Chapter Twelve
 RANDOM SAMPLING

1. INTRODUCTION.

In thls chapter we conslder the problem of the selection of a random sample of size k from a set of n objects. This is also called sampling without replacement since dupllcates are not allowed. There are several lssues here which should be clarifled in this, the introductory section.

1. Some users may wish to generate an ordered random sample. Not unexpectedly, it is easler to generate unordered random samples. Thus, algorithms that produce ordered random samples should not be compared on an equal basls with other algorithms.
2. Sometimes, n is not known, and we are asked to grab each object in turn and make an instantaneous decislon whether to include it in our random sample or not. Thls can best be visuallzed by consldering the objects as belng given in a llnked list and not an array.
3. In nearly all cases, we worry about the expected time complexity as a functlon of k and n. In typical situations, n is much larger than k, and we would like to have expected time complexitles which are bounded by a constant times k, unlformly over n.
4. The space required by an algorithm is defined as the space required outside the original array of n records or objects and outside the array of k records to be returned. Some of the algorlthms in thls chapter are bounded workspace algorthms, i.e. the space requlrements are $O(1)$.
The strategles for sampling can be partitloned as follows: (1) classlcal sampling: generate random objects and include them in the sample if they have not already been picked; (il) sequential sampling: generate the sample by traversing the collection of objects once and making instantaneous decisions during that one pass; (III) oversampllng: by means of a slmple technlque, obtaln a random sample (usually of incorrect size), and in a second phase, adjust the sample so that it has the right size. Each of these strategles has some very competitive algorithms, so that no strategy should a priori be excluded from contention.

We assume that the set of objects is $\{1,2, \ldots, n\}$. If the objects are different, then these integers should be considered as pointers (Indices) to the objects in an array.

2. CLASSICAL SAMPLING.

2.1. The swapping method.

Assume that the objects are glven in array form: $A[1], \ldots, A[n]$. Then, if we are allowed to permute the objects, random sampling is extremely simple. We can choose an object unlformly and at random, and swap it with the last object. If we need another object, we choose one unformly from among the first $n-1$ objects, and swap with the $n-1$ st object, and so forth. This algorlthm takes time proportional to k, and $O(1)$ extra space is needed. The disadvantage is that the sample is not ordered. Also, record swapping is sometlmes not allowed. We are allowed to swap pointers though, but thls would then require $\Theta(n)$ extra space for pointers. If there are no records to begin with, then the space requirement is $\Omega(n)$. Formally we have:

Swapping method

$$
\text { FOR } i:=n \text { DOWNTO } n-k+1 \text { DO }
$$

Generate a uniform [0.1] random variate U.
$X \leftarrow\lceil i U\rceil$
Swap ($A[X], A[i])$
RETURN $A[n-k+1], \ldots, A[n]$

The swapping method is very convenlent. If we set $k=n$, then the returned array is a random permutation. Thus, the swapping method is based upon the princlple that generating a random subset of size k is equivalent to generating the first k entrles in a random permutation.

2.2. Classical sampling with membership checking.

If we are not allowed to swap information, then we are forced to check whether a certaln element is not already plcked. The checking can be achleved in a number of ways via different data structures. Regardless of the data structure, we can formulate the algorthm:

```
Classical sampling with membership checking
\(S \leftarrow \emptyset(S\) will be the set of random integers to be returned)
FOR \(i:=1\) TO \(k\) DO
REPEAT
```

Generate a random integer Z in $\{1, \ldots, n\}$.
UNTIL NOT Member (Z) (Member returns true if an integer is already picked, and false otherwise.)
$S \leftarrow S \cup\{Z\}$
RETURN S

The data structure used for S should support the following operations: Inttallze empty set, insert, member. Among the tens of posslble data structures, the following are perhaps most representative:
A. The blt-vector implementation. Define an array of n bits, which are initially set to false, and which are swltched to true upon insertion of an element.
B. An unordered array of chosen elements. Elements are added at the end of the array.
C. A binary search tree of chosen elements. The expected depth of the k-th element added to the tree is $\sim 2 \log (k)$. The worst-case depth can be as large as k.
D. A height-balanced blnary tree or 2-3 tree of chosen elements. The worst-case depth of the tree with k elements is $O(\log (k))$.
E. A bucket structure (open hashing with chaining). Partition $\{1, \ldots, n\}$ into k about equal Intervals, and keep for each interval (or: bucket) a linked list of all elements chosen untll now.
F. Closed hashing into a table of slze a bit larger than k.

It is perhaps useful to give a list of expected complexitles of the various operatlons needed on these data structures. We also include the space requirements, with the convention that the array of k Integers to be returned is in any case

Included in the space requirements.

DATA STRUCTURE	Initialize	Insert	Member	Space requirements
Bit vector	n	1	1	n
Unordered array	1	1	k	k
Binary search tree	1	$\log (k)$	$\log (k)$	k
Height-balanced tree	1	$\log (k)$	$\log (k)$	k
Buckets	k	1	1	k
Closed hashing	k	1	1	k

Timewlse, none of the suggested data structures is better than the bit-vector data structure. The problem with the bit-vector implementation is not so much the extra storage proportlonal to n, because we can often use the already existing records and use common programming tricks (such as changing slgns etcetera) to store the extra blts. The problem is the re-InItiallzation necessary after a sample has been generated. At the very least, thls will force us to consider the selected set S, and turn the k blts off again for all elements $\ln S$. Of course, at the very beginning, we need to set all n blts to false.

The first important quantity is the expected number of iterations in the sampling algorithm.

Theorem 2.1.

The expected number of iterations in classical sampling with membership checking is

$$
\sum_{i=1}^{k} \frac{n}{n-i+1}
$$

For $k=n$, this is $n \sum_{i=1}^{n} \frac{1}{i} \sim n \log (n)$. When $k \leq\left\lceil\frac{n}{2}\right\rceil$, this number is $\leq 2 k$.

Proof of Theorem 2.1.

Observe that to generate the i-th random integer, we carry out a serles of independent experiments, each having probabillty of success $\frac{n-i+1}{n}$. Thls ylelds the given expected value. The asymptotic result when $k=n$ is trivially true. The general upper bound is obtalned by a standard integral argument: bound the sum from above by

$$
\begin{aligned}
& n \sum_{i=n-k+1}^{n} \frac{1}{i} \\
& \leq n\left(\frac{1}{n-\left\lceil\frac{n}{2}\right\rceil+1}+\int_{n-k+1}^{n} \frac{1}{x} d x\right)
\end{aligned}
$$

$$
\begin{aligned}
& =n\left(\frac{1}{n-\left\lceil\frac{n}{2}\right\rceil+1}+\log \left(\frac{n}{n-k+1}\right)\right. \\
& \leq 2+n \log \left(1+\frac{k-1}{n-k+1}\right) \\
& \leq 2+\frac{n}{n-k+1}(k-1) \\
& \leq 2+2(k-1)=2 k .
\end{aligned}
$$

What matters here is that the expected time Increases no faster than $O(k)$ when k is at most half of the sample. Of course, when k is larger than $\frac{n}{2}$, one should really sample the complement set. In partlcular, the expected time for the blt-vector implementation is $O(k)$. For the tree methods, we obtaln $O(k \log (k))$. If we work with ordered or unordered lists, then the generation procedure takes expected time $O\left(k^{2}\right)$. Finally, with the hash structure we have expected time $O(k)$ provided that we can show that the expected time of an Insert or a delete Is O (1) (apply Wald's equation). Assume that we have a bucket structure with $m k$ equal-sized Intervals, where $m \geq 1$ is a design integer usually equal to 1 . The Interval number is an integer between 1 and $m k$, and Integer $x \in\{1, \ldots, n\}$ is hashed to interval $\left\lceil\frac{x}{n} m k\right\rceil$. Thus, if the hash table has k elements, then every Interval has about $\frac{1}{m}$ elements. The expected number of comparisons needed to check the membershlp of a random integer in a hash table contalning i elements is bounded from above by $E\left(1+n_{Z}\right)$ where n_{Z} is equal to the number of elements in the interval Z, and Z is a random interval Index, chosen with probabllity proportional to the cardinallty of the interval. The " 1 " accounts for the comparison spent checking the endmarker In the chaln. Thus, the expected number of comparisons is not greater than

$$
\begin{aligned}
& 1+\sum_{j=1}^{m k} \frac{\left(\frac{n}{m k}+1\right)}{n} n_{j} \\
& \leq 1+i \frac{\left(\frac{n}{m k}+1\right)}{n} \\
& =1+\frac{i}{m k}+\frac{i}{n} .
\end{aligned}
$$

In the worst case ($i=k$), thls upper bound is $1+\frac{1}{m}+\frac{k}{n} \leq 2+\frac{1}{m}$. The upper bound is very loose. Nevertheless, we have an upper bound which is clearly O (1). Also, if we can afford the space, it pays to take m as large as possible. One
possible hashing algorithm is given below:

```
Classical sampling with membership checking based on a hash table
This algorithm uses three arrays of integers of size \(k\). An array of headers Head
\([1], \ldots\) Head \([k]\) is initially set to 0 . An array pointers to successor elements
\(\operatorname{Next}[1], \ldots, \operatorname{Next}[k]\) is also set to 0 . The array \(A[1], \ldots, A[k]\) will be returned.
FOR \(i:=1\) TO \(k\) DO
    Accept \(\leftarrow\) False
    REPEAT
            Generate a random integer \(Z\) uniformly distributed on \(\{1, \ldots, n\}\).
            Bucket \(\leftarrow 1+\left\lfloor\frac{k(Z-1)}{n}\right\rfloor\)
            Top \(\leftarrow\) Head [Bucket ]
            IF \(\mathrm{Top}=0\)
                THEN
                    Head [ Bucket] \(\leftarrow i\)
                    \(A[k] \leftarrow Z\)
                    Accept \(\leftarrow\) True
                ELSE
                    WHILE \(A\) (Top \(] \neq Z\) AND Top \(\neq 0\) DO
                            (Top, Top*) \(\leftarrow\) (Next [Top], Top)
                    IF Top \(=0\) THEN
                    \(A[i] \leftarrow Z\)
                            Next [ Top* ] \(\leftarrow i\)
                            Accept \(\leftarrow\) True
```

 UNTIL Accept
 RETURN $A[1], \ldots, A[k]$

The hashing algorithm requires $2 k$ extra storage space. The array returned is not sorted, but sorting can be done in linear expected tlme. We glve a short formal proof of this fact. It is only necessary to travel from bucket to bucket and sort the elements within the buckets (because an order-preserving hash function was used). If thls is done by a simple quadratic method such as bubble sort or selection sort, then the overall expected time complexity is $O(k)$ (for the overhead costs) plus a constant times

$$
E\left(\sum_{i=1}^{m k} n_{i}{ }^{2}\right) .
$$

But n_{i} is hypergeometric with parameters n, l, k where l is the number of Integers in the i-th bucket (thls is about $\frac{n}{m k}$), i.e. for each j,

$$
P\left(n_{i}=j\right)=\frac{\binom{l}{j}\binom{n-l}{k-j}}{\binom{n}{k}}
$$

We know that $E\left(n_{i}\right)=\frac{k l}{n}$, and this tends to $\frac{1}{m}$ as $k, n \rightarrow \infty$, and it does not exceed $\frac{1}{m}+\frac{k}{n} \ln$ any case. Simple computations show that

$$
\operatorname{Var}\left(n_{i}\right)=\frac{n-k}{n-1} \frac{n-l}{n} \frac{k l}{n}
$$

which in turn tends to $\frac{1}{m}$ as $k, n \rightarrow \infty$, without exceeding $\frac{1}{m}+\frac{k}{n}$ for any value of k, m, n. Combining this, we see that the the expected time complexity is a constant times

$$
\sim k\left(1+\frac{1}{m}\right) .
$$

It is not greater than a constant times

$$
m k\left(\left(\frac{1}{m}+\frac{k}{n}\right)^{2}+\left(\frac{1}{m}+\frac{k}{n}\right)\right)=k\left(1+\frac{k m}{n}\right)\left(1+\frac{1}{m}+\frac{k}{n}\right) .
$$

These expressions show that it is important to take m large. One should not fall into the trap of letting m Increase with k, n because the set-up time is proportlonal to $m k$, the number of buckets. The hashing method with chaining, as given here, was implicitly given by Muller (1958) and studied by Ernvall and Nevalainen (1982). Its space inefficlency is probably its greatest drawback. Closed hashing with a table of size k has been suggested by Nijenhuls and Wir (1975). Ahrens and Dleter (1985) consider closed hashing tables of size $m k$ where now m is a number, not necessarily integer, greater than 1 . See also Teuhola and Nevalainen (1982). It is perhaps Instructive to give a brlef description of the algorlthm of Nijenhuls and Wilf (1975). An unordered sample $A[1], \ldots, A[k]$ wlll be generated, and an auxillary vector $\operatorname{Next}[1], \ldots, N e x t[k]$ of $l n n k s$ is needed in the process. A polnter p points to the largest index i for which $A[i]$ is not yet specifled.

Algorithm of Nijenhuis and Wilf

[SET-UP]

$$
p \leftarrow k+1
$$

FOR $i:=1$ TO k DO $A[i] \leftarrow 0$
[GENERATOR]
REPEAT

```
Generate a random integer \(X\) uniformly distributed on \(1, \ldots, n\). Set Bucket \(-X \bmod k+1\).
IF \(A\) [Bucket] \(=0\)
THEN \(A\) [Bucket] \(\leftarrow X, \operatorname{Next}[\) Bucket \(] \leftarrow 0\)
ELSE
WHILE \(A\) [Bucket] \(\neq X\) DO
IF \(\operatorname{Next}[\) Bucket \(]=0\)
THEN
REPEAT \(p \leftarrow p-1\) UNTIL \(p=0\) OR \(A[p]=0\)
Next[Bucket] \(\leftarrow p\)
Bucket \(\leftarrow p\)
ELSE Bucket - Next[Bucket]
```

UNTIL $p=0$
RETURN $A[1], \ldots, A[k]$

The algorithm of Nijenhuls and Wllf differs sllghtly from standard closed hashing schemes because of the vector of links. The links actually create small linked lists within the table of slze k. When we look at the cost assoclated with the algorithm, we note first that the expected number of uniform random varlates needed is at the same as for all other classical sampling schemes (see Theorem 2.1). The search for an empty space $(p \leftarrow p-1)$ takes time $O(k)$. The search for the end of the llnked llst (Inner WHILE loop) takes on the average fewer than 2.5 link accesses per random varlate X, independent of when X is generated and how large k and n are (Knuth, 1989, pp. 513-518). Thus, both expected time and space are $O(k)$.

2.3. Exercises.

1. The number of elements n_{1} that end up in a bucket of capacity l in the bucket method is hypergeometrically distributed with parameters n, k, l. That Is,

$$
P\left(n_{1}=i\right)=\frac{\binom{l}{i}\binom{n-l}{k-i}}{\binom{n}{k}}, \quad 0 \leq i \leq \min (k, l)
$$

In the text, we needed the expected value and varlance of n_{1}. Derlve these quantitles.
2. Prove that the expected time in the algorithm of Nijenhuls and wilf is $O(k)$.
3. Weighted sampling without replacement. Assume that we wish to generate a random sample of slze k from $\{1, \ldots, n\}$, where the integers $1, \ldots, n$ have welghts w_{i}. Drawing an integer from a set of integers is to be done with probability proportional to the welght of the integer. Using classical sampling, this involves dynamically updating a selection probabillty vector. Wong and Easton (1980) suggest setting up a binary tree of height $O(\log (n))$ in time $O(n)$ in a preprocessing step, and using this tree in the inversion method. Generating a random integer takes time $O(\log (n))$, while updating the tree has a similar cost. This leads to a method with worst-case tlme $O(k \log (n)+n)$. The space requirement is proportional to n (space is less critical because the vector of welghts must be stored anyway). Develop a dynamic structure based upon the allas method or the method of gulde tables, which has a better expected time performance for all vectors of welghts.

3. SEQUENTIAL SAMPLING.

3.1. Standard sequential sampling.

In sequentlal sampling, we want an ordered sample of size k drawn from $1, \ldots, n$. An unordered sample can always be obtalned by one of the methods described in the previous section, and in many cases (e.g. the hashing methods), sorting can be done extremely efficlently in expected time $O(k)$. What we will do In this chapter is different. The methods described here are fundamentally one pass methods in which the random sample is constructed in order. There are two possible strategles: first, we could grab each integer in 1, .., $n \ln$ turn, and decide whether to take it or leave 1t. It turns out, as we will see below, that for each decision, we need only compare a new unlform random varlate with a certaln threshold. Unfortunately, this standard sequential sampling algorlthm takes
time proportional to n : it becomes particularly inefficient when k is much smaller than n. The second strategy circumvents this problem by generating the spacings between successive Integers. Assume for a moment that each spacing can be generated in expected time $O(1)$ uniformly over all parameter values. Then the spacings method takes expected tlme $O(k)$. The problem here is that the distribution of the spacings is rather complicated; it also depends upon the partlally generated sample.

In the standard sequentlal sampling algorithm of Jones (1962) and Fan, Muller and Rezucha (1962), the probabillty of selection of an integer depends upon only two quantlties: the number of integers remaining to be selected, and the number of integers not yet processed. Initially, these quantities are k and n. To keep the notation simple, we will let k decrease during execution of the algorithm.

Standard sequential sampling

FOR $i:=1$ TO n DO
Generate a uniform $[0,1]$ random variate U.
IF $U \leq \frac{k}{n-i+1}$ THEN select $i, k \leftarrow k-1$

Integer 1 is selected with probability $\frac{k}{n}$ as can easlly be seen from the following argument: there are

$$
\binom{n}{k}
$$

ways of choosing a subset of slze k from $1, \ldots, n$. Furthermore, of these,

$$
\binom{n-1}{k-1}
$$

Include integer 1. The probability of inclusion of 1 should therefore be the ratio of these two numbers, or k / n. Note that thls argument uses only k, the number of remalning integers to be selected, and n, the number of integers not yet processed. It can be used inductively to prove that the algorithm is correct. Note for example that if at any time in the algorlthm $k=n$, then each of the remaining n integers in the file is selected with probability one. If at some point $k=0$, no more integers are selected. The time taken by the algorithm is proportional to n, but no extra space is needed. For small values of n, the standard sequential algorithm has little competition.

3.2. The spacings method for sequential sampling.

We say that a random varlable X has the distribution $D(k, n)$ when X is distrlbuted as the minimal integer in a random subset of size k drawn from $\{1, \ldots, n\}$. The spacings method for sequentlal sampling is deflned as follows:

```
The spacings method for sequential sampling
Y\hookleftarrow0 (Y is a running pointer)
REPEAT
Generate a random integer \(X\) with distribution \(D(k, n)\).
\(k \leftarrow k-1, n \leftarrow n-X\) (update parameters).
Select \(Y+X\), set \(Y \leftarrow Y+X\)
UNTIL \(k=0\)
```

In the algorithm, the orlginal values of k and n are destroyed - this saves us the trouble of having to introduce two new symbols. If we can generate $D(k, n)$ random varlates in expected time O (1) unlformly over k and n, then the spacings method takes expected time $O(k)$. The space requirements depend of course on what is needed for the generation of $D(k, n)$. There are many possible algorithms for generating a $D(k, n)$ random varlable. We discuss the following approaches:

1. The Inversion method (Devroye and Yuen, 1981; Vitter, 1984).
2. The ghost sample method (Devroye and Yuen, 1981).
3. The rejection method (VItter, 1983, 1984).

The three methodologles will be discussed in different subsections. All techniques require a considerable programming effort when implemented. In cases 1 and 3 , most of the energy is spent on numerical problems such as the evaluation of ratlos of factortals. Case 2 avolds the numertcal problems at the expense of some additional storage (not exceeding $O(k)$). We will first state some propertles of $D(k, n)$.

Theorem 3.1.
Let X have distribution $D(k, n)$. Then

$$
\begin{aligned}
& P(X>i)=\frac{\binom{n-i}{k}}{\binom{n}{k}} \quad, 0 \leq i \leq n-k, \\
& P(X=i)=\frac{\binom{n-i}{k-1}}{\binom{n}{k}} \quad, 1 \leq i \leq n-k+1 .
\end{aligned}
$$

Proof of Theorem 3.1.

Argue by counting the number of subsets of k out of n, the number of subsets of k out of $n-i$, and the number of subsets of $k-1$ out of $n-i$.

Theorem 3.2.

The random variable $X=\min \left(X_{1}, \ldots, X_{k}\right)$ is $D(k, n)$ distributed whenever X_{1}, \ldots, X_{k} are independent random varlables and each X_{i} is uniformly dlstrlbuted on $\{1, \ldots, n-k+i\}$.

Proof of Theorem 3.2.

For $0 \leq i \leq n-k$, notlce that

$$
P(Y>i)=\prod_{j=1}^{k} \frac{n-k+i-j}{n-k+i}=\prod_{j=0}^{k-1} \frac{n-i-j}{n-j}=\frac{\binom{n-i}{k}}{\binom{n}{k}},
$$

which was to be shown.

From Theorem 3.2, we deduce without further work:

Theorem 3.3.

Let X be $D(k, n)$ distributed, and let Y be the minimum of k ild unlform $\{1, \ldots, n-k+1\}$ random varlables. Then X is stochastically greater than Y, that is,

$$
P(X>i) \geq P(Y>i) \quad \text {,all } i
$$

Furthermore, related to the closeness of X and Y is the following collection of inequallities.

Theorem 3.4.

Let X and Y be as in Theorem 3.3. Then

$$
\frac{n+1}{k+1}=E(X) \geq E(Y) \geq \frac{n-k+1}{k+1}
$$

In partlcular,

$$
0 \leq E(X)-E(Y) \leq 1
$$

Proof of Theorem 3.4.

In the proof, we let U_{1}, \ldots, U_{k} be lld uniform $[0,1]$ random varlables. Note that

$$
E(X)=\frac{1}{\binom{n}{k}} \sum_{i=1}^{n-k+1} i\binom{n-i}{k-1}=\frac{\binom{n+1}{k+1}}{\binom{n}{k}}=\frac{n+1}{k+1}
$$

Also,

$$
E(Y) \geq(n-k+1) E\left(\min \left(U_{1}, \ldots, U_{k}\right)\right)=\frac{n-k+1}{k+1}
$$

Clearly,

$$
E(X)-E(Y) \leq \frac{k}{k+1}
$$

3.3. The inversion method for sequential sampling.

The distribution function F for a $D(k, n)$ random varlable X is

$$
F(i)=P(X \leq i)=1-\frac{\binom{n-i}{k}}{\binom{n}{k}} \quad 0 \leq i \leq n-k
$$

Thus, if U is a unfform $[0,1]$ random variable, the unique integer X with the property that

$$
F(X-1)<U \leq F(X)
$$

has distribution function F, and is thus $D(k, n)$ distributed. The solution can be obtalned sequentlally by computing $F(1), F(2), \ldots$ untll for the first time U is exceeded. The expected number of terations is $E(X)=\frac{n+1}{k+1}$. The expected time complexity depends upon how F is computed. If $F(i)$ is computed from scratch (Fan, Muller and Rezucha, 1982), then time proportional to $k+1$ is needed, and X is generated in expected time proportional to n. This is unacceptable as it would lead to an $O(n k)$ sampling algorlthm. Luckily, we can compute F recursively by noting that

$$
\frac{1-F(i+1)}{1-F(i)}=\frac{\binom{n-i-1}{k}}{\binom{n-i}{k}}=\frac{n-i-k}{n-i}
$$

Using thls, plus the fact that $1-F(0)=1$, we see that X can be generated in expected time proportional to $\frac{n+1}{k+1}$, and that a random sample can thus be generated in expected time proportional to n. This is still rather inefflclent. Moreover, the recurslve computation of F leads to unacceptable round-off errors for even moderate values of k and n. If F is recomputed from scratch, one must be careful In the handlling of ratios of factorials so as not to introduce large cancelation errors in the computations. Thus, help can only come if we take care of the two key stumbling blocks:

1. The efflclent computation of F.
2. The reduction of the number of iterations in the solution of $F(X-1)<U \leq F(X)$.
These issues are dealt with in the next section, where an algorlthm of Devroye and Yuen (1981) is given.

3.4. Inversion-with-correction.

A reduction in the number of iterations for solving the inversion inequalities is only possible if we can guess the solution pretty accurately. This is possible thanks to the closeness of X to Y as deflned in Theorems 3.3 and 3.4. The random varlable Y introduced there has distribution function G where

$$
G(i)=P(Y \leq i)=1-\left(\frac{n-k+1-i}{n-k+1}\right)^{k}, \quad 0 \leq i \leq n-k
$$

Recall that $F \leq G$ and that $0 \leq E(X-Y) \leq 1$. By Inversion of G, Y can be generated quite simply as

$$
Y \leftarrow\left\{\left(1-(1-U)^{\frac{1}{k}}\right)(n-k+1)+1\right\rfloor
$$

where U is the same uniform $[0,1]$ random varlate that will be used in the inversion inequalltles for X. Because X is at least equal to Y, it sufflces to start lookIng for a solution by trying $Y, Y+1, Y+2, \ldots$. This, of course, th the princlple of inverslon-with-correctlon explained in more detall in section III.2.5. The algorithm can be summarlzed as follows:

Inversion-with-correction (Devroye and Yuen, 1981)

IF $n=k$
THEN RETURN $X \longleftarrow 1$
ELSE
Generate a uniform $[0,1]$ random variate U.
$X \leftarrow\left\{\left(1-(1-U)^{\frac{1}{k}}\right)(n-k+1)+1\right\}$
$T \leftarrow 1-F(X)$
WHILE $1-U \leq T$ DO
$T \leftarrow T \frac{n-k-X}{n-X}$
$X-X+1$
RETURN X

The point here is that the expected number of terations in the WHILE loop is $E(X-Y)$, which is less than or equal to 1 . Therefore, the expected time taken by the algorithm is a constant plus the expected time needed to compute F at one point. In the worst possible scenarlo, F is computed as a ratlo of products of Integers since

$$
1-F(i)=\prod_{j=0}^{k-1} \frac{n-i-j}{n-j} .
$$

Thls takes time proportlonal to k. The random sampllng algorthm would therefore take expected time proportional to k^{2}. Interestingly, if F can be computed in time $O(1)$, then X can be generated in expected time $O(1)$, and the random sampling algorlthm takes expected time $O(k)$. Furthermore, the algorlthm requires bounded workspace.

If we accept the logarlthm of the gamma function as a function that can be computed in constant time, then F can be computed in time O (1) via:

$$
\begin{gathered}
\log (1-F(i))=\log (\Gamma(n-i+1))+\log (\Gamma(n-k+1)) \\
-\log (\Gamma(n-i-k+1))+\log (\Gamma(n+1)) .
\end{gathered}
$$

Of course, here too we are faced with some cancelation error. In practice, if one wants a certain fixed number of significant digits, there is no problem computing $\log (\Gamma)$ In constant time. From Lemma X.1.3, one can eastly check that for $n \geq 8$, the series truncated at $k=3$ glves 7 significant digits. For $n<8$, the logarithm of n can be computed directly. There are other ways for obtalning a certaln accuracy. See for example Hart et al. (1988) for the computation of $\log (\Gamma)$ as a ratlo of two polynomials. See also section X.1.3 on the computation of factorials in general.

A final polnt about cancelation errors in the computation of $1-(1-U)^{1 / k}$ when k is large. When E is an exponentlal random varlable, the following two random varlables are both distributed as $1-(1-U)^{1 / k}$:

$$
\begin{aligned}
& 1-e^{-\frac{E}{k}} \\
& \frac{\tanh \left(\frac{E}{2 k}\right)}{1+\tanh \left(\frac{E}{2 k}\right)} .
\end{aligned}
$$

The second random variable is to be preferred because it is less susceptible to cancelation error.

3.5. The ghost point method.

Random varlables with distribution $D(k, n)$ can also be generated by exploiting special propertles such as Theorem 3.2. Recall that X is distributed as

$$
1+\left\{\min \left((n-k+1) U_{1},(n-k+2) U_{2}, \ldots,(n-k+k) U_{k}\right)\right\}
$$

where U_{1}, \ldots, U_{k} are independent unform $[0,1]$ random variables. Direct use of thls property leads of course to an algorithm taking time $\Theta(k)$. Therefore, the random sampling algorithm corresponding to it would take time proportional to k^{2}. What distingulshes the algorithm from the inversion algorithms is that no heavy computations are involved. In the ghost point (or ghost sample) method, developed in Devroye and Yuen (1981), the fact that X is almost distributed as
the minimum of k ild random variables is explolted. The expected time per random varlate is bounded from above unlformly over all $k \leq \rho n$ for some constant $\rho \in(0,1)$. Unfortunately, extra storage proportional to k is needed.

We colned the term "ghost polnt" because of the following embedding argument, in which X is written as the minimum of k independent random varlables, which are linked to k ild random varlables provided that we treat some of the lid random varlables as non-exlstent. The ind random varlables are X_{1}, \ldots, X_{k}, each unlformly distributed on $\{1, \ldots, n-k+1\}$. If we were to deflne X as the minimum of the X_{i} 's, we would obtain an incorrect result. We can correct however by treating some of the X_{i} 's as ghost polnts: deffne Independent Bernoull random variables Z_{1}, \ldots, Z_{k} where $P\left(Z_{i}=1\right)=\frac{i-1}{n-k+i}$. The X_{i} 's for which $Z_{i}=1$ are to be deleted. Thus, we can define an updated collection of random varlables, $X_{1}^{\prime}, \ldots, X_{k}{ }^{\prime}$, where

$$
X_{i}^{\prime}=\left\{\begin{array}{l}
X_{i} \\
\text { if } Z_{i}=0 \\
n-k+1
\end{array} \text { if } Z_{i}=1 .\right.
$$

Theorem 3.5.

For the construction given above,

$$
X=\min \left(X_{1}^{\prime}, \ldots, X_{k}^{\prime}\right)
$$

is $D(k, n)$ distributed.

Proof of Theorem 3.5.

Fix $0 \leq i \leq n-k$. Then,

$$
\begin{aligned}
& P(X>i)=\prod_{j=1}^{k} P\left(X_{j}^{\prime}>i\right) \\
& =\prod_{j=1}^{k}\left(P\left(Z_{i}=1\right)+P\left(Z_{i}=0\right) P\left(X_{i}>k\right)\right) \\
& =\prod_{j=1}^{k}\left(\frac{j-1}{n-k+i}+\frac{n-k+1}{n-k+j} \frac{n-k+1-i}{n-k+1}\right) \\
& =\prod_{j=1}^{k} \frac{n-k+j-i}{n-k+j} \\
& =\frac{\binom{n-i}{k}}{\binom{n}{k}} .
\end{aligned}
$$

Every X_{i} has an equal probabllity of belng the smallest. Thus, we can keep generating unlformly random integers from $1, \ldots, k$, without replacement of course, untll we find one for which $Z_{i}=0$, i.e. untll we find an index for which the X_{i} is not a ghost polnt. Assume that we have skipped over m ghost polnts in the process. Then the $X_{i} \ln$ question is distributed as the $m+1$-st smallest of the orlglnal sequence X_{1}, \ldots, X_{k}. The point is that such a random varlable can be generated in expected time O (1) because beta random varlates can be generated in O (1) expected time. Before proceeding with the expected time analysis, we glve the algorlthm:

The ghost point method

[SET-UP]
An auxiliary linked list L is needed, which is initially empty. The maximum list size is k. The stack size is Size.
Size $\leftarrow 0$.
[GENERATION]
REPEAT

REPEAT

Generate an integer W uniformly distributed on $\{1, \ldots, k\}$.
UNTIL W is not in L
Add W to L, Size \leftarrow Size +1 .
Generate a uniform $[0,1]$ random variate U.
UNTL $U \geq \frac{W-1}{n-k+W}$
Generate a beta (Size, k-Size+1) random variable B (note that B is distributed as the "Size" smallest of k iid uniform $[0,1]$ random variables.)
RETURN $X-\lfloor 1+B(n-k+1)\rfloor$

We refer to the section on beta random varlate generation for unlformly fast generators. If a beta variate generator is not locally avallable, one can always generate B as $\frac{G}{G+G^{\prime}}$ where G, G^{\prime} are independent gamma (W) and gamma $(k-W+1)$ random varlables respectively.

For the analysls, we assume that $k \leq \rho n$ where $\rho \in(0,1)$ is a constant. Let N denote the number of W random varlates generated in the inner REPEAT loop. It will approprlately measure the complexlty of the algorithm provided that we can check membership in list L in constant time.

Theorem 3.6.

For the ghost point algorlthm, we have

$$
E(N) \leq c \frac{1+\rho}{(1-\rho)^{2}}
$$

where $c>0$ is a universal constant and $k \leq \rho n$ where $\rho \in(0,1)$. Furthermore, the expected length of the llst L, i.e. the expected value of Size, does not exceed $\frac{1}{1-\rho}$.

Proof of Theorem 3.6.

If T is the eventual value of Size, then

$$
E(N \mid T)=\sum_{i=1}^{T} \frac{k}{k-i+1}
$$

Therefore, for constant $a \in(0,1)$,

$$
\begin{aligned}
& E(N)=E\left(\sum_{i=1}^{T} \frac{k}{k-i+1}\right)=\sum_{i=1}^{k} \frac{k}{k-i+1} P(T \geq i) \quad\left(\text { by a change of } \int\right) \\
& \leq E\left(T^{2}\right) \sum_{i=1}^{k} \frac{k}{i^{2}(k-i+1)} \\
& \leq E\left(T^{2}\right)\left(\frac{k}{k-\lfloor a k]+1} \sum_{i=1}^{\infty} \frac{1}{i^{2}}+k \sum_{i>\lfloor a k\rfloor} \frac{1}{i^{2}}\right) \\
& \leq E\left(T^{2}\right)\left(\frac{\pi^{2}}{8(1-a)}+k\left(\frac{1}{(a k)^{2}}+\int_{a k}^{\infty} \frac{1}{x^{2}} d x\right)\right) \\
& =E\left(T^{2}\right)\left(\frac{\pi^{2}}{8(1-a)}+\frac{1}{k a^{2}}+\frac{1}{a}\right)
\end{aligned}
$$

which is approximately minimal when

$$
a=\frac{\sqrt{6}}{\pi+\sqrt{6}} .
$$

The upper bound is thus not greater than a constant times $E\left(T^{2}\right)$. But T is stochastlcally smaller than a geometric random varlable with probabillty of success $\frac{n-k+1}{n} \geq 1-\rho$. Thus, $E(T) \leq 1 /(1-\rho)$ and

$$
E\left(T^{2}\right) \leq\left(\frac{1}{1-\rho}\right)^{2}+\frac{\rho}{(1-\rho)^{2}}=\frac{1+\rho}{(1-\rho)^{2}}
$$

The value of the constant c can be deduced from the proof. However, no attempt was made to obtaln the best possible constant there. The assumption that membershlp checking in L can be done in constant time requires that a bit vector of k flags be used, Indicating for each integer whether it is included in L or not. Setting up the bit vector takes time proportional to k. However, this cost Is to be born Just once, for after one varlate X is generated, the flags can be reset by emptying the list L. The expected time taken by the reset operation is thus equal to a constant plus the expected length of the llst, which, as we have shown in Theorem 6, is bounded by $1 /(1-\rho)$. For the global random sampling algorithm, the total expected cost of setting and resetting the blt vector does not exceed a constant tlmes k.

Fortunately, we can avold the bit vector of flags altogether. Membership checking in list L can always be done in time not exceeding the length of the list. Even with this grotesquely inefflcient implementation, one can show (see exerclses) that the expected time for generating X is bounded unlformly over all $k \leq \rho n$.

The issue of membershlp checking can be sidestepped if we generate Integers without replacement by the swapping method. This would require an additional vector initlally set to $1, \ldots, k$. After X is generated, this vector is slightly permuted - its flrst "Size" members for example constltute our list L. This does not matter, as long as we keep track of where integer k is. To get ready for generatIng a $D(k-1, n)$ random varlate, we need only swap k with the last element of the vector, so that the first $k-1$ components form a permutation of $1, \ldots, k-1$. Thus, fixing the vector between random varlates takes a constant tlme. Note also that to generate X, the expected time is now bounded by a constant times the expected length of the list, which we know is not greater than $1 /(1-\rho)$. This is due to the fact that the inner loop of the algorlthm is now replaced by one loopless section of code.

When $k>\rho n$, one should use another algorlthm, such as the following plece taken from the standard sequentlal sampling algorlthm:
$X \leftarrow 0$
REPEAT
Generate a uniform random variate U.
$X \leftarrow X+1$
UNTLL $U \leq \frac{k}{n-X+1}$
RETURN X

The expected number of unlform $[0,1]$ random varlates needed by this algorlthm is $E(X)=\frac{n+1}{k+1} \leq \frac{n}{k} \leq \frac{1}{\rho}$. The combination of the two algorithms depending
upon the relative slzes of k and n ylelds an $O(1)$ expected time algorithm for generating X. The optlmal value of the threshold ρ will vary from implementation to implementation. Note that if a membership swap vector is used, it is best to reset the vector after each X is generated by traversing the list in LIFO order.

3.6. The rejection method.

The generation of $D(k, n)$ random varlates by the rejection method creates spectal problems, because the probabillties p_{i} contaln ratios of factortals. Whenever we evaluate p_{i}, we can use one of two approaches: p_{i} is evaluated in constant tlme (this, in fact, assumes that the logarithm of the Γ function is avallable in constant time, and that we do give up our Inflinte accuracy because a Stirling sertes approximation is used), and p_{i} is computed in time proportional to $k+1$ (1.e. the factorlals are evaluated explicitly). With the latter model, called the expllcit factorial model, it does not suffice to find a dominating probabllity vector q_{i} which satisfles

$$
p_{i} \leq c q_{i}
$$

for some constant c independent of k, n. We could indeed still end up with an expected time complexity that is not uniformly bounded over k, n. Thus, in the expllcit factorlal model, we have to find good dominating and squeeze curves which wlll allow us to effectively avold computing p_{i} except perhaps about $O\left(\frac{1}{k}\right)$ percent of the time. Because $D(k, n)$ is a two-parameter famlly, the design is quite a challenge. We will not be concerned with all the detalls here, just with the flavor of the problem. The detalled development can be found in Vitter (1984). Nearly all of this section is an adaptation of Vitter's results. Gehrke (1984) and Kawarasakl and Slbuya (1982) have also developed rejection algorithms, slmilar to the ones discussed in this section.

At the very heart of the design is once again a collection of inequalities. Recall that for a $D(k, n)$ random varlable X,

$$
p_{i}=P(X=i)=\frac{\binom{n-i}{k-1}}{\binom{n}{k}} \quad(1 \leq i \leq n-k+1)
$$

Theorem 3.7.

We have

$$
h_{1}(i) \leq p_{i} \leq c_{1} g_{1}(i+1)
$$

where

$$
\begin{aligned}
& h_{1}(i)=\frac{k}{n}\left(1-\frac{i-1}{n-k+1}\right)^{k-1} \quad(1 \leq i \leq n-k+1) \\
& c_{1}=\frac{n}{n-k+1} \\
& g_{1}(x)=\frac{k}{n}\left(1-\frac{x-1}{n}\right)^{k-1} \quad(1 \leq x \leq n+1)
\end{aligned}
$$

Also,

$$
h_{2}(i) \leq p_{i} \leq c_{2} g_{2}(i+1)
$$

where

$$
\begin{aligned}
& h_{2}(i)=\frac{k}{n}\left(1-\frac{k-1}{n-i+1}\right)^{i-1} \quad(1 \leq i \leq n-k+1), \\
& c_{2}=\frac{k}{k-1} \frac{n-1}{n}, \\
& g_{2}(i)=\frac{k-1}{n-1}\left(1-\frac{k-1}{n-1}\right)^{i-1} \quad(i \geq 1) .
\end{aligned}
$$

Note that g_{1} is a density $\ln x$, and that g_{2} is a probability vector $\ln i$.

Proof of Theorem 3.7.

Note that

$$
\begin{aligned}
& p_{i}=\frac{k}{n-k+1} \prod_{j=0}^{k-2} \frac{n-i-j}{n-j} \\
& \leq \frac{k}{n-k+1}\left(\frac{n-i}{n}\right)^{k-1} \\
& =\frac{k}{n-k+1}\left(1-\frac{i}{n}\right)^{k-1} \\
& =c_{1} g_{1}(i+1) .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& h_{1}(i)=\frac{k}{n}\left(1-\frac{i-1}{n-k+1}\right)^{k-1} \\
& \leq \frac{k}{n} \prod_{j=0}^{k-2} \frac{n-k-i+2+j}{n-k+1+j}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k}{n} \prod_{j=0}^{k-2} \frac{n-i-j}{n-1-j} \\
& =p_{i}
\end{aligned}
$$

Thls concludes the first half of the proof. For the second half, we argue similarly. Indeed, for $i \geq 1$,

$$
\begin{aligned}
& p_{i}=\frac{k}{n} \prod_{j=0}^{i-2} \frac{n-k-j}{n-1-j} \\
& \leq \frac{k}{n}\left(\frac{n-k}{n-1}\right)^{i-1} \\
& =\frac{k}{k-1} \frac{n-1}{n} \frac{k-1}{n-1}\left(1-\frac{k-1}{n-1}\right)^{i-1} \\
& =c_{2} g_{2}(i)
\end{aligned}
$$

Furthermore,

$$
h_{2}(i)=\frac{k}{n}\left(\frac{n-k-i+2}{n-i+1}\right)^{i-1} \leq \frac{k}{n} \prod_{j=0}^{i-2} \frac{n-k-j}{n-1-j}=p_{i}
$$

Random varlate generators based upon both groups of inequallites are now easy to find, because g_{1} is baslcally a transformed beta density, and g_{2} is a geometric probabllity vector. In the case of g_{1}, we need to use rejection from a continuous density of course. The expected number of iterations in case 1 is $c_{1}=n /(n-k+1$) (which is unlformly bounded over all k, n with $k \leq \rho n$, where $\rho \in(0,1)$ is a constant). In case 2 , we have $c_{2}=\frac{k}{k-1} \frac{n-1}{n}$, and this is uniformly bounded over all $k \geq 2$ and all $n \geq 1$.

First rejection algorithm

REPEAT

Generate two iid uniform $[0,1]$ random variates U, V.
$Y \leftarrow 1+n\left(1-U^{\frac{1}{k}}\right)\left(Y\right.$ has density $\left.g_{1}\right)$
$X \leftarrow\lfloor Y\rfloor$
IF $X \leq n-k+1$
THEN

$$
\text { Accept } \leftarrow\left[V \leq \frac{n-k+1}{n}\left(\frac{1-\frac{X-1}{n-k+1}}{1-\frac{Y-1}{n}}\right)^{k-1}\right]
$$

IF NOT Accept THEN

$$
\text { Accept } \leftarrow\left[V \leq \frac{p_{X}}{c_{1} g_{1}(Y)}\right]
$$

UNTIL Accept
RETURN X

Second rejection algorithm

REPEAT

Generate an exponential random variate E and a uniform $[0,1]$ random variate V.
$X \leftarrow\left[-E / \log \left(1-\frac{k-1}{n-1}\right)\right]\left(X\right.$ has probability vector $\left.g_{2}\right)$
IF $X \leq n-k+1$
THEN

$$
\text { Accept } \leftarrow\left[V \leq\left(\frac{1-\frac{k-1}{n-X+1}}{1-\frac{k-1}{n-1}}\right)^{x-1}\right]
$$

IF NOT Accept THEN

$$
\text { Accept } \leftarrow\left[V \leq \frac{p_{X}}{c_{2} g_{2}(X)}\right]
$$

UNTIL Accept
RETURN X

3.7. Exercises.

1. Assume that in the standard sequentlal sampling algorithm, each element is chosen with equal probability $\frac{k}{n}$. The sample size is a blnomial ($n, \frac{k}{n}$) random varlable N. Show that as $k \rightarrow \infty, n \rightarrow \infty, n-k \rightarrow \infty$, we have

$$
P(N=k) \sim \sqrt{\frac{n}{2 \pi k(n-k)}} .
$$

2. Assume that $k \leq \rho n$ for some fixed $\rho \in(0,1)$. Show that if the ghost point algorithm is used to generate a random sample of size k out of n, the expected time is bounded by a function of ρ only. Assume that a vector of membership flags is used in the algorithm, but do not switch to the standard sequential method when during the generation process, the current value of k temporarlly exceeds ρ times the current value of n (as is suggested in the text).
3. Assume that in the ghost point algorithm, membership checking is done by traversing the llst L. Show that to generate a random variate X with distribution $D(k, n)$, the algorlthm takes expected time bounded by a function of $\frac{k}{n}$ only.
4. If X is $D(k, n)$ distributed, then

$$
\operatorname{Var}(X)=\frac{(n+1)(n-k) k}{(k+2)(k+1)^{2}}
$$

5. Consider the explicit factorlal model in the rejection algorithm. Noting that the value of p_{X} can be computed in time $\min (k, X+1)$, find good upper bounds for the expected time complexity of the two rejection algorithms given in the text. In particular, prove that for the first algorlthm, the expected time complexity is uniformly bounded over $k \leq \rho n$ where $\rho \in(0,1)$ is a constant (VItter, 1984).

4. OVERSAMPLING.

4.1. Definition.

If we are given a random sequence of k unlform order statistics, and transform it via truncation into a random sequence of ordered integers in $\{1, \ldots, n\}$, then we are almost done. Unfortunately, some Integers could appear more than once, and it is necessary to generate a few more observations. If we had started with $k_{1}>k$ unlform order statlstics, then with some luck we could have ended up with at least k different integers. The probabllity of thls increases rapidly with k_{1}. On the other hand, we do not want to take k_{1} too large, because then we will be left with quite a bit of work trying to ellminate some values to obtain a sample of preclsely slze k. This method is called oversampling. The
main issue at stake is the cholce of k_{1} as a function of k and n so that not only the total expected time is $O(k)$, but the total expected time is approximately minimal. One additional feature that makes oversampling attractive is that we will obtaln an ordered random sample. Because the method is baslcally a two step method (uniform sample generator, followed by excess ellminator), it is not included in the section on sequential methods.

The oversampling algorithm

REPEAT

Generate $U_{(2)}<\cdots<U_{\left(k_{1}\right)}$, the order statistics of a uniform sample of size k_{1} on [0,1$]$.
Determine $X_{i} \leftarrow\left\{1+n U_{(i)}\right\}$ for all i, and construct, after elimination of duplicates, the ordered array $X_{(1)}, \ldots, X_{\left(K_{1}\right)}$.
UNTIL $K_{1} \geq k$
Mark a random sample of size $K_{1}-k$ of the sequence $X_{(1)}, \ldots, X_{\left(K_{1}\right)}$ by the standard sequential sampling algorithm.
RETURN the sequence of k unmarked X_{i} 's.

The amount of extra storage needed is $K_{1}-k$. Note that this is always bounded by $k_{1}-k$. For the expected time analysis of the algorlthm, we observe that the uniform sample generation takes expected time $c_{u} k_{1}$, and that the elimination step takes expected time $c_{e} K_{1}$. Here c_{u} and c_{e} are positive constants. If the standard sequential sampling algorithm is replaced by classical sampling for ellmInation (1.e., to mark one integer, generate random integers on $\left\{1, \ldots, K_{1}\right\}$ untll a nonmarked integer is found), then the expected time taken by the ellmination algorlthm is

$$
\begin{aligned}
& c_{e} \sum_{i=1}^{K_{1}-k} \frac{K_{1}}{K_{1}-i+1} \\
& \leq c_{e}\left(K_{1}-k\right) \frac{K_{1}}{k+1} .
\end{aligned}
$$

What we should also count in the expected time complexity is the probablity of accepting a sequence. The results are combined in the following theorem:

Theorem 4.1.

Let c_{u}, c_{e} be as deffned above. Assume that $n>k$ and that

$$
k_{1}=k+(k+a) / \log \left(\frac{n}{k}\right)
$$

for some constant $a>0$. Then the expected time spent on the uniform sample is

$$
E(N) c_{u} k_{1}
$$

where $E(N)$ is the expected number of iterations. We have the following inequalIty:

$$
E(N)=\frac{1}{P\left(K_{1} \geq k\right)} \leq \frac{1}{1-e^{-a}}
$$

The expected tlme spent marking does not exceed $c_{e} k_{1}$, which, when $a=O(k), \frac{k}{n} \rightarrow 0$, is asymptotic to $c_{e} k$. If classical sampling is used for marking, then it is not greater than

$$
\frac{k_{1}}{k+1} \frac{k+a}{\log \left(\frac{n}{k}\right)}
$$

Proof of Theorem 4.1.

The expression for the expected time spent generating order statistics is based upon Wald's equation. Furthermore, $E(N)=1 / P\left(K_{1} \geq k\right)$. But

$$
\begin{aligned}
& P\left(K_{1}<k\right) \leq\binom{ n}{k}\left(\frac{k}{n}\right)^{k_{1}} \leq\left(\frac{e n}{k}\right)^{k_{1}} \\
& =\left(\frac{n}{k}\right)^{k-k_{1}} e^{k} \\
& =e^{-a}
\end{aligned}
$$

The only other statement in the theorem requiring some explanation is the statement about the marking scheme with classical samplling. The expected time spent dolng so does not exceed c_{e} times

$$
\begin{aligned}
& E\left(\left.\left(K_{1}-k\right) \frac{K_{1}}{k+1} \right\rvert\, K_{1} \geq k\right) \\
& \leq \frac{\left(k_{1}-k\right) k_{1}}{k+1} .
\end{aligned}
$$

Once agaln, we see that unlformly over $k \leq \rho n$, the expected tlme is bounded by a constant times k, for all fixed $\rho \in(0,1)$ and for all cholces of a that are elther flxed or vary with k in such a manner that $a=O(k)$. We recommend that a be taken large but fixed, say $a=10$. Note that in the speclal case that $\frac{n}{k} \rightarrow \infty, a=O(k), k_{1} \sim k$. Thus, the expected time of the marking section based upon classical sampling is $o(k)$, i.e. It is asymptotically negligible. Also, if $a \rightarrow \infty$, $E(N) \rightarrow 1$ for all cholces of n, k. In those cases, the maln contributions to the expected time complexity come from the generation of the k_{1} unform order statistics, and the ellmination of the marked values (not the marking itself).

4.2. Exercises.

1. Show that for the choice of k_{1} given \ln Theorem 4.1, we have $E(N) \rightarrow 1$ as $n, k \rightarrow \infty, \frac{k}{n} \rightarrow \rho \in(0,1)$. Do this by proving the existence of a unlversal constant A depending upon ρ only such that $E(N) \leq 1+\frac{A}{\sqrt{n}}$.

5. RESERVOIR SAMPLING

5.1. Definition.

There is one particular sequentlal sampling problem deserving speclal attention, namely the problem of sampling records from large (presumably external) flles with an unknown total population. While k is known, n is not. Knuth (1969) glves a partlcularly elegant solution for drawing such a random sample called the reservolr method. See also Vitter (1985). Imagine that we assoclate with each of the records an Independent uniform $[0,1]$ random variable U_{i}. If the object is slmply to draw a random set of size k, it suffices to pick those k records that correspond to the k largest values of the U_{i} 's. This can be done sequentlally:

Reservoir sampling

[NOTE: S is a set of pairs $\left(i, U_{i}\right)$.]
FOR $i:=1$ TO k DO
Generate a uniform $[0,1]$ random variate U_{i}, and add (i, U_{i}) to S. Keep track of the pair (m, U_{m}) with the smallest value for the uniform random variate.
$i \leftarrow k+1$ (i is a record counter)
WHILE NOT end of file DO
Generate a uniform $[0,1]$ random variate U_{i}.
IF $U_{i} \geq U_{m}$
THEN
Delete (m, U_{m}) from S.
Insert (i, U_{i}) in S.
Find a new smallest pair (m, U_{m}).
$i \leftarrow i+1$
RETURN all integers i for which $\left(i, U_{i}\right) \in S$.

The general algorithm of reservoir sampling glven above returns integers (Indlces); it is trivlal to modify the algorithm so that actual records are returned. It is clear that n uniform random varlates are needed. In addition, there is a cost for updating S. The expected number of deletions in S (which is equal to the number of Insertions minus k) is

$$
\begin{aligned}
& \sum_{i=k+1}^{n} P\left(\left(i, U_{i}\right) \text { is Inserted } \ln S\right) \\
= & \sum_{i=k+1}^{n} \frac{k}{i} \\
= & k \log \left(\frac{n}{k}\right)+o(1)
\end{aligned}
$$

as $k \rightarrow \infty$. Here we used the fact that the first n terms of the harmonlc serles are $\log (n)+\gamma+o(1 / n)$ where γ is Euler's constant. There are several possible Implementations for the set S. Because we are malnly interested in ordinary insertlons and deletions of the minimum, the obvious cholce should be a heap. Both the expected and worst-case tlmes for a delete operation in a heap of size k are proportlonal to $\log (k)$ as $k \rightarrow \infty$. The overall expected tlme complexlty for deletions is proportional to

$$
k \log \left(\frac{n}{k}\right) \log (k)
$$

as $k \rightarrow \infty$. This may or may not be larger than the $\theta(n)$ contribution from the unlform random varlate generator. With ordered or unordered llnked lists, the
time complexity is worse. In the exerclse section, a hash structure explolting the fact that the inserted elements are unlformly distributed is explored.

5.2. The reservoir method with geometric jumps.

In some appllcations, such as when records are stored on a sequentlal access device (e.g., a magnetlc tape), there is no way that we can avold traversing the entire file. When the records are in RAM or on a random access device, it is possible to skip over any number of records in constant time: in those cases, it should be possible to get rid of the $\theta(n)$ term in the time complexity. Glven (m, U_{m}), we know that the walting time untll the occurrence of a unlform value greater than U_{m} is geometrlcally distrlbuted with success probabllity $1-U_{m}$. It can be generated as $\left[-E / \log \left(U_{m}\right)\right]$ where E is an exponential random variate. The corresponding record-breaking value is uniformly distributed on [$\left.U_{m}, l\right]$. Thus, the reservoir method with geometrlc jumps can be summarlzed as follows:

Reservoir sampling with geometric jumps

[NOTE: S is a set of pairs $\left(i, U_{i}\right)$.] FOR $i:=1$ TO k DO

Generate a uniform $[0,1]$ random variate U_{i}, and add (i, U_{i}) to S. Keep track of the pair (m, U_{m}) with the smallest value for the uniform random variate.
$i \leftarrow k$ (i is a record counter)
WHILE True DO
Generate an exponential random variate E.
$i \leftarrow i+\left\lceil-E / \log \left(U_{m}\right)\right\rceil$.
IF i not outside file
THEN
Generate a uniform $\left[U_{m}, 1\right]$ random variate U_{i}.
Delete (m, U_{m}) from S.
Insert (i, U_{i}) in S.
Find a new smallest pair (m, U_{m}).
ELSE RETURN all integers i for which $\left(i, U_{i}\right) \in S$.

The analysis of the prevlous section about the expected time spent updating S remains valld here. The difference is that the $\theta(n)$ has disappeared from the plcture, because we only generate unlform random variates when insertions in S are needed.

5.3. Exercises.

1. Deslgn a bucket-based dynamic data structure for the set S, which ylelds a total expected time complexlty for N insertions and deletions that is $o(N \log (k))$ when $N, k \rightarrow \infty$. Note that inserted elements are uniformly distributed on $\left[U_{m}, 1\right]$ where U_{m} is the minlmal value present in the set. Inltlally, S contains k lid unlform $[0,1]$ random variates. For the heap implementation of S, the expected time complexity would be $\theta(N \log (k))$.
