $\mu$ and varlance $\sigma^{2}<\infty$. Then, for any stopping rule $N$ with $E(N)<\infty$,

$$
E\left(\left(\sum_{i=1}^{N}\left(W_{i}-\mu\right)\right)^{2}\right)=\sigma^{2} E(N) .
$$

See for example Chow and Telcher (1978, pp. 139).
10. Assume that we use proportlonal squeezing for a density $f$ on $[0,1]$ which is known to be between $2 b(1-x)$ and $2 c(1-x)$ where $0 \leq b \leq 1 \leq c<\infty$. Then, we need in every iteration a unlform random varlate $U$ and a trlangular random varlate $X$ (which in turn can be obtaliné as $\min \left(U_{1}, U_{2}\right)$ where $U_{1}, U_{2}$ are also uniform [ 0,1 ] random variates). Prove that if $U_{(1)} \leq U_{(2)}$ are the order statistics of $U_{1}, U_{2}$, then

$$
\left(U_{(1)}, \frac{U_{(2)}-U_{(1)}}{1-U_{(1)}}\right)
$$

is distributed as $(X, U)$. Thus, using thls device, we can "save" one unlform random varlate per iteration. Write out the detalls of the corresponding proportlonal squeeze algorlthm.
11. Assume that the density $f$ has support on $[0,1]$ and that we know that it is Lipschitz with constant $C$, i.e.

$$
|f(y)-f(x)| \leq C|x-y| \quad(x, y \in R)
$$

Clearly, we have $f(0)=f(1)=0$. Glve an efficlent algorithm for generating a random varlate with density $f$ which is based upon an $n$-part equi-spaced partition of $[0,1]$ and the use of the proportlonal squeeze method for nearly linear densitles (see previous exerclse) for generating random varlates from the $n$ individual pleces. Your algorithm should be asymptotically efficient, 1.e. It should have $E\left(N_{f}\right)=o(1)$ as $n \rightarrow \infty$ where $N_{f}$ is the number of computations of $f$.
12. Random variates with density $f(x)=c\left(1-x^{2}\right)^{a}(|x| \leq 1)$. The famlly of densitles treated in this exercise colncldes with the family of symmetric beta densitles properly translated and rescaled. For example, when the parameter $a$ is integer, $f$ is the density of the median of $2 a+1$ ild uniform [ $-1,1]$ random variates. It is also the density of the marginal distribution of a random vector unlformly distributed on the surface of the unlt sphere $\ln R^{d}$ where $d$ and $a$ are related by $a=\frac{d-3}{2}$. For the latter reason, we will use it later as an important tool in the generation of random vectors that are unfformly distributed on such spheres. The parameter $a$ must be greater than -1 . We have

$$
c=\frac{\Gamma\left(a+\frac{3}{2}\right)}{\sqrt{\pi} \Gamma(a+1)},
$$

and the inequalitles

$$
c e^{-\frac{a x^{2}}{1-x^{2}}} \leq f(x) \leq c e^{-a x^{2}} \quad(|x| \leq 1)
$$

The following rejection algorithm with squeezing can be used:

Translated symmetric beta generator by rejection and squeezing REPEAT

REPEAT
Generate a normal random variate $X$. Generate an exponential random variate $E$.
UNTIL $Y \leq 1$
$X \leftarrow \frac{X}{\sqrt{2 a}}, Y \leftarrow X^{2}$
Accept $\leftarrow\left[1-Y\left(1+\frac{a}{E} Y\right) \geq 0\right]$.
IF NOT Accept THEN Accept $\leftarrow[a Y+E+a \log (1-Y) \geq 0]$.
UNTIL Accept
RETURN $X$
A. Verlify that the algorithm is valld.
B. The expected number of normal/exponentlal palrs needed is $\frac{\Gamma\left(a+\frac{3}{2}\right)}{\sqrt{a} \Gamma(a+1)}$. Selected values are

$$
\begin{array}{|lll|}
\hline a=1 & \frac{3}{4} \sqrt{\pi} & 1.329340 \ldots \\
a=2 & \frac{15}{16} \sqrt{\frac{\pi}{2}} & 1.174982 \ldots \\
a=3 & \frac{105}{96} \sqrt{\frac{\pi}{3}} & 1.119263 \ldots \\
\hline
\end{array}
$$

Show that this number tends to 1 as $a \rightarrow \infty$ and to $\infty$ as $a \downarrow 0$.
C. From part $B$ we conclude that it is better to take care of the case $0 \leq a \leq 1$ separately, by bounding as follows: $c\left(1-x^{2}\right) \leq f(x) \leq c$. The expected number of iterations becomes $2 c$, which takes the values $\frac{3}{2}$ at $a=1$ and 1 at $a=0$. Does this number vary monotonically with $a$ ? How does $E\left(N_{f}\right)$ vary with $a$ ?
D. Write a generator which works for all $a>-1$. (This requires yet another solution for $a$ in the range ( $-1,0$ ).)
E. Random variates from $f$ can also obtalned in other ways. Show that all of the following reclpes are valld:
(1) $S \sqrt{B}$ where $B$ is $\operatorname{beta}\left(\frac{1}{2}, a+1\right)$ and $S$ is a random sign.
(i1) $S \sqrt{\frac{Y}{Y+Z}}$ where $Y, Z$ are independent $\operatorname{gamma}\left(\frac{1}{2}, 1\right)$ and gamma $(a+1,1)$ random variates, and $S$ is a random slgn.
(III) $2 B-1$ where $B$ is a $\operatorname{beta}(a+1, a+1)$ random varlate.
13. Conslder the squeeze algorithm of section 3.8 which uses the Inequallty $f \leq c g$ for the rejection-based generator, and the Inequallties $h_{1} \leq f \leq h_{2}$ for the quick acceptance and rejectlon steps. Even if $h_{1}$ is not necessarlly positive, and $h_{2}$ is not necessarily smaller than $c g$, show that we always have

$$
E\left(N_{f}\right)=\int\left(\min \left(h_{2}, c g\right)-\max \left(h_{1}, 0\right)\right) \leq \int\left(h_{2}-h_{1}\right),
$$

where $N_{f}$ is the number of evaluations of $f$.
14. A universal generator a la Letac. Let $f$ be any density on $[0,1]$, and assume that the cumulative mass function $M(t)=\int_{f \geq t} f(x) d x$ is known. Consider the following algorithm:

Generate a random integer $Z$ where $P(Z=i)=M(i)-M(i+1)$. REPEAT

Generate ( $X, V$ ) uniformly in $[0,1]^{2}$
UNTLL $Z+V \leq f(X)$
RETURN $X$

Show that the algorithm is valld (relate it to the rejection method). Relate the expected number of $X$ 's generated before halting to $||f|| \infty$, the essential supremum of $f$. Among other things, conclude that the expected time is $\infty$ for every unbounded density. Compare the expected number of $X$ 's with Letac's lower bound. Show also that if inversion by sequential search is used for generating $Z$, then the expected number of iterations in the search before halting is finite if and only if $\int f^{2}<\infty$. A final note: usually, one does not have a cumulative mass function for an arbltrary density $f$.

## 4. DECOMPOSITION AS DISCRETE MIXTURES.

### 4.1. Definition.

If our target density $f$ can be decomposed into a discrete mixture

$$
f(x)=\sum_{i=1}^{\infty} p_{i} f_{i}(x)
$$

where the $f_{i}$ 's are glven denslties and the $p_{i}$ 's form a probabllity vector (1.e., $p_{i} \geq 0$ for all $i$ and $\sum_{i} p_{i}=1$ ), then random varlates can be obtalned as follows:

## The composition method.

Generate a random integer $Z$ with probability vector $p_{1}, \ldots, p_{i}, \ldots\left(\right.$ i.e. $\left.P(Z=i)=p_{i}\right)$. Generate a random variate $X$ with density $f_{Z}$. RETURN $X$

This algorithm is incomplete, because it does not specify just how $Z$ and $X$ are generated. Every time we use the general form of the algorithm, we will say that the composition method is used.

We will show in this section how the decomposition method can be applled In the design of good generators, but we will not at this stage address the problem of the generation of the discrete random varlate $Z$. Rather, we are interested in the decomposition itself. It should be noted however that in many, if not most, practical situations, we have a finite mixture with $K$ components.

### 4.2. Decomposition into simple components.

Very often, we will decompose the graph of $f$ into a bunch of very simple structures such as rectangles and triangles, mainly because random variates with rectangular-shaped or trlangular-shaped densitles are so easy to generate (by llnear comblnations of one or two unlform [0,1] random varlates). This decomposition is flnite if $f$ is plecewise linear with a finite number of pleces (this forces $f$ to have compact support). In general, one will decompose $f$ as follows:

$$
f(x)=\sum_{i=1}^{K-2} p_{i} f_{i}(x)+p_{K-1} f_{K-1}(x)+p_{K} f_{K}(x)
$$

where $f_{K}$ is a tall density (it is zero on a central interval $[a, b]$ ), $p_{K}$ is usually very small, and all other $f_{i}$ 's vanish outside the centrai interval $[a, b]$. The structure of $f_{1}, \ldots, f_{K-2}$ is simple, e.g. rectangular. After having plcked the rectangles in such a way that the corresponding $p_{i}$ 's add up to nearly 1 , we
collect the leftover plece in $p_{K-1} f_{K-1}$. This last plece is often strangely shaped, and random varlates from it are generated by the rejection method. The polnt is that $p_{K-1}$ and $p_{K}$ are so small that we do not have to generate random varlates with this density very often. Most of the time, l.e. with probability $p_{1}+\cdots+p_{K-2}$, It suffices to generate one or two unlform $[0,1]$ random varlates and to shift or rescale them. This technique will be called the jigsaw puzzle method, a term colned by Marsaglla. The careful decomposition requires some refined analysis, and is usually only worth the trouble for frequently used flxed densitles such as the normal density. We refer to the section on normal varlate generation for several applications of this sort of decomposition. Occasionally, it can be applled to familles of distributions (such as the beta and gamma familles), but the problem is that the decomposition itself is a function of the parameter(s) of the famlly. This will be lllustrated for the beta family (see section LX.4).

To give the readers a flavor of the sort of work that is Involved, we will try to decompose the normal density into a rectangle and one residual plece: the rectangle will be called $p_{1} f_{1}(x)$, and the residual plece $p_{2} f_{2}(x)$. It is clear that $p_{1}$ should be as large as possible. But since $p_{1} f_{1}(x) \leq f(x)$, the largest $p_{1}$ must satisfy

$$
p_{1} \leq \operatorname{lnf}_{x} \frac{f(x)}{f_{1}(x)}
$$

Thus, with $f_{1}(x)=\frac{1}{2} \theta,|x| \leq \theta$ where $\theta$ is the width of the centered rectangle, we see that at best we can set

$$
p_{1}=\operatorname{lnf}_{|x| \leq \theta} \frac{2 \theta e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}}=2 \frac{\theta}{\sqrt{2 \pi}} e^{-\frac{\theta^{2}}{2}}
$$

The function $p_{1}$ is maximal (as a function of $\theta$ ) when $\theta=1$, and the correspondIng value is $\sqrt{\frac{2}{\pi e}}$. Of course, this weight is not close to 1 , and the present decomposition seems hardly useful. The work involved when. we decompose in terms of several rectangles and trlangles is basically not different from the short analysls done here.

### 4.3. Partitions into intervals.

Many algorithms are based on the following principle: partition the real line into intervals $A_{1}, \ldots, A_{K}$, and decompose $f$ as

$$
f(x)=\sum_{i=1}^{K} f(x) I_{A_{i}}(x)
$$

If we can generate random varlates from the restricted densitles $f I_{A_{1}} / p_{i}$ (where $p_{i}=\int_{A_{i}} f$ ), then the decomposition method is applicable. The advantages offered
by partitions into intervals cannot be denied: the decomposition is so simple that it can be mechanized and used for huge classes of densities (in that case, there are usually very many intervals); troublespots on the real line such as infinite talls or unbounded peaks can be convenlently isolated; and most importantly, the decomposition is easily understood by the general user.

In some cases, random variates from the component densitles are generated by the rejection method based on the Inequallities

$$
f(x) \leq h_{i}(x), x \in A_{i}, 1 \leq i \leq K .
$$

Here the $h_{i}$ 's are glven dominating curves. There are two subtly different methods for generating random varlates with density $f$, given below. One of these needs the constants $p_{i}=\int_{A_{i}} f$, and the other one requlres the constants $q_{i}=\int_{A_{i}} h_{i}$. Note that the $q_{i}$ 's are nearly always known because the $h_{i}$ 's are chosen by the user. The $p_{i}$ 's are usually known when the distribution function for $F$ is easy to compute at arbltrary points.

## The composition method.

Generate a discrete random variate $Z$ with probability vector $p_{1}, \ldots, p_{K}$ on $\{1, \ldots, K\}$.

## REPEAT

Generate a random variate $X$ with density $h_{i} / q_{i}$ on $A_{i}$.
Generate an independent uniform $[0,1]$ random variate $U$.
UNTIL $U h_{i}(X) \leq f(X)$
RETURN $X$

## The modified composition method.

## REPEAT

Generate a discrete random variate $Z$ with probability vector proportional to $q_{1}, \ldots, q_{K}$ on $\{1, \ldots, K\}$.
Generate a random variate $X$ with density $h_{i} / q_{i}$ on $A_{i}$.
Generate a uniform $[0,1]$ random variate $U$.
UNTIL $U h_{i}(X) \leq f(X)$
RETURN $X$

In the second algorithm we use the rejection method with as dominating curve $h_{1} I_{A_{1}}+\cdots+h_{K} I_{A_{K}}$, and use the composition method for random varlates from the dominating density. In contrast, the first algorithm uses true decomposition. After having selected a component with the correct probability we then use the rejection method. A brief comparison of both algorithms is in order here. This can be done in terms of four quantitles: $N_{Z}, N_{U}, N_{h}$ and $N_{h_{i}}$, where $N$ is the number of random varlates required of the type speclfled by the Index with the understanding that $N_{h}$ refers to $\sum_{i=1}^{K} h_{i}$, i.e. It is the total number of random varlates needed from any one of the $K$ dominating densitles.

## Theorem 4.1.

Let $q=\sum_{i=1}^{K} q_{i}$, and let $N$ be the number of iterations in the second algorithm. For the second algorithm we have $N_{U}=N_{Z}=N_{h}=N$, and $N$ is geometrlcally distributed with parameter $\frac{1}{q}$. In particular,

$$
E(N)=q ; E\left(N^{2}\right)=2 q^{2}-q
$$

For the flrst algorithm, we have $N_{Z}=1$. Also, $N_{U}=N_{h}$ satisfy

$$
E\left(N_{U}\right)=q ; E\left(N_{U}^{2}\right)=\sum_{i=1}^{K} \frac{2 q_{i}^{2}}{p_{i}}-q \geq 2 q^{2}-q
$$

Finally, for both algorithms, $E\left(N_{h_{i}}\right)=q_{i}$.

## Proof of Theorem 4.1.

The statement for the second algorithm is obvious when we note that the rejection constant is equal to the area $q$ under the dominating curve (the sum of the $h_{i}$ 's in this case). For the first algorithm, we observe that given the value of $Z, N_{U}$ is geometrically distributed with parameter $p_{Z} / q_{Z}$. From the propertles of the geometric distribution, we then conclude the following:

$$
\begin{aligned}
& E\left(N_{U}\right)=\sum_{i=1}^{K} p_{i}\left(\frac{q_{i}}{p_{i}}\right)=\sum_{i=1}^{K} q_{i}=q \\
& E\left(N_{U}^{2}\right)=\sum_{i=1}^{K} p_{i}\left(\frac{2}{\left(\frac{p_{i}}{q_{i}}\right)^{2}}-\frac{1}{\frac{p_{i}}{q_{i}}}\right)=\sum_{i=1}^{K} 2 p_{i}\left(\frac{q_{i}}{p_{i}}\right)^{2}-q
\end{aligned}
$$

To show that the last expression is always greater or equal to $2 q^{2}-q$ we use the Cauchy-Schwarz Inequallty:

$$
\sum_{i=1}^{K} 2 p_{i}\left(\frac{q_{i}}{p_{i}}\right)^{2}-q \geq 2\left(\sum_{i=1}^{K} p_{i} \frac{q_{i}}{p_{i}}\right)^{2}\left(\sum_{i=1}^{K} p_{i} \times 1\right)^{2}-q=2 q^{2}-q
$$

Finally, we consider $E\left(N_{h_{i}}\right)$. For the first algorlthm, its expected value is $p_{i}\left(\frac{q_{i}}{p_{i}}\right)=q_{i}$. For the second algorithm, we employ Wald's equality after noting that $N_{h_{i}}=\sum_{j=1}^{N} I_{\text {[piece } h_{i} \text { is used in the } j \text {-th iteration] }}$. Thus, the expected value is $E(N) P$ (plece $h_{i}$ is used in the first iteration), which is equal to $q\left(\frac{q_{i}}{q}\right)=q_{i}$.

In standard circumstances, $q$ is close to 1 , and discrete random varlate generators are ultra efficient. Thus, $N_{Z}$ is not a great factor. For all the other quantitles involved in the comparison, the expected values are equal. But when we examine the higher moments of the distributions, we notice a striking difference, because the second method has in all cases a smaller second moment. In fact, the difference can be substantial when for some $i$, the ratio $q_{i} / p_{i}$ is large. If we take $q_{i}=p_{i}$ for $i \geq 2$ and $q_{1}=q-\left(1-p_{1}\right)$, then for the first method,

$$
E\left(N_{U}^{2}\right)=\frac{2\left(q-1+p_{1}\right)^{2}}{p_{1}}+2\left(1-p_{1}\right)-q=\left(2 q^{2}-q\right)+2(q-1)^{2}\left(\frac{1}{p_{1}}-1\right)
$$

The difference between the two second moments in this example is $2(q-1)^{2}\left(\frac{1}{p_{1}}-1\right)$. Thus, Isolating a small probability plece in the decomposition method and using a poor rejection rate for that particular plece is dangerous. In such situations, one is better off using a global rejection method as suggested in the second algorlthm.

### 4.4. The waiting time method for asymmetric mixtures.

In large simulations, one needs ild random varlates $X_{1}, \ldots, X_{n}, \ldots$. If these random varlates are generated by the composition method, then for every random varlate generated we need one dlscrete random varlate $Z$ for selecting a component. When $f$ is decomposed into a main component $p_{1} f_{1}$ ( $p_{1}$ is close to 1) and a small component $p_{2} f_{2}$, then most of these selectlons will choose the first component. In those cases, it is useful to generate the times of occurrence of selection of the second component instead. If the second component is selected at times $T_{1}, T_{2}, \ldots$, then it is not difficult to see that $T_{1}, T_{2}-T_{1}, \ldots$ are lid geometric random varlables with parameter $p_{2}$, i.e.

$$
P\left(T_{1}=i\right)=\left(1-p_{2}\right)^{i-1} p_{2} \quad(i \geq 1) .
$$

A random varlate $T_{1}$ can be generated as $\left[-\frac{E}{\log \left(p_{2}\right)}\right]$ where $E$ is an exponentlal random varlate. Of course, we need to keep track of these tlmes as we go along, occaslonally generating a new time. These times need to be stored locally in subprograms for otherwise we need to pass them as parameters. In some cases, the overhead assoclated with passing an extra parameter is comparable to the time needed to generate a uniform random varlate. Thus, one should carefully look at how the large simulation can be organized before using the geometric waltlng times.

### 4.5. Polynomial densities on $[0,1]$.

In this section, we consider densitles of the form

$$
f(x)=\sum_{i=0}^{K} c_{i} x^{i} \quad(0 \leq x \leq 1)
$$

where the $c_{i}$ 's are constants and $K$ is a positive integer. Densities with polynomlal forms are important further on as bullding blocks for constructing plecewlse polynomial approximatlons of more general densities. If $K$ is 0 or 1 , we have the uniform and trlangular densitles, and random varlate generation is no problem. There is also no problem when the $c_{i}$ 's are all nonnegative. To see this, we observe that the distribution function $F$ is a mixture of the form

$$
F(x)=\sum_{i=1}^{K+1}\left(\frac{c_{i-1}}{i}\right) x^{i}
$$

where of course $\sum_{i=1}^{K+1} \frac{c_{i-1}}{i}=1$. Since $x^{i}$ is the distribution function of the maxlmum of $i$ lld unlform $[0,1]$ random varlables, we can proceed as follows:

Generate a discrete random variate $Z$ where $P(Z=i)=\frac{c_{i-1}}{i}, 1 \leq i \leq K+1$.
RETURN $X$ where $X$ is generated as $\max \left(U_{1}, \ldots, U_{Z}\right)$ and the $U_{i}$ 's are iid uniform [0,1] random variates.

We have a nontrivial problem on our hands when one or more of the $c_{i}$ 's are negative. The solution given here is due to Ahrens and Dieter (1974), and can be applled whenever $c_{0}+\sum_{i: c_{i}<0} c_{i} \geq 0$. They decompose $f$ as follows: let $A$ be the collection of integers in $\{0, \ldots, K\}$ for which $c_{i} \geq 0$, and let $B$ the collection of indices in $\{0, \ldots, K\}$ for which $c_{i}<0$. Then, we have

$$
\begin{aligned}
& f(x)=\sum_{i=0}^{K} c_{i} x^{i} \\
& =p_{0}+\sum_{i \in A} \frac{c_{i}}{i+1}\left((i+1) x^{i}\right)+\sum_{i \in B}\left(-\frac{i c_{i}}{i+1}\right)\left(\frac{i+1}{i}\left(1-x^{i}\right)\right) \quad(0 \leq x \leq 1)
\end{aligned}
$$

where $p_{0}=c_{0}+\sum_{i \in B} c_{i}$ (which is $\geq 0$ by assumption). If we set $p_{i}$ equal to $c_{i} /(i+1)$ for $i \in A, i \geq 1$, and to $-i c_{i} /(i+1)$ for $i \in B$, then $p_{0}, p_{1}, \ldots, p_{K}$ is a probabllity vector, and we have thus decomposed $f$ as a finlte mixture. Let us brlefly mention how random varlate generation for the component densities can be done.

## Lemma 4.1.

Let $U_{1}, U_{2}, \ldots$ be lld uniform $[0,1]$ random variables.
A. For $a>1, U_{1}{ }^{\frac{1}{a}} U_{2}$ has density

$$
\frac{a}{a-1}\left(1-x^{a-1}\right) \quad(0 \leq x \leq 1) .
$$

B. Let $L$ be the Index of the first $U_{i}$ not equal to $\max \left(U_{1}, \ldots, U_{n}\right)$ for $n \geq 2$. Then $U_{L}$ has density

$$
\frac{n}{n-1}\left(1-x^{n-1}\right) \quad(0 \leq x \leq 1) .
$$

C. The density of $\max \left(U_{1}, \ldots, U_{n}\right)$ is $n x^{n-1}(0 \leq x \leq 1)$.

## Proof of Lemma 4.1.

Part C is trlvially true. Part A is a good exerclse on transformations of random variables. Part B has a particularly elegant short proof. The density of a randomly chosen $U_{i}$ is 1 (all densitles are understood to be on [ 0,1 ]). Thus, when $f$ is the density of $U_{L}$, we must have

$$
\frac{n-1}{n} f(x)+\frac{1}{n} n x^{n-1}=1 .
$$

This uses the fact that with probablity $\frac{1}{n}$, the randomly chosen $U_{i}$ is the maximal $U_{i}$, and that with the complimentary probabllity, the randomly chosen $U_{i}$ is distrlbuted as $U_{L}$.

We are now in a position to glve more detalls of the polynomial density algorlthm of Ahrens and Dleter.

## Polynomial density algorithm of Ahrens and Dieter

[SET-UP]
Compute the probability vector $p_{0}, p_{1}, \ldots, p_{K}$ from $c_{0}, \ldots, c_{K}$ according to the formulas given above. For each $i \in\{0,1, \ldots, K\}$, store the membership of $i\left(i \in A\right.$ if $c_{i} \geq 0$ and $i \in B$ otherwise).
[GENERATOR]
Generate a discrete random variate $Z$ with probability vector $p_{0}, p_{1}, \ldots, p_{K}$.
IF $\mathcal{Z} \in A$
THEN RETURN $X \leftarrow U^{\frac{1}{Z+1}}$ (or $X \leftarrow \max \left(U_{1}, \ldots, U_{Z+1}\right)$ where $U, U_{1}, \ldots$ are iid uniform $[0,1]$ random variates $)$.
ELSE RETURN $X \leftarrow U_{1}{ }^{\frac{1}{Z+1}} U_{2}$ (or $X \leftarrow U_{L}$ where $L$ is the $U_{i}$ with the lowest index not equal to $\max \left(U_{1}, \ldots, U_{Z+1}\right)$ ).

### 4.6. Mixtures with negative coefficients.

Assume that the density $f(x)$ can be written as

$$
f(x)=\sum_{i=1}^{\infty} p_{i} f_{i}(x)
$$

where the $f_{i}$ 's are densitles, but the $p_{i}$ 's are real numbers summing to one. A general algorithm for these densitles was glven by Blgnaml and de Mattels (1971). It uses the fact that if $p_{i}$ is decomposed into its positive and negative parts, $p_{i}=p_{i+} p_{i-}$, then

$$
f(x) \leq g(x)=\sum_{i=1}^{\infty} p_{i+} f_{i}(x)
$$

Then, the following refection algorithm can be used:

## Negative mixture algorithm of Bignami and de Matteis

## REPEAT

Generate a random variate $X$ with density $\sum_{i=1}^{\infty} p_{i+} f_{i} / \sum_{i=1}^{\infty} p_{i+}$.
Generate a uniform $[0,1]$ random variate $U$.
UNTIL $U \sum_{i=1}^{\infty} p_{i}+f_{i}(X) \leq \sum_{i=1}^{\infty} p_{i} f_{i}(X)$
RETURN $X$

The rejection constant here is $\int g=\sum_{i=1}^{\infty} p_{i+}$. The algorithm is thus not valld when thls constant is $\infty$. One should observe that for thls algorithm, the rejection constant is probably not a good measure of the expected time taken by lt. Thls is due to the fact that the time needed to verlfy the acceptance condition can be very large. For finite mixtures, or mixtures that are such that for every $x$, only a finite number of $f_{i}(x)$ 's are nonzero, we are in gooll shape. In all cases, it is often possible to accept or reject after having computed just a few terms in the serles, provided that we have good analytical estimates of the tall sums of the serles. Since thls is the main idea of the serles method of section IV.5, it will not be pursued here any further.

## Example 4.1.

The denslty $f(x)=\frac{3}{4}\left(1-x^{2}\right),|x| \leq 1$, can be written as $f(x)=\frac{6}{4}\left(\frac{1}{2} I_{[-1,1]}(x)\right)-\frac{2}{4}\left(\frac{x^{2}}{6} I_{\mid-1,1]}(x)\right)$. The algorithm given above is then
entirely equivalent to ordinary rejection from a uniform density, which in this case has a rejection constant of $\frac{3}{2}$ :

## REPEAT

Generate a uniform $[-1,1]$ random variate $X$.
Generate a uniform $[0,1]$ random variate $U$.
UNTIL $U \leq 1-X^{2}$
RETURN $X$ -

## 5. THE ACCEPTANCE-COMPLEMENT METHOD.

### 5.1. Definition.

Let $f$ be a given density on $R^{d}$ which can be decomposed into a sum of two nonnegative functlons:

$$
f(x)=f_{1}(x)+f_{2}(x)
$$

Assume furthermore that there exists an easy density $g$ such that $f_{1} \leq g$. Then the following algorithm can be used to generate a random variate $X$ with density $f$ :

## The acceptance-complement method

Generate a random variate $X$ with density $g$.
Generate a uniform $[0,1]$ random variate $U$.
IF $U>\frac{f_{2}(X)}{g(X)}$
THEN Generate a random variate $X$ with density $\frac{f_{2}}{p}$ where $p=\int f_{2}$.
RETURN $X$

This, the acceptance-complement method, was first proposed by Kronmal and Peterson (1981,1984). It generallzes the composition method as can be seen if we take $f_{1}=f I_{A}, g=f_{1} / \int f_{1}$ and $f_{2}=f I_{A}$ c where $A$ is an arbitrary set of $R^{d}$
and $A^{c}$ is its complement. It is competitive if three conditions are met:
(i) $g$ is an easy density.
(11) $f_{2} / p$ is an easy density when $p$ is not small (when $p$ is small, this does not matter much).
(iii) $f_{1} / g$ is not difficult to evaluate.

As with the composition method, the algorithm given above is more a principle than a detalled reclpe. When we compare it with the rejection method, we notice that instead of one design varlable (a dominating density) we find two design varlables, $f_{2}$ and $g$. Moreover, there is no rejection involved at all, although very often, it turns out that a random variate from $\frac{f_{2}}{p}$ is generated by the rejection method.

Let us first show that this method is valld. For this purpose, we need only show that for all Borel sets $B \subseteq R^{d}$, the random varlate generated by the algorithm (which will be denoted here by $X$ ) satisfles $P(X \in B)=\int_{B} F(x) d x$. To avold confusion with too many $X$ 's, we will use $Y$ for the random varlate with density $g$. Thus,

$$
\begin{aligned}
& P(X \in B)=P\left(Y \in B, U \leq \frac{f_{1}(Y)}{g(Y)}\right)+P\left(U>\frac{f_{1}(Y)}{g(Y)}\right) \frac{\int_{B} f_{2}(x) d x}{p} \\
& =\int_{B} g(x) \frac{f_{1}(x)}{g(x)} d x+\left(1-\int g(x) \frac{f_{1}(x)}{g(x)} d x\right) \frac{\int_{B} f_{2}(x) d x}{p} \\
& =\int_{B} f_{1}(x) d x+\int_{B} f_{2}(x) d x \\
& =\int_{B} f(x) d x .
\end{aligned}
$$

In general, we galn if we can RETURN the first $X$ generated in the algorithm. Thus, it seems that we should try to maximize its probabllity of acceptance,

$$
P\left(U \leq \frac{f_{1}(Y)}{g(Y)}\right)=\int f_{1}=1-p
$$

subject of course to the constraint $f_{1} \leq g$ where $g$ is an easy density. Thus, good algorithms have $g$ "almost" equal to $f$.

There is a visual explanation of the method related to that of the rejection method. What is Important here is that the areas under the graphs of $g-f_{1}$ and $f_{2}$ are equal. In the next section, we will give a simpllfled version of the acceptance-complement algorithm developed independently by Ahrens and Dieter (1981,1983). Examples and detalls are given in the remalning sections and in some of the exercises.

### 5.2. Simple acceptance-complement methods.

Ahrens and Dieter $(1981,1983)$ and Deak (1981) considered the speclal case defined by an arbitrary density $g$ on $R^{d}$ and the following decomposition:

$$
\begin{aligned}
& f(x)=f_{1}(x)+f_{2}(x) ; \\
& \left.f_{1}(x)=\min (f(x), g(x)) \quad \text { (note }: f_{1} \leq g\right) ; \\
& f_{2}(x)=(f(x)-g(x))_{+}
\end{aligned}
$$

We can now rewrite the acceptance-complement algorithm quite simply as follows:

## Simple acceptance-complement method of Ahrens and Dieter

Generate a random variate $X$ with density $g$.
Generate a uniform $[0,1]$ random variate $U$.
IF $U>\frac{f(X)}{g(X)}$
THEN Generate a random variate $X$ with density $(f-g)_{+} / p$ where $p=\int_{f>g}(f-g)$.
RETURN $X$

Deak (1981) calls thls the economical method. Usually, $g$ is an easy density close to $f$. It should be obvious that generation from the leftover density ( $f-g)_{+} / p$ can be problematlc. If there is some freedom in the design (i.e. In the cholce of $g$ ), we should try to minimize $p$. This simple acceptance-complement method has been used for generating gamma and t varlates (see Ahrens and Dleter ( 1981,1883 ) and Stadlober (1981) respectively). One of the maln technical obstacles encountered (and overcome) by these authors was the determination of the set on which $f(x)>g(x)$. If we have two densities that are very close, we must first verlfy where they cross. Often this leads to compllcated equations whose solutlons can only be determined numerically. These problems can be sldestepped by exploiting the added flexibillty of the general acceptancecomplement method.

### 5.3. Acceleration by avoiding the ratio computation.

The time-consuming ratio evaluation $\frac{f_{1}}{g}$ in the acceptance condition can be avolded some of the time if we know two easy-to-compute functions $h$ and $h *$ with the property that

$$
h(x) \leq \frac{f_{1}(x)}{g(x)} \leq h *(x) .
$$

The IF step in the acceptance-complement algorithm can be replaced in those cases by

Squeeze step in acceptance-complement method
IF $U>h(X)$
THEN IF $U \geq h *(X)$
THEN Generate a random variate $X$ with density $\frac{f_{2}}{p}$ where $p=\int f_{2}$. ELSE IF $U>\frac{f_{1}(X)}{g(X)}$

THEN Generate a random variate $X$ with density $\frac{f_{2}}{p}$ where $p=\int f_{2}$.

## RETURN $X$

A simllar but more spectacular acceleration is possible for the Ahrens-Dleter algorithm if one can quickly determine whether a point belongs to $A$, where $A$ is a subset of $f>g$. In particular, one will find that the set on which $f>g$ often is an interval, in which case this acceleration is easy to apply.

```
Accelerated version of the Ahrens-Dieter algorithm
Generate a random variate X with density g.
IF X\not\inA
        THEN
        Generate a uniform [0,1] random variate U.
        FF U> 位X)
        THEN Generate a random variate X with density (f-g)+/p.
RETURN }
```

With probability $P(X \in A)$, no unlform random varlate is generated. Thus, what one should try to do is to choose $g$ such that $P(X \in A)$ is maximal. This in turn
suggests choosing $g$ such that

$$
\int_{f \geq g} g
$$

is large.

### 5.4. An example: nearly flat densities on $[0,1]$.

We wlll develop a universal generator for all densitles $f$ on $[-1,1]$ which satlsfy the following property: $\sup _{x} f(x)-\operatorname{lnf}_{x} f(x) \leq \frac{1}{2}$. Because we always have $0 \leq \operatorname{lnf} f(x) \leq \frac{1}{2} \leq \sup _{x} f(x)$, we see that $\sup _{x} f(x) \leq 1$. We will apply the acceptance-complement method here with as simple a decomposition as possible, for example

$$
\begin{aligned}
& g(x)=\frac{1}{2} \quad(|x| \leq 1) \\
& f_{1}(x)=f(x)-\left(f_{\max }-\frac{1}{2}\right) \quad\left(f_{\max }=\sup _{x} f(x)\right) ; \\
& f_{2}(x)=f_{\max }-\frac{1}{2} \quad(|x| \leq 1) .
\end{aligned}
$$

The condition imposed on the class of densities follows from the fact that we must ask that $f_{1}$ be nonnegative. The algorithm now becomes:

## Acceptance-complement method for nearly flat densities

Generate a uniform $[-1,1]$ random variate $X$.
Generate a uniform $[0,1]$ random variate $U$.
IF $U>2\left(f(X)-f_{\max }+\frac{1}{2}\right)$
THEN Generate a uniform $[-1,1]$ random variate $X$.
RETURN $X$

To thls, we could add a squeeze step, because we can exlt whenever $U \leq 2\left(\ln _{x} f(x)-f \max +\frac{1}{2}\right)$, and the probabllity of thls fast exit increases with the "flatness" of $f$. It is 1 when $f$ is the uniform density.

A comparison with the rejection method is $\ln$ order here. First we observe that because we plcked $g$ and $f_{2}$ both uniform, we need only unform random varlates. The number N of such unlform random varlates used up in the algorithm is elther 2 or 3 . We have

$$
E(N)=2+1 \times P\left(U>2\left(f(X)-f_{\max }+\frac{1}{2}\right)\right.
$$

where $X$ stands for a unlform $[-1,1]$ random varlate. Thus,

$$
\begin{aligned}
& E(N)=2+\int_{-1}^{1} \frac{1}{2} 2\left(f_{\max }-f(x)\right) d x \\
& =2+2 f_{\max }-1=1+2 f_{\max }
\end{aligned}
$$

In addition, if no squeeze step is used, we require exactly one computation of $f$ per variate. The obvious rejection algorithm for this example is

## Rejection algorithm for nearly flat densities

## REPEAT

Generate a uniform $[-1,1]$ random variate $X$.
Generate a uniform $[0,1]$ random variate $U$.
UNTLL $U f_{\text {max }} \leq f(X)$
RETURN $X$

Here too we could insert a squeeze step ( $U f \max _{\max } \leq \operatorname{lnf}_{x} f(x)$ ). Without it, the expected number of uniform random varlates needed is 2 times the expected number of iterations, i.e. $4 f$ max. In addition, the expected number of computatlons of $f$ is $2 f$ max . On both counts, this is strictly worse than the acceptancecomplement method.

We have thus established that for some falrly general classes of densities, we have a strict improvement over the rejection algorithm. The unlversallty of the algorithms depends upon the knowledge of the infimum and supremum of $f$. This is satisfled for example if we know that $f$ is symmetric unimodal in which case the inflmum is $f(1)$ and the supremum is $f(0)$.

The algorithm glven above can be applled to the maln body of most symmetric unimodal densitles such as the normal and Cauchy densities. For the truncated Cauchy density

$$
f(x)=\frac{2}{\pi\left(1+x^{2}\right)} \quad(|x| \leq 1)
$$

our conditions are satlsfied because $f_{\max }=\frac{2}{\pi}$ and the inflmum of $f$ is $\frac{1}{\pi}$, the difference being smaller than $\frac{1}{2}$. In this case, the expected number of unfform random varlates needed is $1+\frac{4}{\pi}$. Next, note that if we can generate a random varlate $X$ with density $f$, then a standard Cauchy random varlate can be obtained by exploiting the property that the random variate $Y$ deflned by

$$
Y= \begin{cases}X & \text { with probablllty } \frac{1}{2} \\ \frac{1}{X} & \text { with probablllty } \frac{1}{2}\end{cases}
$$

is Cauchy distributed. For thls, we need an extra coln flip. Usually, extra coln flips are generated by borrowing a random blt from $U$. For example, in the unlversal algorithm shown above, we could have started from a unlform $[-1,1]$ random variate $U$, and used $|U| \ln$ the acceptance condition. Since $\operatorname{sign}(U)$ is Independent of $|U|, \operatorname{sign}(U)$ can be used to replace $X$ by $\frac{1}{X}$, so that the returned random varlate has the standard Cauchy density. The Cauchy generator thus obtained was first developed by Kronmal and Peterson (1981).

We were forced by technical considerations to limit the densitles somewhat. The rejection method can be used on all bounded densities with compact support. Thls typiffes the situation in general. In the acceptance-complement method, once we choose the general form of $g$ and $f_{2}$, we loose in terms of universallty. For example, if both $f_{2}$ and $g$ are constant on [-1,1], then $f=f_{1}+f_{2} \leq g+f_{2} \leq 1$. Thus, no density $f$ with a peak hlgher than 1 can be treated by the method. If universallty is a prime concern, then the rejection method has little competition.

### 5.5. Exercises.

1. Kronmal and Peterson (1981) developed yet another Cauchy generator based upon the acceptance-complement method. It is based upon the following decomposition of the truncated Cauchy denslty $f$ (see text for the deflition) into $f_{1}+f_{2}$ :

$$
\begin{aligned}
& f_{1}(x)=f(x)-\frac{1}{\pi}(1-|x|) \quad(|x| \leq 1) \\
& f_{2}(x)=\frac{1}{\pi}(1-|x|) \quad(|x| \leq 1) \\
& g(x)=\frac{1}{2} \quad(|x| \leq 1)
\end{aligned}
$$

We have:

## A Cauchy generator of Kronmal and Peterson

Generate ild uniform $[-1,1]$ random variates $X$ and $U$.
IF $|U|>\frac{2}{\pi}$.

$$
\text { THEN IF }|U| \leq 0.7225
$$

THEN IF $|U|>\frac{4}{\pi\left(1+X^{2}\right)}-\frac{2}{\pi}(1-|X|)$
THEN Generate iid uniform $[-1,1]$ random variates $X, U$. $X \leftarrow|X|-|U|$.
ELSE Generate a uniform $[-1,1]$ random variate $U$. $X \leftarrow|X|-|U|$.
IF $U \leq 0$
THEN RETURN $X$
ELSE RETURN $\frac{1}{X}$

The first two IF's are not required for the algorithm to be correct: they correspond to squeeze steps. Verlfy that the algorlthm generates standard Cauchy random varlates. Prove also that the acceleration steps are valld. The constant 0.7225 is but an approximation of an irrational number, which should be determined.

