
Chapter Twelve 
RANDOM SAMPLING 

1. INTRODUCTION. 
In thls.chapter we conslder the problem of the selectlon of a random sample 

of slze k from a set of n objects. Thls 1s also called sampllng wlthout replace- 
ment slnce dupllcates are not allowed. There are several lssues here whlch should 
be clarlfled ln thls, the lntroductory sectlon. 
1. 

2. 

3. 

4. 

Some users may wlsh to generate an ordered random sample. Not unexpect- 
edly, I t  1s easler to generate unordered random samples. Thus, algorlthms 
that produce ordered random samples should not be compared on an equal 
basls wlth other algorlthms. 
Sometlmes, n Is not known, and we are asked to grab each obJect In turn 
and make an lnstantaneous declslon whether to lnclude I t  In our random 
sample or not. Thls can best be vlsuallzed by conslderlng the obJects as 
belng glven In a llnked llst and not an array. 
In nearly all cases, we worry about the expected tlme complexity as a func- 
tlon of IC and n .  In typlcal sltuatlons, n 1s much larger than k ,  and we 
would llke to have expected tlme complexltles whlch are bounded by a con- 
stant tlmes k ,  unlformly over n . 
The space requlred by an algorltlim 1s deflned as the space requlred outslde 
the orlglnal array of n records or objects and outslde the array of k records 
to be returned. Some of the algorlthms in thls chapter are bounded 
workspace algorlthms, 1.e. the space requlrements are 0 (1). 

The strategles for sampllng can be partltloned as follows: (1) classlcal sampllng: 
generate random objects and lnclude them In the sample If they have not already 
been plcked; (11) sequential sampllng: generate the sample by traversing the col- 
lectlon of objects once and malclng lnstantaneous declslons durlng that one pass: 
(111) oversampllng: by means of a slmple technlque, obtaln a random sample (usu- 
ally of lncorrect slze), and In a second phase, adJust the sample so that I t  has the 
rlght slze. Each of these strategles has some very competltlve algorlthms, so that 
no strategy should a prlorl be excluded from contentlon. 
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We assume that the set of obJects 1s {1,2, . . . , n } .  If the obJects are 
dlfferent, then these lntegers should be consldered as polnters (lndlces) to the 
obJects In an array. 

2. CLASSICAL SAMPLING. 

2.1. The swapping method. 
Assume that the objects are glven In array form: A [l], . . . , A [n 1. Then, If 

we are allowed to permute the obJects, random sampllng 1s extremely slinple. We 
can choose an obJect unlformly and at random, and swap I t  wlth the last obJect. 
If we need another object, we choose one unlformly from among the flrst n-1 
obJects, and swap wlth the 72-1st obJect, and so forth. Thls algorlthm takes tlme 
proportlonal to k , and 0 (1) extra space 1s needed. The dlsadvantage 1s that the 
sample 1s not ordered. Also, record swapplng 1s sometlmes not allowed. We are 
allowed to swap polnters though, but thls would then requlre @ ( n )  extra space 
for polnters. If there are no records to begln wlth, then the space requlrement 1s 
O ( n  ). Formally we have: 

Swapping method 

FOR i :=n DOWNTO n -k +l DO 

Generate a uniform (0,1] random variate U 

Swap ( A  [XJA [ill 
x+- riui 

RETURN A [n-k +1], . . . , A [n J 

The swapplng method 1s very convenlent. If we set k=n ,  then the returned 
array 1s a random permutatlon. Thus, the swapping method Is based upon the 
prlnclple that generatlng a random subset of slze k 1s equivalent to  generatlng 
the first k entrles In a random permutatlon. 
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2.2. Classical sampling with membership checking. 
If we are not allowed to swap lnformatlon, then we are forced to check 

whether a certaln element 1s not already plcked. The checklng can be achleved In 
a number of ways vla dlfferent data structures. Regardless of the data structure, 
we can formulate the algorlthm: 

Classical sampling with membership checking 

s+0 (s will be the set of random integers to be returned) 
FOR i :=1 TO k DO 

REPEAT 
Generate a random integer z in (1, . . . , n }. 

UNTDL NOT Member (2) (Member returns true if an integer is already picked, and 
false otherwise.) 
S+Su{Z}  

RETURN s 

The data structure used for S should support the followlng operations: lnltlallze 
empty set, Insert, member. Among the tens of posslbie data structures, the fol- 
lowlng are perhaps most representatlve: 
A. The blt-vector lmplementatlon. Deflne an array of n blts, whlch are lnltlally 

set t o  false, and whlch are swltched to true upon lnsertlon of an element. 
B. An unordered array of chosen elements. Elements are added at the end of 

the array. 
C. A blnary search tree of chosen elements. The expected depth of the k - th  ele- 

ment added to  the tree 1s -2log(k). The worst-case depth can be as large as 
k. 
A helght-balanced blnary tree or 2-3 tree of chosen elements. The worst-case 
depth of the tree wlth k elements 1s 0 (log(k )). 
A bucket structure (open hashlng wlth chalnlng). Partltlon (1, . . . , n } lnto 
k about equal Intervals, and keep for each lnterval (or: bucket) a llnked llst 
of all elements chosen untll now. 
Closed hashlng lnto a table of slze a blt larger than k. 

D. 

E. 

F. 
I t  1s perhaps useful to glve a llst of expected complexltles of the varlous opera- 
tlons needed on these data structures. We also lnclude the space requlrements, 
wlth the conventlon that the array of k lntegers to  be returned 1s In any case 
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lncluded In the space requlrements. 

Tlmewlse, none of the suggested data structures 1s better than the blt-vector data 
structure. The problem wlth the blt-vector lmplementatlon 1s not so much the 
extra storage proportlonal t o  n ,  because we can often use the already exlstlng 
records and use common programming trlcks (such as changlng slgns etcetera) to 
store the extra blts. The problem 1s the re-lnltlallzatlon necessary after a sample 
has been generated. At the very least, thls wlll force us to conslder the selected 
set S ,  and turn the k blts off agaln for all elements In S. Of course, at the very 
beglnnlng, we need to set all n blts to false. 

The flrst lmportant quantlty 1s the expected number of lteratlons In the sam- 
pling algorlthm. 

The expected number of lteratlons In classlcal sampllng wlth membershlp 
checklng 1s 

k n  
t .' =1 n-i+1 * 

For k =n , thls 1s n 5 4 - n  log(n ). When k 5 [:I, thls number 1s 5 2k. 
i = 1  

Proof of Thecirem 2.1. 
Observe that t o  generate the i - th  random Integer, we carry out a serles of 

. Thls lndependent experlments, each havlng probablllty of success n -i +I 

ylelds the glven expected value. The asymptotlc result when k = n  1s trlvlally 
true. The general upper bound 1s obtalned by a standard lntegral argument: 
bound the sum from above by 

n 
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- < 2+2(k-1) = 2k .I 

What matters here 1s that the expected tlme lncreases no faster than 0 (k ) 
when k 1s at most half of the sample. Of course, when k 1s larger than -, one 

should really sample the complement set. In partlcular, the expected tlme for the 
blt-vector lmplementatlon 1s 0 (k ). For the tree methods, we obtaln 0 (k log(k )). 
If we work wlth ordered or unordered Ilsts, then the generatlon procedure takes 
expected tlme O ( k 2 ) .  Flnally, wlth the hash structure we have expected tlme 
0 ( k )  provided that we can show that the expected tlme of an lnsert or a delete 
1s 0 (1) (apply Wald's equatlon). Assume that we have a bucket structure wlth 
mk equal-shed Intervals, where m 2 1  1s a deslgn lnteger usually equal to 1. The 
lnterval number 1s 

hashed to lnterval 

n 
2 

er between 1 and mk, and lnteger zE(1,  . . . , n }  1s 

. Thus, If the hash table has k elements, then every 

lnterval has about A elements. The expected number of cornparlsons needed to 
m 

check the membershlp of a random lnteger in a hash table contalnlng %' elements 
1s bounded from above by E (l+nZ ) where nZ 1s equal to the number of elements 
In the lnterval 2 ,  and 2 1s a random lnterval Index, chosen wlth probablllty pro- 
portlonal to the cardlnallty of the lnterval. The "1" accounts for the comparlson 
spent checklng the endmarker In the chaln. Thus, the expected number of com- 
parlsons 1s not greater than 

i i  
mk n 

= 1+-+- . 

i k  1 
m n  m 

In the worst case ( i = k ) ,  thls upper bound 1s l + - + - ~ Z + - .  The upper 

bound 1s very loose. Nevertheless, we have an upper bound whlch 1s clearly 0 (1). 
Also, If we can afford the space, I t  pays to take m as large as posslble. One 
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posslble hashlng algorlthm 1s given below: 
I 

Classical sampling with membership checking based on a hash table 

This algorithm uses three arrays of integers of size k .  An array of headers Head 
[i], . . . Head [ k ]  is initially set to 0.  An array pointers to successor elements 
Next[l], . . . , Next[k] is also set to 0.  The array A [I], . . . A ( k ]  will be returned. 
FOR i:=i TO k DO 

Accept - False 

REPEAT 
Generate a random integer 

k (2-1) 
Bucket +l+ 1 2 uniformly distributed on (1, . . . , n }. 

Top +- Head [ Bucket ] 
IF Top=O 

THEN 
Head [ Bucket 1 +-i 
A [k]+-Z 
Accept + True 

WHILE A [Top]#Z AND Top#o DO 
ELSE 

(Top, Top* ) +- (Next [Top], Top) 

F Top=O THEN 
A [i]-Z 
Next [ Top* ] +-i 
Accept True 

UNTIL Accept 
RETURN A [I], . . . , A [ k ]  

The hashlng algorlthm requires 2k extra storage space. The array returned 1s not 
sorted, but sortlng can be done In llnear expected tlme. We glve a short formal 
proof of thls fact. It 1s only necessary to travel from bucket to bucket and sort 
the elements wlthln the buckets (because an order-preservlng hash functlon was 
used). If thls 1s done by a slmple quadratlc method such as bubble sort or selec- 
tion sort, then the overall expected tlme cornplexlty 1s 0 (k ) (for the overhead 
costs) plus a constant tlmes 

1 ==l 

But ni 1s hypergeometrlc wlth parameters n ,1 ,k where , I  1s the number of 
lntegers In the i- th bucket (thls 1s about -), 1.e. for each j , n 

mk 
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kl 1 
n m 

We know that E (ni )=-, and thls tends to - as k ,n  4 0 0 ,  and I t  does not 
1 k  
m n  

exceed -+- In any case. Simple computatlons show that 

n-k n-1 kl Vur(n i )  = --- 
n-1  n n 

1 i k  
m m n  

whlch In turn tends to - as k ,n ' 0 0 ,  wlthout exceedlng -+- for any value 

of k ,m ,n .  Combining thls, we see that the the expected tlme complexlty Is a 
constant tlmes 

1 
m 

- k(1+-) .  

It 1s not greater than a constant tlmes 

These expresslons show that  I t  Is lmportant to take m large. One should not fall 
lnto the trap of lettlng m lncrease wlth k , n  because the set-up tlme Is propor- 
tlonal to m k ,  the number of buckets. The hashlng method wlth chalnlng, as 
glven here, was lmpllcltly glven by Muller (1958) and studled by Ernvall and 
Nevalalnen (1982). Its space lnefflclency Is probably Its greatest drawback. 
Closed hashlng wlth a table of slze k has been suggested by NlJenhuls and Wllf 
(1975). Ahrens and Dleter (1985) conslder closed hashlng tables of slze mk where 
now m 1s a number, not necessarily Integer, greater than 1. See also Teuhola and 
Nevalalnen (1982). It  1s perhaps lnstructlve to glve a brlef descrlptlon of the algo- 
rlthm of NlJenhuls and Wllf (1975). An unordered sample A [l], . . . , A [ k ]  wlll 
be generated, and an auxlllaiy vector Next[l], . . . , Next[k] of llnlcs Is needed In 
the process. A polnter p points to the largest lndex i for whlch A [;I 1s not yet 
speclfled. 
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Algorithm of Nijenhuis and Wilf 

[SET-UP] 
p +k +I 
FOR i:=1 TO k DO A [;)to 
[GENERATOR] 
REPEAT 

Generate a random integer x uniformly distributed on 1, . . . , n .  Set 
Bucket+-Xmod k +I. 
LF A [Bucket]=O 

THEN A [Bucket]+X ,Next [Bucket)tO 
ELSE 

WHILE A [Bucket]#X DO 
IF Next[Bucket]=O 

THEN 
REPEAT p +p -1 UNTIL p =O OR A [p ]=O 

Next[Bucket] +p 
Buckettp 

ELSE Bucketc-Next[Bucket] 

UNTIL p =O 

RETURN A [I], . . . , A  [ k ]  

The algorlthm of NlJenhuls and Wllf dlffers sllghtly from standard closed hashlng 
schemes because of the vector of llnks. The llnks actually create small llnked llsts 
wlthln the table of s h e  k. When we look at the cost assoclated with the algo- 
rlthm, we note A r s t  that the expected number of unlform random varlates needed 
Is at the same as for all other classical sampllng schemes (see Theorem 2.1). The 
search for an empty space ( p  +-p -1) takes tlme 0 (k ). The search for the end of 
the llnked llst (Inner WHILE loop) takes on the average fewer than 2.5 llnk 
accesses per random varlate x, lndependent of when X 1s generated and how 
large k and n are (Knuth, 1969, pp. 513-518). Thus, both expected tlme and 
space are 0 (k). 
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2.3. Exercises. 
1. The number of elements n ,  that  end up In a bucket of capaclty 1 In the 

bucket method )s hypergeometrlcally dlstrlbuted wlth parameters n , k  ,Z . 
That  Is, 

In the text, we needed the expected value and varlance of n l .  Derlve these 
quantltles. 

2. Prove that  the expected tlme in the algorithm of NlJenhuls and Wllf Is 

3. Weighted sampling without replacement. Assume tha t  we wlsh to gen- 
erate a random sample of slze k from (1, . . . , n } ,  where the lntegers 
1, . . . , n have weights wi. Drawing an  Integer from a set of Integers Is to 
be done wlth probabllity proportional to the weight of the Integer. Uslng 
classical sampling, this Involves dynamlcally updatlng a selectlon probablllty 
vector. Wong and Easton (1980) suggest setting up a binary tree of helght 
0 (log(n )) in tlme 0 ( n  ) In a preprocesslng step, and using thls tree In the 
lnverslon method. Generating a random integer takes tlme 0 (log(n )), whlle 
updatlng the tree has a similar cost. Thls leads to  a method wlth worst-case 
tlme O(klog(n)+n) .  The space requirement 1s proportional to n (space 1s 
less crltlcal because the vector of weights must be stored anyway). Develop 
a dynamlc structure based upon the alias method or the method of guide 
tables, whlch has a better expected tlme performance for all vectors of 
w elghts. 

0 ( k  1. 

3. SEQUENTIAL SAMPLING. 

3.1. Standard sequential sampling. 
In sequentlal sampllng, we want an ordered sample of slze k drawn from 

1, . . . , n .  An unordered sample can always be obtained by one of the methods 
descrlbed In the previous section, and In many cases (e.g. the hashlng methods), 
sortlng can be done extremely efflclently In expected tlme 0 ( k  ). What we wlll do 
In thls chapter 1s different. The methods descrlbed here are fundamentally one 
Pass methods In which the random sample Is constructed In order. There are two 
Possible strategles: flrst, we could grab each integer In 1, . . . , n In turn, atid 
declde whether to take It or leave I t .  It turns out,  a s  we wlll see below, that for 
each declslon, we need only compare a new uniform random varlate wlth a cer- 
t a h  threshold. Unfortunately, this standard sequentlal sampling algorithm takes 
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tlme proportlonal to n :  I t  becomes partlcularly lnemclent when k 1s much 
smaller than n . The second strategy clrcumvents thls problem by generatlng the 
spaclngs between successlve lntegers. Assume for a moment that each spaclng can 
be generated In expected tlme 0 (1) unlformly over all parameter values. Then 
the spaclngs method takes expected tlme 0 (k ). The problem here 1s that the dls- 
trlbutlon of the spaclngs 1s rather cornpllcated; I t  also depends upon the partlally 
generated sample. 

In the standard sequentlal sampling algorlthm of Jones (1962) and Fan, 
Muller and Rezucha (1962), the probablllty of selectlon of an lnteger depends 
upon only two quantltles: the number of lntegers remalnlng to be selected, and 
the number of lntegers not yet processed. Inltlally, these quantltles are k and n .  
To keep the notatlon slniple, we wlll let k decrease durlng executlon of the algo- 
rlthm. 

Standard sequential sampling 

FOR i :=1 TO n DO 
Generate a uniform [0,1] random variate U .  

IF us- THEN select i ,  k t k - 1  
n- i+1  

k 
n Integer 1 1s selected wlth probablllty - as can easlly be seen from the followlng 

argument: there are 

ways of chooslng a subset of slze k from 1, . . . , n . Furthermore, of these, 

lnclude lnteger 1. The probablllty of lncluslon of 1 should therefore be the ratlo 
of these two numbers, or k / n  . Note that thls argument uses only k , the number 
of remalnlng lntegers to be selected, and n ,  the number of lntegers not yet pro- 
cessed. It can be used lnductlvely to prove that  the algorlthm 1s correct. Note for 
example that If at any tlme In the algorlthm k =n , then each of the remalnlng n 
lntegers In the Ale 1s selected wlth probablllty one. If at some point k=O, no 
more lntegers are selected. The tlme taken by the algorlthm 1s proportlonal to n , 
but no extra space 1s needed. For small values of n , the standard sequentlal algo- 
rithm has llttle competltlon. 
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3.2. The spacings method for sequential sampling. 
We say that a random varlable X has the dlstributlon D (k ,n ) when X Is 

distributed as the mlnlmal lnteger In a random subset of size k drawn from 
(1, . . . , n } .  The spaclngs method for sequentlal sampllng is deflned as follows: 

The spacings method for sequential sampling 

Y-0 ( Y  is a running pointer) 
REPEAT 

Generate a random integer X with distribution D (k ,n ). 
k +lc -1, n +n -X (update parameters). 
Select Y+X, set Y-Y+X 

UNTIL k = O  

In the algorlthm, the orlglnal values of k and n are destroyed - thls saves us the 
trouble of havlng to introduce two new symbols. If we can generate D (k ,n ) ran- 
dom varlates In expected tlme 0 (1) unlformly over k and n , then the spaclngs 
method takes expected tlme 0 (k). The space requirements depend of course on 
what 1s needed for the generatlon of D (k ,n ). There are many possible algorlthms 
for generatlng a D (k ,n ) random varlable. We dlscuss the following approaches: 
1. 

2. 

3. 

The three methodologles wlll be dlscussed In dlfferent subsectlons. All technlques 
require a conslderable programming effort when Implemented. In cases 1 and 3, 
most of the energy 1s spent on numerlcal problems such as the evaluation of 
ratios of factorlals. Case 2 avoids the numerical problems at the expense of some 
addltlonal storage (not exceeding 0 (k )). We wlll flrst state some propertles of 
D (k ,n 1. 

The Inverslon method (Devroye and Yuen, 1981; Vltter, 1984). 

The ghost sample method (Devroye and Yuen, 1981). 

The rejection method (Vltter, 1983, 1984). 
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Theorem 3.1. 
Let x have dlstrlbutlon D ( k  ,n ). Then 

P ( X > i )  = ,O<i<n-k ,  

n-i\ 

Proof of Theorem 3.1. 

sets of k out  of n -;, and the number of subsets of k -1 out of n -i . 
Argue by countlng the number of subsets of k out of n , the number of sub- 

Theorem 3.2. 
The random varlable X=mln(x , ,  . . . , xk ) 1s D ( k  ,n ) dlstrlbuted when- 

ever XI, . . . , xk are lndependent random varlables and each xi 1s unlformly 
dlstrlbuted on ( 1 ,  . . . , n -k + i  }. 

~~ ~ 

Proof of Theorem 3.2. 
For O<i<n-k,  

P ( Y > i )  = 

whlch was to be shown. 

From Theorem 3.2, we deduce wlthout further work: 



I- 

Theorem 3.3. 
Let X be D (k ,n ) dlstrlbuted, and let Y be the mlnlmum of k lld unlform 

(1, . . . , n-k+1} random varlables. Then X 1s stochastlcally greater than Y ,  
that  Is, 

P ( X > i )  2 P ( Y > i )  ,all i . 

Furthermore, related to the closeness of X and Y 1s the followlng collectlon 
of lnequalltles. 

Theorem 3.4. 
Let x and Y be as In Theorem 3.3. Then 

In partlcular, 

0 5 E ( X ) - E ( Y )  5 1 .  

Proof of Theofem 3.4. 

that  
In the proof, we let u,, . . . , uk be Ild unlform (0,1] random varlables. Note 

Also, 

n -k +I E ( Y )  2 (n-k+l )E(mln(U, ,  . . . , uk)) = 
k + i  

Clearly, 

.. 
k E ( X ) - E ( Y )  5 - 

k +I 
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3.3. The inversion method for sequential sampling. 
The dlstrlbutlon functlon F for a D (k ,n ) random varlable X 1s 

Thus, If U 1s a uniform [0,1] random varlable, the unlque lnteger X wlth the 
property that 

F(X-1) < u 5 F ( X )  

has dlstrlbutlon functlon F , and 1s thus D ( k  ,n ) dlstrlbuted. The solutlon can be 
obtained sequentlally by coinputlng F(l), F ( 2 ) ,  ... untll for the flrst tlme U Is 
exceeded. The expected number of lteratlons 1s E ( X )  = - . The expected 

tlme complexlty depends upon how F 1s computed. If F (i ) 1s computed from 
scratch (Fan, Muller and Rezucha, 1962), then tlme proportlonal to  k + 1  1s 
needed, and x 1s generated in expected tlme proportlonal to n. Thls 1s unac- 
ceptable as I t  would lead to an 0 ( n k )  sampllng algorlthm. Lucklly, we can com- 
pute F recursively by notlng that 

k +I 

Uslng thls, plus the fact that l - F ( O ) = l ,  we see that X can be generated In 
expected tlme proportlonal to - , and that a random sample can thus be gen- 
erated In expected tlme proportlonal to n .  Thls 1s stlll rather lneftlclent, More- 
over, the recurslve computatlon of F leads to  unacceptable round-off errors for 
even moderate values of k and n . If F 1s recomputed from scratch, one must be 
careful In the handllng of ratlos of factorlals so as not t o  lntroduce large cancela- 
tion errors in the computatlons. Thus, help can only come If we take care of the 
two key stumbllng blocks: 
1. 
2. The reductlon of the number of lteratlons In the solutlon of 

These lssues are dealt wlth In the next sectlon, where an algorlthm of Devroye 
and Yuen (1981) 1s glven. 

k +i 

The efflclent computatlon of F . 

F (X-1)< U L F  ( X ) .  
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3.4. Inversion-with-correction. 
A reductlon In the number of lteratlons for solving the lnverslon lnequalltles 

is only posslble If we can guess the solutlon pretty accurately. Thls 1s posslble 
thanks to the closeness of x to Y as deflned In Theorems 3.3 and 3.4. The ran- 
dom varlable Y lntroduced there has dlstrlbutlon functlon G where 

, 0 5 i S n - I C .  n -IC +I-i I n-k+1 
G (i)  = P ( Y  si ) = I- 

Recall that F S G  and that O<E (X-Y)<_ l .  By inverslon of G ,  Y can be gen- 
erated qulte slmply as 

where U 1s the same unlform [0,1] random varlate that wlll be used In the lnver- 
slon lnequalltles for x. Because x 1s at least equal t o  Y ,  i t  sufIlces to  start  look- 
lng for a solutlon by trylng Y ,Y +1, Y +2,.... Thls, of course, 1s the prlnclple of 
lnverslon-wlth-correctlon explalned In more detall In section 111.2.5. The algo- 
rlthm can be summarlzed as follows: 

Inversion-with-correction (Devroye and Yuen, 1981) 

LF n=k 
THEN RETURN x +-I 

ELSE 
Generate a uniform [0,1] random variate u .  
X- I (l-(l-U)')(n -k +1)+1 

1 

T -l-F(X) 
WHILE 1-U 5 T DO 

n -k -X 
f l  -X T-T 

x-x+l 
RETURN x 

The polnt here 1s $bat the expected number of lteratlons In the WHILE loop 1s 
E ( X - Y ) ,  whlch 1s less than or equal t o  1. Therefore, the expected tlme taken by 
the algorlthm 1s a constant plus the expected tlme needed to  compute F at one 
polnt. In the worst posslble scenarlo, F 1s computed as a ratlo of products of 
Integers slnce 
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Thls takes tlme proportlonal to k .  The random sampllng algorlthm would there- 
fore take expected tlme proportlonal to k 2 .  Interestlngly, If F can be computed 
In tlme 0 ( l ) ,  then X can be generated In expected tlme 0 ( l ) ,  and the random 
sampllng algorlthm takes expected tlme 0 ( I C  ). Furthermore, the algorlthm 
requlres bounded workspace. 

If we accept the logarlthm of the gamma functlon as a functlon that can be 
computed In constant tlme, then F can be computed In tlme 0 (1) vla: 

iog(1-F (i 1) = iog(r(n -i +i))+iog(r(n -IC +I)) 

-iog(r(n -i -k +q)+iog(r(n +I)) . 

Of course, here too we are faced wlth some cancelatlon error. In practlce, If one 
wants a certaln Axed number of slgnlficant dlglts, there 1s no problem computlng 
log(l?) In constant tlme. From Lemma X.1.3, one can easlly check that for n 2 8 ,  
the series truncated at k = 3  glves 7 slgnlflcant dlglts. For n <8 ,  the logarlthm of 
n can be computed dlrectly. There are other ways for obtalnlng a certaln accu- 
racy. See for example Hart et  al. (1968) for the computatlon of log(F) as a ratlo 
of two polynomlals. See also sectlon X.1.3 on the computatlon of factorials In 
general. 

A Anal polnt about cancelatlon errors In the computatlon of l-(l-U)l/k 
when k 1s large. When E 1s an exponentlal random varlable, the followlng two 
random varlables are both dlstrlbuted as 1-( 1- u )'Ik : 

E 
k 

-- 
1-e 

E 
2k 

tanh(-) 

l+tanh(  -) 
2k 
E '  

The second random varlable 1s to be preferred because I t  1s less susceptlble to 
cancelatlon error. 

3.5. The ghost point method. 

exploltlng speclal propertles such as Theorem 3.2. Recall that X Is dlstrlbuted as 
Random varlables wlth dlstrlbutlon D ( k  ,n ) can also be generated by 

I+ mln((n-k+1)Ul , (n-k+2)U2,  . . . , ( n - k + k ) U k ) J  I 
where u,, . . . , uk are lndependent unlform [0,1] random varlables. Direct use of 
thls property leads of course to an algorlthm talclng tlme O ( k ) .  Therefore, the 
random sampllng algorlthm correspondlng t o  I t  would tz$e tlme proportlonal to 
k '. What dlstlngulshes the algorlthm from the lnverslon algorlthms 1s that  no 
heavy computatlons are Involved. In the ghost polnt (or ghost sample) method, 
developed In Devroye and Yuen (1981), the fact  that X 1s almost dlstrlbuted as 
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the minlmum of k Ild random varlables Is exploited. The expected tlme per ran- 
dom varlate 1s bounded from above uniformly over all k: <pn for some constant 
pE(0,l). Unfortunately, extra storage proportlonal to k Is needed. 

We colned the term "ghost polnt" because of the following embeddlng argu- 
ment, In whlch X 1s written as the mlnlmum of k lndependent random varlables, 
whlch are llnked to k lid random varlables provlded that we treat some of the lid 
random varlables as non-existent. The lld random varlables are xi, . . . , x k ,  
each unlformly dlstrlbuted on ( 1 ,  . . . , n-k  +l}. If we were to deflne X as the 
mlnlmum of the Xi 's, we would obtaln an Incorrect result. We can correct how- 
ever by treating some of the Xi's as ghost polnts: deflne lndependent Bernoulll 

random varlables Z,, . . . , zk where P (2; =I)= 
i -1 

n -k + i  . The & 's  for whlch 

Z j = l  are to be deleted. Thus, we can deflne an updated collection of random 
varlables, Xi, . . . , xk', where 

xi if zi =o 
n -k +I If Zi =I 

xi, = 

Theorem 3.5. 
For the constructlon glven above, 

X = min(Xi,  . . . , x k ' )  

1s D (k ,n ) dlstrlbuted. 

Proof of Theorem 3.5. 
Flx 05 t' 5 n -k . Then, 

k 
P ( X > i )  = r I P ( X j ' > i )  

j = I  
k 

j = i  

j= i  n ( n - k + i  n - k + j  n - k + i  

j= i  n - k + j  

rl[ (P  (Zi =1)+P (Zi =o)P (Xi > k )) 

1 j - 1  n - k + i  n -k+l - i  + 
n - k + j - i  
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Every Xi has an equal probablllty of belng the smallest. Thus, we can keep 
generatlng unlformly random lntegers from 1, . . . , I C ,  wlthout replacement of 
course, untll we And one for whlch z i = O ,  Le. untll we And an lndex for whlch 
the Xi Is not a ghost polnt. Assume that we have slrlpped over m ghost polnts In 
the process. Then the xi In question 1s dlstrlbuted as the m +1-st smallest of the 
orlglnal sequence X,, . . . , Xk. The polnt 1s that such a random varlable can be 
generated In expected tlme o(1) because beta random varlates can be generated 
In O(1) expected tlme. Before proceeding wlth the expected tlme analysls, we 
glve the  algorlthm: 

The ghost point method 

[ SET-UP J 
A n  auxiliary linked list L is needed, which is initially empty. The maximum list size is k . 
The stack size is Size. 
Size t o .  
[GENERATION] 
REPEAT 

REPEAT 
Generate an integer W uniformly distributed on (1, . . . , k}. 

UNTIL W is not in L 
Add w to L , Size + Size +1. 

Generate a uniform [0,1] random variate u . 
w-1 

UNTIL ' 3  n - k + W  

Generate a beta (Size,k-Size+l) random variable B (note that 
"Size" smallest of k iid uniform [0,1] random variables.) 
RETURN xt L1+B (n -k +l)J 

is distributed as the 

We refer to the sectlon on beta random varlate generatlon for unlformly fa s t  
generators. If a beta varlate generator Is not locally avallable, one can always 

where G ,G' are lndependent gamma ( W )  and gamma G generate B as 
G +GI 

( I C  - W +1) random varlables respectlvely. 
For the analysls, we assume that k s p n  where pE(0,i)  Is a constant. Let N 

denote the number of W random varlates generated In the lnner REPEAT loop. 
It  wlll approprlately measure the complexlty of the algorlthm provlded that we 
can check membershlp In llst L In constant tlme. 



XII.3 .SEQUENTIAL SAMPLING 629 

Theorem 3.6. 
For the ghost polnt algorlthm, we have 

i + p  E ( N )  5 c- 
(1-PI2 

where c > O  1s a unlversal constant and k Lpn where pE(0 , l ) .  Furthermore, the 
expected length of the list L ,  1.e. the expected value of Slze, does not exceed 

I 1  

Proof of Theorem 3.6. 
If T 1s the eventual value of Slze, then 

Therefore, for constant a E(O,l), 

(by a change of s) 

whlch 1s approxlmately mlnlmal when 

6 
n + h  ' 

a=--- 

The upper bound Is thus not greater than a constant tlmes E ( T 2 ) .  But T 1s s t b  
chastlcally smaller than a geometrlc random varlable with probablllty of success -' +' 2 1-p. Thus, E ( ?? ) 5 1/( 1-p) and 

n 

P .a 1 E ( T 2 )  5 (-)2+- = - 
1-P (1-p)2 (1-d2 
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The value of the constant c can be deduced from the proof. However, no 
attempt was made to obtaln the best posslble constant there. The assumption 

that membershlp checklng in L can be done In constant tlme requlres that a bit 
vector of k flags be used, lndlcatlng for each lnteger whether I t  1s included 111 L 
or not. Settlng up the bit vector takes tlme proportional to I C .  However, thls cost 
1s to be born Just once, for after one varlate x 1s generated, the flags can be reset 
by emptylng the llst L . The expected tlme taken by the reset operatlon is thus  
equal to a constant plus the expected length of the llst, whlch, as we have shown 
In Theorem 0, 1s bounded by l / ( l - p ) .  For the global random sampllng algorlthm, 
the total expected cost of settlng and resetting the blt vector does not exceed a 
constant tlmes k .  

Fortunately, we can avold the blt vector of flags altogether. Membershlp 
checklng In llst L can always be done In tlme not exceedlng the length of the Ilst. 
Even wlth thls grotesquely lnemclent lmplementatlon, one can show (see exer- 
clses) that the expected tlme for generatlng x 1s bounded unlformly over all 
k s p n .  

The lssue of membershlp checklng can be sldestepped If we generate lntegers 
wlthout replacement by the swapplng method. Thls would requlre an addltlonal 
vector lnltlally set to 1 ,  . . . , I C .  After X 1s generated, thls vector 1s slightly per- 
muted - Its flrst "Size" members for example constltute our llst L . Thls does not 
matter, as long as we keep track of where lnteger k Is. To get ready for generat- 
lng a D ( k - 1 , n )  random varlate, we need only swap k wlth the last element of 
the vector, so that the flrst k - 1  components form a permutatlon of 1, . . . , k - 1 .  
Thus, flxlng the vector between random varlates takes a constant tlme. Note also 
that to generate X ,  the expected tlme 1s now bounded by a constant tlmes the 
expected length of the llst, whlch we know 1s not greater than l / ( l - p ) .  Thls 1s 
due to the fact that the lnner loop of the algorlthm 1s now replaced by one loop- 
less sectlon of code. 

When k > p n  , one should use another algorlthm, such as the followlng plece 
taken from the standard sequentlal sampllng algorlthm: 

x+-0 
REPEAT 

Generate a uniform random variate u ,  
X+-X+l 

k 
n -X+1 UNTIL u< 

RETURN X 

The expected number of unlform [0 ,1 ]  random varlates needed by thls algorlthm 
1s E (x)=- < - < -. The comblnatlon of the two algorlthms dependlllg n + 1  n 1 

k + l - k - p  
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upon the relatlve shes  of k and n ylelds an O(1) expected tlme algorlthm for 
generatlng x. The optlmal value of the threshold p wlll vary from lmplementa- 
tlon to lmplementatlon. Note that If a membershlp swap vector 1s used, I t  1s best 
to  reset the vector after each X 1s generated by traverslng the llst In LIFO order. 

3.6. The rejection method. 
The generatlon of D ( k  ,n ) random varlates by the reJectlon method creates 

speclal problems, because the probabllltles p i  contaln ratlos of factorlals. When- 
ever we evaluate p i ,  we can use one of two approaches: p i  1s evaluated In con- 
stant tlme (thls, in fact, assumes that the logarlthm of the I' functlon 1s available 
In constant tlme, and that we do give up our lnflnlte accuracy because a Stlrllng 
serles approxlmatlon 1s used), and pi  1s computed In tlme proportlonal to  k+1 
(1.e. the factorlals are evaluated expllcltly). Wlth the latter model, called the 
expllclt factorlal model, I t  does not sufflce to  And a domlnatlng probablllty vector 
qi whlch satlsfles 

for some constant c lndependent of k ,n . We could lndeed stlll end up wlth an 
expected tlme complexlty that is not unlformly bounded over k ,n . Thus, In the 
expllclt factorlal model, we have to And good domlnatlng and squeeze curves 

1 
whlch wlll allow us to effectlvely avold computing p i  except perhaps about 0 (-) 

percent of the tlme. Because D ( k  ,n ) 1s a two-parameter famlly, the deslgn 1s 
qulte a challenge. We wlll not be concerned wlth all the details here, Just wlth 
the flavor of the problem. The detalled development can be found In Vltter 
(1984). Nearly all of thls sectlon 1s an adaptatlon of Vltter's results. Gehrke 
(1984) and Kawarasakl and Slbuya (1982) have also developed reJectlon algo- 
rithms, slmllar to the ones dlscussed In thls sectlon. 

At the very heart of the deslgn 1s once agaln a collectlon of lnequalltles. 
Recall that for a D (k ,n ) random varlable X ,  

k 
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where 

Also, 

where 

n c 1  = 
n - k + i  ' 

Note that g 1s a density in 3 ,  and that g Is a probablllty vector In i . 

Proof of Theorem 3.7. 
Note that 

k -I 
n --2 k < 

- n - k + 1  [ 41 

Furthermore, 

n n - k + 1  h , ( i )  = - (1-  

k k'-2 n 4 - i  +2+ j 
Tj!., n - k + l + j  
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= p j  . 

Thls concludes the first half of the proof. For the second half, we argue slmllarly. 
Indeed, for i 21, 

, 

= c 2 g , ( i )  * 

Furthermore, 

Random varlate generators based upon both groups of lnequalltles are now 
easy to And, because g 1  1s baslcally a transformed beta denslty, and g 2  1s a 
geometrlc probablllty vector. In the case of gl, we need to use rejection from a 
contlnuous density of course. The expected number of lteratlons In case 1 1s 
c l=n / ( n  -k +1) (whlch 1s unlformly bounded over all k ,n with k s p n  , where 

pE(0,l) 1s a constant). In case 2,  we have c 2 = - -  , and thls 1s unlformly 
bounded over all k 2 2  and all n 2 1. 

k n-1 
k-1 n 
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f l  -k +I Accept -[ V 5 
f l  
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1- 
12 -k + I  

Y -1 1-- 

First rejection algorithm 

UNTIL Accept 
RETURN x 

Second rejection algorithm 

k -1 

1 

REPEAT 
Generate an exponential random variate E and a uniform [ O , l ]  random variate V . 
X -  - E / l o g ( l - - )  ( X  has probability vector g2) 

n -1 k - l  1 
THEN 

I 
I F X 5 f l - k + 1  

x-1 k - 1  \ 

I 
1-- 

n -1 

Accept +-[V< 

IF NOT Accept THEN 

I Px Accept -[v 5 
c 29 2 w  1 

UNTIL Accept 
RETURN x 
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3.7. Exercises. 

635 

1. 

2. 

3. 

4. 

5 .  

Assume that  In the standard sequentlal sampling algorlthm, each element is 
chosen wlth equal probablllty -. k The sample slze 1s a blnomlal ( n  ,-) k ran- 

dom varlable N .  Show tha t  as k +m,n +m,n -k -+m, we have 
n n 

n 
P ( N = k )  - d 2 7 r k ( n - k )  

Assume that k <pn for some Axed p E ( 0 , l ) .  Show that If the ghost polnt 
algorlthm 1s used to generate a random sample of slze k out of n ,  the 
expected tlme 1s bounded by a functlon of p only. Assume that  a vector of 
membershlp flags 1s used In the algorlthm, but do not swltch to the standard 
sequentlal method when durlng the generation process, the current value of 
k temporarlly exceeds p tlmes the current value of n (as 1s suggested In the 
text). 
Assume that  In the ghost polnt algorlthm, membershlp checklng 1s done by 
traverslng the llst L . Show that  to generate a random varlate X wlth dlstrl- 
butlon D (k ,n ), the  algorlthrn takes expected tlme bounded by a functlon of 
k: - only. 
n 

If X Is D ( k  ,n ) dlstrlbuted, then 
( n  + l ) ( n - k ) k  
( k  + 2 ) ( k  + I ) ~  

vur ( X )  = 

Conslder the expllclt factorlal model In the reJectlon algorlthm. Notlng that  
the value of px can be computed ln tlme mln(k ,X+l) ,  And good upper 
bounds for the expected tlme complexlty of the two reJectlon algorlthms 
glven In the text. In partlcular, prove that  for the flrst algorlthm, the 
expected tlme complexlty 1s unlformly bounded over k s p n  where p € ( O , l )  1s 
a constant (Vltter, 1984). 

4. OVERSAMPLING. 

4.1. Definition. 
If we are glven a random sequence of k unlform order statlstlcs, and 

transform I t  vla truncatlon lnto a random sequence of ordered Integers In 
(1 ,  . . . , n }, then we are almost done. Unfortunately, some Integers could appear 
more than once, and I t  1s necessary to generate a few more observatlons. If we 
had started wlth k ,>IC unlform order statlstlcs, then wlth some luck we could 
have ended up wlth at least IC dlfferent Integers. The probablllty of thls lncreases 
Wld ly  wlth k , .  On the other hand, we do not want to take k, too large, because 
then we wlll be left wlth qulte a blt of work trylng to ellmlnate some values to 
obtain a sample of preclsely slze I C .  Thls method 1s called oversampllng. The 
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main issue at stake is the cholce of k ,  as a function of k and n so that not only 
the total expected tlme Is 0 ( k ) ,  but the total expected time 1s approximately 
minlmal. One additional feature that makes oversampling attractlve 1s that we 
wlll obtaln an ordered random sample. Because the method is baslcally a two 
step method (uniform sample generator, followed by excess ellmlnator), I t  1s not 
included in the’ section on sequential methods. 

The oversampling algorithm 

REPEAT 
Generate U(,)< . . 

Determine xi+- l + n U ( i )  
the ordered array X(,), . . . , X ( X , ) .  

< U,,  the order statistics of a uniform sample of size k , on 

for all i ,  and construct, after elimination of duplicates, 

[0,11. 

I I  
UNTIL K,?k 
Mark a random sample of size K,-k of the sequence x(,), . . . , X ( K ~ )  by the standard 
sequential sampling algorithm. 
RETURN the sequence of k unmarked xi ‘s. 

The amount of extra storage needed 1s K , - k .  Note that thls 1s always bounded 
by Ic l - k .  For the expected time analysls of the algorithm, we observe that the 
unlform sample generation takes expected time c ,  k,, and that the elimlnation 
step takes expected time c, IC,. Here c, and c, are posltlve constants. If the 
standard sequential sampllng algorithm is replaced by classlcal sampling for elim- 
lnatlon (l.e., to mark one Integer, generate random integers on (1, . . . , IC1} 
until a nonmarked integer 1s found), then the expected time taken by the ellml- 
natlon algorlthm Is 

K1-k IC, 
I .E =1 K,-i+i 

What we should also count in the expected tlme complexity is the probability of 
acceptlng a sequence. The results are comblned in the following theorem: 
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Theorem 4.1. 
Let c ,  , C e  be as deflned above. Assume that n > k and that 

for some constant a >O. Then the expected tlme spent on the unlform sample 1s 

E", k l  

where E ( N )  1s the expected number of lteratlons. We have the followlng lnequal- 
lty: 

The expected tlme spent marklng does not exceed ce  k , ,  whlch, when 
a =O (k ) , - -+O,  1s asymptotlc to c ,  k . If classlcal sampllng 1s used for marklng, 

then I t  is not greater than 

k 
n 

k + a  

Proof of Theorem 4.1. 
The expresslon for the expected tlme spent generating order statlstlcs 1s 

based upon Wald's equatlon. Furthermore, E (N)=l/P ( K ,  2 k ). But 

The only other statement In the theorem requlrlng some explanation 1s the state- 
ment about the marlclng scheme wlth classical sampllng. The expected tlme spent 
dolng so does not exceed c ,  times 

I I G L k )  E ((IC ,-k )- 
K l  

k +I 
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Once agaln, we see that unlformly over k s p n ,  the expected tlme 1s 
bounded by a constant tlmes k ,  for all Axed pE(0,l) and for all cholces of a that 
are elther Axed or vary wlth k In such a manner that a =O (k ). We recommend 
that a be taken large but Axed, say a=10. Note that In the speclal case that 
n -+m, a =O (k ), k , - IC.  Thus, the expected tlme of the marklng sectlon based 
k 

upon classlcal sampllng 1s o (k ), 1.e. I t  1s asymptotlcally negllglble. Also, If a -00, 

E (N)-+i for all cholces of n ,k . In those cases, the maln contrlbutlons to the 
expected tlme complexlty come from the generatlon of the k, unlform order 
statlstlcs, and the ellmlnatlon of the marked values (not the marklng Itself). 

4.2. Exercises. 
1. Show that for the cholce of k glven In Theorem 4.1, we have E (N)+l as 

n ,k -00 , -+pE(O,l). Do thls by provlng the exlstence of a unlversal con- 

stant A dependlng upon p only such that E (N)<l+-. 

k 
n 

A 
&- 

5. RESERVOIR SAMPLING 

5.1. Definition. 
There is one partlcular sequentlal sampllng problem deservlng speclal atten- 

tlon, namely the problem of sampllng records from large (presumably external) 
Ales wlth an unknown total populatlon. Whlle k 1s known, n 1s not. Knuth 
(1969) glves a partlcularly elegant solutlon for drawlng such a random sample 
called the reservoir method. See also Vltter (1985). Imagine that we assoclate 
wlth each of the records an Independent unlform [0,1] random varlable V i .  If the 
obJect 1s slmply to draw a random set of slze k , I t  sumces to  plck those k records 
that correspond to  the k largest values of the Ui’s. Thls can be done sequen- 
tially: 
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Reservoir sampling 

[NOTE: S is a set of pairs ( i  , V;. ).I 
FOR i:=1 TO k DO 

Generate a uniform [OJ] random variate Vi, and add (c' ,Vi ) to S. Keep track of the 
pair (rn ,Urn ) with the smallest value for the uniform random variate. 

i +k +1 ( i  is a record counter) 
WHILE NOT end of flle DO 

Generate a uniform [0,1] random variate V;:. 
IF &>Urn 

THEN 
Delete (rn ,urn ) from s . 
Insert ( i , U i )  in S. 
Find a new smallest pair ( rn  , Urn ). 

i t i  +I 
RETURN all integers i for which (t' , &.)E,!?. 

The general algorlthm of reservoir sampllng glven above returns integers 
(lndlces); I t  1s trlvlal to modlfy the algorlthm so that actual records are returned. 
It 1s clear that n unlform random varlates are needed. In addltlon, there 1s a cost 
for updatlng 5. The expected number of deletlons In 5' (whlch 1s equal to  the 
number of lnsertlons mlnus k ) Is 

n 

i = k + 1  
f' ( ( i t  Vi ) 1s lnserted In S ) 

as k+m. Here we used the fact that the flrst n terms of the harmonlc serles are 
log(n )+?+o ( l / n  ) where 7 1s Euler's constant. There are several posslble lmple- 
mentatlons for the set S . Because we are malnly lnterested In ordlnary lnsertlons 
and deletlons of the mlnlmum, the obvlous cholce should be a heap. Both the 
expected and worst-case tlmes for a delete operation In a heap of slze k are pro- 
portlonal to log(k) as k+m. The overall expected tlme complexlty for deletlons 
IS proportlonal to 

as k + m .  Thls may or may not be larger than the 6 ( n )  contrlbutlon from the 
unlform random varlate generator. Wlth ordered or unordered llnked llsts, the 
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tlme complexlty 1s worse. In the exerclse sectlon, a hash structure exploltlng the 
fact that the lnserted elements are unlformly dlstrlbuted 1s explored. 

5.2. The reservoir method with geometric jumps. 
In some appilcatlons, such a s  when records are stored on a sequentlal access 

devlce (e.g., a magnetlc tape), there 1s no way that we can avold traverslng the 
entlre flle. When the records are In RA;M or on a random access devlce, I t  1s pos- 
slble t o  sklp over any number of records In constant tlme: In those cases, i t  
should be possible t o  get rld of the 8 ( n )  term In the tlme cornplexlty. Given 
(m ,Urn ), we know that the waltlng tlme untll the occurrence of a unlform value 
greater than Urn 1s geornetrlcally dlstrlbuted wlth success probablllty l-Urn. It 
can be generated as [-E/log(um)l where E 1s an exponentlal random varlate. 

The corresponding record-breaklng value Is unlformly dlstrlbuted on [Urn ,1]. 
Thus, the reservolr method wlth geometrlc Jumps can be summarlzed as follows: 

Reservoir sampling with geometric jumps 

[NOTE: S is a set of pairs ( i  ,vi ).] 
FOR i:=l TO k DO 

Generate a uniform [0,1] random variate ui, and add (i ,vi ) to S . Keep track of the 
pair (m ,urn ) with the smallest value for the uniform random variate. 

i t k  ( i  is a record counter) 
WHILE True DO 

Generate an exponential random variate E .  
i t i  + [-E /log( Urn )1. 
IF i not outside flle 

THEN 
Generate a uniform [Urn ,1] random variate U,. . 
Delete (m , urn ) from S . 
Insert ( i  , U,. ) in S . 
Find a new smallest pair (m ,Urn ). 

ELSE RETURN all integers t' for which (i ,Vi )ES . 

The analysls of the prevlous sectlon about the expected tlme spent updatlng s 
remalns valld here. The difference 1s that the 8(n ) has dlsappeared from the plc- 
ture, because we only generate unlform random varlates when lnsertlons ln S are 
needed. 
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5.3. Exercises. 
1. Deslgn a bucket-based dynamlc data structure for the set S ,  whlch ylelds a 

total expected tlme complexlty for N lnsertlons and deletlons that 1s 
o ( N  log(k )) when N ,k -m. Note that lnserted elements are unlformly dls- 
trlbuted on [Urn ,1] where Urn 1s the mlnlmal value present In the set. Inl- 
tlally, S contalns k lld unlform [0,1] random varlates. For the heap lmple- 
mentatlon of S , the expected tlme complexlty would be O(N log(k )). 


