Chapter Seven UNIVERSAL METHODS

1. BLACK BOX PHILOSOPHY.

In the next two chapters we will apply the tools of the prevlous chapters in the design of algorithms that are appllcable to large familles of distributions. Described in terms of a common property, such as the famlly of all unimodal densltles with mode at 0 , these familles are generally speaking nonparametric in nature. A method that is applicable to such a large family is called a universal method. For example, the rejection method can be used for all bounded denslities on $[0,1]$, and is thus a unlversal method. But to actually apply the rejection method correctly and efficlently would require knowledge of the supremum of the density. This value cannot be estimated in a finite amount of time unless we have more information about the density in question, usually in the form of an explicit analytic deflnition. Unlversal methods which do not require anything beyond what is glven in the definition of the famlly are called black box methods.

Consider for example all discrete distrlbutions on the positive Integers. Assume only that for each i we can evaluate p_{i} (consider this evaluation as belng performed by a black box). Then the sequentlal inversion method (section III.2) can be used to generate a random variate with this distribution, and can thus be called a black box method for this family. The inversion method for distrlbutions with a continuous distribution function is not a black box method because finite time generation is only possible in special cases (e.g., the distrlbution function is plecewise linear).

The larger the famlly for whlch we design a black box method, the less we should expect from the algorithm timewlse: a case in point is the sequential inverslon method for discrete random varlates. The undenlable advantage of having a few black box methods in one's computer llbrary is that one can always fall back on these when everything else falls. Comparative timings with algorlthms speclally designed for particular distributions are not falr.

In chapters IX and X we will mainly be concerned with fast algorithms for parametric familles that are widely used by the statistical community. In this chapter too, we will be concerned with speed, but it is by no means the driving force. Because continuous distrlbutions are more difflcult to handle in general, we
will only focus on famllies with densitles. In section 2, we present a case study for the class of log-concave densities, to wet the appetite. Since the whole story In black box methods is told in terms of Inequallites when the rejection method is involved, it is important to show how standard probabillty theoretical inequalities can ald in the design of black box algorlthms. This is done in section 3. In section 4, the inversion-rejection princlple is presented, which comblnes the sequentlal inverslon method for discrete random varlates with the rejection method. It is demonstrated there that thls method can be used for the generation of random varlables with a unimodal or monotone density.

2. LOG-CONCAVE DENSITIES.

2.1. Definition.

A density f on R^{d} is called log-concave when $\log f$ is concave on its support. In this section we will obtaln universal methods for this class of densitles when $d=1$. The class of densities is very important in statistics. A partial list of member densitles is given in the table below.

Name of density	Density	Parameter(s)
Normal	$\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$	
Gamma (a)	$\frac{x^{a-1} e^{-x}}{\Gamma(a)}(x>0)$	$a>1$
Weibull (a)	$\frac{a x^{a-1} e^{-x^{a}}(x>0)}{}$	
Beta (a, b)	$\frac{x^{a-1}(1-x)^{b-1}}{B(a, b)}(0 \leq x \leq 1)$	$a \geq 1$
Exponential power (a)	$\frac{\left.e^{-\mid x}\right\|^{a}}{2 \Gamma\left(1+\frac{1}{a}\right)}$	$a \geq 1$
Perks (a)	$\frac{c}{e^{x}+e^{-x}+a}$	$a>-2$
Logistic	same as above, $a=2$	
Hyperbolic secant	same as above, $a=0$	
Extreme value (k)	$\frac{k^{k}}{(k-1)!} e^{-k x-k e-x}$	$k \geq 1$, integer
Generalized inverse gaussian	$c x^{a-1} e^{-b x-\frac{b *}{x}}(x \geq 0)$	$a \geq 1, b, b *>0$

Important individual members of this family also include the unlform density (as a spectal case of the beta family), and the exponential density (as a speclal case of the gamma family). For studles on the less known members, see for example Perks (1932) (for the Perks densitles), Talacko (1858) (for the hyperbollc secant denslty), Gumbel (1958) (for the extreme value distributlons) and Jorgensen (1982) (for the generallzed inverse gaussian densities).

The family of log-concave densitles on R is also important to the mathematIcal statisticlan because of a few key propertles involving closedness under certain
operations: for example, the class is closed under convolutions (Ibraglmov (1956), Lekkerkerker (1953)).

The algorithms of this section are based upon refection. They are of the black box type for all log-concave densities with mode at 0 (note that all logconcave densitles are bounded and have a mode, that is, a point x such that f is nonincreasing on $[x, \infty)$ and nondecreasing on ($-\infty, x$]). Thus, the mode must be glven to us beforehand. Because of this, we will mainly concentrate on the class $L C_{0,1}$, the class of all log-concave densitles with a mode at 0 and $f(0)=1$. The restriction $f(0)=1$ is not cruclal: since $f(0)$ can be computed at run-time, we can always rescale the axls after having computed. $f(0)$ so that the value of $f(0)$ after rescaling is 1 . We deflne $L C_{0}$ as the class of all log-concave densitles with a mode at 0 .

The bottom line of this section is that there is a rejection-based black box method for $L C_{0}$ which takes expected time unlformly bourided over thls class if the computation of f at any polnt and for any f takes one unlt of time. The algorithm can be implemented in about ten lines of FORTRAN or PASCAL code. The fundamental inequallty needed to achleve this is developed in the next sub-section. All of the results in thls section were first published in Devroye (1984).

2.2. Inequalities for log-concave densities.

Theorem 2.1.

Assume that f is a log-concave density on $[0, \infty)$ with a mode at 0 , and that $f(0)=1$. Then $f(x) \leq g(x)$ where

$$
g(x)=\left\{\begin{array}{l}
1 \quad(0 \leq x \leq 1) \\
\text { the unlque solution } t<1 \text { of } t=e^{-x(1-t)} \quad(x>1)
\end{array}\right.
$$

The inequallty cannot be improved because g is the supremum of all densities in the family.

Furthermore, for any log-concave density f on $[0, \infty)$ with mode at 0 ,

$$
\int_{x}^{\infty} f \leq e^{-x f(0)} \quad(x \geq 0)
$$

Proof of Theorem 2.1.

We need only consider the case $x>1$. The density f in the given class which ylelds the maximal value of $f(x)$ when $x>1$ is fixed is glven by

$$
\log f(u)=\left\{\begin{array}{lc}
-a u & (0 \leq u \leq x) \\
-\infty & (x<u)
\end{array}\right.
$$

for some $a>0$. Thus, $f(u)=e^{-a u}, 0 \leq u \leq x$. Here a is chosen for the sake of normallzation. We must have

$$
1=\frac{1-e^{-a x}}{a}
$$

Replace $1-a$ by t.
The second part of the theorem follows by a simllar geometrical argument. First fix $x>0$. Then notice that the tall probabllity beyond x is maximal for the exponentlal density, which because of normallzation must be of the form $f(0) e^{-y f(0)}, y \geq 0$. The tall probabllity is $e^{-x f(0)}$.

Theorem 2.2.

The function g of Theorem 2.1 can be bounded by two sequences of functlons $y_{n}(x), z_{n}(x)$ for $x>1$, where
(1) $0=z_{0}(x) \leq z_{1}(x) \leq \cdots \leq g(x) ;$
(II) $g(x) \leq \cdots \leq y_{1}(x) \leq y_{0}(x)=\frac{1}{x}$;
(III) $\lim _{n \rightarrow \infty} y_{n}(x)=g(x)$;
(iv) $\lim _{n \rightarrow \infty} z_{n}(x)=g(x)$;
(v) $y_{n+1}(x)=e^{-x\left(1-y_{n}(x)\right)}$;
(vl) $z_{n+1}(x)=e^{-x\left(1-z_{n}(x)\right)}$.

Proof of Theorem 2.2.

Flx $x>1$. Consider the functions $f_{1}(u)=u$ and $f_{2}(u)=e^{-x(1-u)}$ for $0 \leq u \leq 1 . \quad$ We have $\quad f_{1}(1)=f_{2}(1)=1 \quad, \quad f^{\prime}{ }_{2}(1)=x>1=f^{\prime}{ }_{1}(1)$, $f^{\prime}{ }_{2}(0)=x e^{-x}<1=f^{\prime}{ }_{1}(0)$. Also, f_{2} is convex and Increases from e^{-x} at $u=0$ to 1 at $u=1$. Thus, there exists preclsely one solution $\ln (0,1)$ for the equation $f_{1}(u)=f_{2}(u)$. Thls solution can be obtalned by ordinary functional iteration: if one starts with $z_{0}(x)=0$, and uses $z_{n+1}(x)=f_{2}\left(z_{n}(x)\right)$, then the unique solution Is approached from below in a monotone manner. If we start with $y_{0}(x)$ at least equal to the value of the solution, then the functional iteration $y_{n+1}(x)=f_{2}\left(y_{n}(x)\right)$ can be used to approach the solution from above in a
monotone way. Since $f(x) \leq \frac{1}{x}$ for all monotone densittes f on $[0, \infty)$, we have $g(x) \leq \frac{1}{x}$, and thus, we can take $y_{0}(x)=\frac{1}{x}$.

When f is a log-concave density on (m, ∞) with mode at m, then

$$
\frac{f\left(m+\frac{x}{f(m)}\right)}{f(m)} \leq \min \left(1, e^{1-x}\right) \quad(x \geq 0)
$$

The area under the bounding curve is exactly 2 . The Inequality applies to all logconcave densitles with mode at m (in which case the condition $x>0$ must be dropped and $1-x$ is replaced by $1-|x|)$. But unfortunately, the area under the dominating curve becomes 4. The two features that make the inequality useful for us are
(1) The fact that the area under the curve does not depend upon f. (Thls glves us a unlform guarantee about lts performance.)
(II) The fact that the top curve itself does not depend upon f. (This is a necessary condition for a true black box method.)

2.3. A black box algorithm.

Let us start with the refection algorithm based upon the inequallty

$$
\frac{f\left(m+\frac{x}{f(m)}\right)}{f(m)} \leq \min \left(1, e^{1-x}\right) \quad(x \geq 0)
$$

valld for log-concave densitles on $[m, \infty)$ with mode at m :

Rejection algorithm for log-concave densities

[SET-UP](can be omitted)
$c \leftarrow f(m)$
[GENERATOR]
REPEAT
Generate U uniformly on $[0,2]$ and V uniformly on $[0,1]$.
IF $U \leq 1$

$$
\operatorname{THEN}(X, Z) \leftarrow(U, V)
$$

$\operatorname{ELSE}(X, Z) \leftarrow(1-\log (U-1), V(U-1))$

$$
X \leftarrow m+\frac{X}{c}
$$

UNTIL $Z \leq \frac{f(X)}{c}$
RETURN X

The valldity of this algorithm is quickly verlfled: just note that the random vector (X, Z) generated in the middle section of the algorithm is unlformly distrlbuted under the curve $m \ln \left(1, e^{1-x}\right) \quad(x \geq 0)$. Because of the excellent properties of the algorithm, it is worth pointing out how we can proceed when f is logconcave with support on both sldes of the mode m. It sufflces to add a random slgn to X just after (X, Z) is generated. We should note here that we pay rather heavily for the presence of two talls because the rejection constant becomes 4. A quick fix-up is not possible because of the fact that the sum of two log-concave functions is not necessarlly log-concave. Thus, we cannot "add" the left portion of f to the right portion sultably mirrored and apply the given algorithm to the sum. However, when f is symmetrlc about the mode m, it is possible to keep the rejection constant at 2 by replacing the statement $X \leftarrow m+\frac{X}{c}$ by $X \leftarrow m+\frac{S X}{2 c}$ where S is a random sign.

Let us conclude this section of algorithms with an exponential version of the previous method which should be fast when exponential random varlates can be generated cheaply and if the computation of $\log (f)$ can be done efflciently (in most cases, $\log (f)$ can be computed faster than f).

Rejection method for log-concave densities. Exponential version

```
[SET-UP](can be omitted)
\(c \leftarrow f(m), r \leftarrow \log c\)
[GENERATOR]
REPEAT
    Generate \(U\) uniformly on \([0,2]\). Generate an exponential random variate \(E\).
    IF \(U \leq 1\)
        THEN \((X, Z) \leftarrow(U,-E)\)
        \(\operatorname{ELSE}(X, Z) \leftarrow(1+E *,-E-E *)(E *\) is a new exponential random varlate)
        CASE
        \(f\) log-concave on \((m, \infty): X \leftarrow m+\frac{X}{c}\)
        \(f\) log-concave on \((-\infty, \infty)\) :
            Generate a random sign \(S\).
            CASE
                \(f\) symmetric: \(X \leftarrow m+\frac{S X}{2 c}\)
                \(f\) not known to be symmetric: \(X \leftarrow m+\frac{S X}{c}\)
```

UNTIL $Z \leq \log f(X)-r$
RETURN X

One of the practical stumbllng blocks is that often most of the time spent in the computation of $f(X)$ is spent computing a compllcated normallzation factor. When f is glven analytically, it can be sidestepped by setting up a subprogram for the computation of the ratio $f(x) / f(m)$ slnce this is all that is needed in the algorithms. For example, for the generallzed inverse gaussian distribution, the normallzation constant has several factors Including the value of the Bessel functhon of the third kind. The factors cancel out in $f(x) / f(m)$. Note however that we cannot entirely lgnore the lissue since $f(m)$ is needed in the computation of X. Because m is fixed, we call this a set-up step.

2.4. The optimal rejection algorithm.

In this section, we assume that f is in $L C_{0,1}$. The optimal rejection algorithm uses the best possible uniform bounding curve, that is, the function g of Theorem 2.1. The problem is that g is only defined implicitly. Nevertheless, it is possible to generate random varlates with density $g / \int g$ without great difficulty:

Theorem 2.3.

Let E_{1}, E_{2}, U, D be independent random variables with the following distributions: E_{1}, E_{2} are exponentially distributed, U is unlformly distributed on $[0,1]$ and D is integer-valued with $P(D=n)=6 /\left(\pi^{2} n^{2}\right), n \geq 1$. Then

$$
(X, Y)=\left(U \frac{\left(E_{1}+E_{2}\right) / D}{1-e^{-\left(E_{1}+E_{2}\right) / D}}, e^{-\left(E_{1}+E_{2}\right) / D}\right)
$$

Is uniformly distributed in $\{(x, y): x \geq 0,0 \leq y \leq g(x)\}$ where g is defined in Theorem 2.1. In particular, X has density $g / \int g$ and Y is distributed as $V g(X)$ where V is a uniform $[0,1]$ random variable independent of X.

Proof of Theorem 2.3.

Fllp the axes around, and observe that the desired Y should have density proportlonal to $-\log (y) /(1-y), 0 \leq y \leq 1$, and that X should be distrlbuted as $U(-\log (Y) /(1-Y))$ where U is independent of Y. By the transformation $y=e^{-z}, Y=e^{-Z}$, we see that Z has density proportional to

$$
\begin{aligned}
& \frac{z e^{-z}}{1-e^{-z}}=\sum_{n=0}^{\infty} z e^{-(n+1) z} \\
& =\frac{\pi^{2}}{8}\left(\sum_{n=1}^{\infty}\left(n^{2} z e^{-n z}\right)\left(\frac{6}{\pi^{2} n^{2}}\right)\right) \quad(z \geq 0)
\end{aligned}
$$

I.e., Z is distributed as $\left(E_{1}+E_{2}\right) / D$ (since $E_{1}+E_{2}$ has density $z e^{-z}, z \geq 0$). Thus, the couple ($\left.U Z /\left(1-e^{-Z}\right)\right), e^{-Z}$) has the correct unlform distribution.

In the proof of Theorem 2.3, we have also shown that

$$
\int g=\frac{\pi^{2}}{6} \approx 1.8433
$$

This is about 18% better than for the algorithms of the prevlous section. The algorithm based upon Theorem 2.3 is as follows:

Optimal rejection algorithm for log-concave densities
[NOTE: $f \in L C_{0,1}$]
REPEAT
Generate a uniform $[0,1]$ random variate U.
Generate iid exponential random variates E_{1}, E_{2}. Set $E \leftarrow E_{1}+E_{2}$.
Generate a discrete random variate D with $P(D=n)=6 /\left(\pi^{2} n^{2}\right), n \geq 1$.
$Z \leftarrow \frac{E}{D}$
$Y \leftarrow e^{-Z}, X \leftarrow \frac{U Z}{1-Y}$
UNTLL $Y \leq f(X)$
RETURN X

For the generation of D, we could use yet another rejection method such as:

REPEAT

Generate iid uniform $[0,1]$ random variates U, V.
IF $U \leq \frac{1}{2}$

$$
\text { THEN } D \leftarrow 1
$$

ELSE $D \leftarrow\lceil 1 /(2(1-U))\rceil$
UNTIL $D V \geq 1$
RETURN D

If D is generated as suggested, we have a rejection constant of $\frac{12}{\pi^{2}}$. When used In the former algorlthm, this will offset the 18% galn so palnstakingly obtalned. Since the D generator does not vary with f, it should preferably be implemented based upon a combination of the allas method and a rejection method for the tall of the distribution.

2.5. The mirror principle.

Conslder now a normallzed log-concave f with two talls, $m=0$, and $f(0)=1$. In thls case, the original algorithms have a rejection constant equal to 4. However, there are two observatlons of Richard Brent which will considerably improve the performance. The first observation is that if $p=F(m)$ is known (F is the distribution function), then the rejection constant can be reduced to 2 again. This is based upon the following inequality:

Theorem 2.4.

If f is a \log-concave density with mode $m=0$ and $f(0)=1$, then, writing p for $F(0)$, we have

$$
f(x) \leq \begin{cases}\min \left(1, e^{1-\frac{|x|}{1-p}}\right) & (x \geq 0) \\ \min \left(1, e^{1-\frac{|x|}{p}}\right) & (x<0)\end{cases}
$$

The area under the bounding curve is 2 .

Proof of Theorem 2.4.

Note that $\frac{f(x)}{1-p}$ is a log-concave density on $(0, \infty)$, and that $\frac{f(x)}{p}$ is a log-concave density on $(-\infty, 0)$. Since $f(x(1-p))$ is log-concave on $(0, \infty)$, we have

$$
f(x(1-p)) \leq \min \left(1, e^{1-x}\right) \quad(x \geq 0)
$$

The Inequallty and the statement about the area follow without further work.

The detalls of the rejection algorlthm based upon Theorem 2.4 are left as an exercise. Brent's second observation applies to the case that $F(m)$ is not avallable. The expected number of tterations in the rejection algorithm can be reduced to between 2.64 and 2.75 at the expense of an Increased number of computations of f.

Theorem 2.5.

Let f be a log-concave density on R with mode at 0 and $f(0)=1$. Then, for $x>0$,

$$
\begin{aligned}
& f(x)+f(-x) \leq g(x)=\sup _{p \in(0,1)}\left(\operatorname{mln}\left(1, e^{1-\frac{x}{1-p}}\right)+\operatorname{mln}\left(1, e^{1-\frac{x}{p}}\right)\right) \\
& = \begin{cases}2 & \left(0 \leq x \leq \frac{1}{2}\right) \\
1+e^{2-\frac{1}{1-x}} \quad\left(\frac{1}{2} \leq x \leq 1\right) \\
e^{1-x} & (x \geq 1)\end{cases}
\end{aligned}
$$

Furthermore,

$$
\int g=\frac{5}{2}+\frac{1}{4} \int_{0}^{\infty} \frac{e^{-u}}{\left(1+\frac{u}{2}\right)^{2}} d u<\frac{5}{2}+\frac{1}{4} \int_{0}^{\infty} \frac{e^{-u}}{1+u} d u \approx 2.8491
$$

Define another function $g *$ where $g *=g$ except on $\left(\frac{1}{2}, 1\right)$, where $g *$ is linear with values $g *\left(\frac{1}{2}\right)=2, g *(1)=1$. Then $g * \geq g$ and $\int g *=\frac{11}{4}$.

Proof of Theorem 2.5.

Let us write once again $p=F(0)$. The first inequallty follows directly from Theorem 2.4. We will first rewrite g as $\sup h_{p}(x)$ where $h_{p}(x)$ is defined by

$$
\left\{\begin{array}{l}
2 \quad(x \leq p) \\
1+e^{1-\frac{x}{p}} \quad(p \leq x \leq 1-p) \\
e^{1-\frac{x}{p}}+e^{1-\frac{x}{1-p}} \quad(1-p \leq x<\infty)
\end{array}\right.
$$

To prove the maln statement of Theorem 2.5, we flrst show that g is at least equal to the right-hand-side of the maln equation. For $x \leq \frac{1}{2}$, we have $h_{1 / 2}(x)=2$. For $\frac{1}{2} \leq x \leq 1$, observe that $h_{1-x}(x)=1+e^{2-1 /(1-x)}$. Finally, for $x \geq 1$, we have $h_{0}(x)=e^{1-x}$. We now show that g is at most equal to the right-handside of the main equation. To do this, decompose h_{p} as $h_{p_{1}}+h_{p_{2}}+h_{p_{3}}$ where $h_{p 1}=h_{p} I_{[0, p]}, \quad h_{p_{2}}=h_{p} I_{(p, 1-p)}, \quad h_{p 3}=h_{p} I_{[1-p, \infty)} . \quad$ Clearly, $h_{p 1} \leq g$ for all $p \leq \frac{1}{2}, x \geq 0$. Since $(p, 1-p) \subseteq[0,1]$, we have $h_{p_{2}} \leq g$ for all $p \leq \frac{1}{2}, x \geq 0$. It suffices
to show that $h_{p 3} \leq e^{1-x}$ for all $x \geq 1, p \leq \frac{1}{2}$. This follows if for all such p,

$$
e^{-\frac{1}{p}}+e^{-\frac{1}{1-p}} \leq \frac{1}{e}
$$

because this would Imply, for $x \geq 1$,

$$
\begin{aligned}
& e\left(\left(e^{-\frac{1}{p}}\right)+\left(e^{-\frac{1}{1-p}}\right)\right) \\
& \left.\leq e e^{-\frac{1}{p}}+e^{-\frac{1}{1-p}}\right)^{x} \\
& \leq e^{1-x}
\end{aligned}
$$

Putting $u=\frac{1-p}{p}$, we have

$$
e\left(e^{-\frac{1}{p}}+e^{-\frac{1}{1-p}}\right)=e^{-u}+e^{-\frac{1}{u}}
$$

The last function has equal maxima at $u=0$ and $u \uparrow \infty$, and a minlmum at $u=1$. The maximal value is 1 and the minimal value is $\frac{2}{e}$. This concludes the proof of the main equation in the theorem.

Next, $\int g$ is

$$
\frac{5}{2}+e^{2} \int_{\frac{1}{2}}^{1} e^{-\frac{1}{1-x}} d x=\frac{5}{2}+\frac{1}{4} \int_{0}^{\infty}\left(1+\frac{u}{2}\right)^{-2} e^{-u} d u
$$

where we used the transformation $u=\frac{1}{1-x}-2$. The rest follows easlly. For example, a formula for the exponentlal integral is used at one polnt (Abramowltz and Stegun, 1970, p. 231). The last statement of the theorem is a direct consequence of the fact that $h_{p 2}$ Is convex on $\left[\frac{1}{2}, 1\right]$.

We conclude this section by mentioning the algorlthm derlved from Theorem 2.5. It requires on the average 2.75 lterations and 5.5 evaluations of f per random varlate. It should be used only when the number of unlform random varlates per generated random varlate must be kept reasonable.

Rejection method for log-concave densities on the real line
[NOTE]
We assume that f has a mode at 0 and that $f(0)=1$. Otherwise, use a linear transformation to enforce this condition.
[GENERATOR]
REPEAT
Generate iid uniform $[0,1]$ random variates U, V, W.
IF $U \leq \frac{4}{11}$
THEN $(X, Y) \leftarrow\left(\frac{W}{2}, 2 V\right)$
ELSE IF $U \leq \frac{7}{11}$
THEN
Generate a uniform $[0,1]$ random variate W^{*}.
$(X, Y) \leftarrow\left(\frac{1}{2}+\frac{1}{2} \min \left(W, 2 W^{*}\right), V(1+2(1-X))\right)$
$\operatorname{ELSE}(X, Y) \leftarrow(1-\log (W), V W)$
UNTIL $Y \leq f(X)+f(-X)$
Generate a uniform [0,1] random variate Z (this can be done by reuse of the unused portion of U).

$$
\begin{aligned}
& \text { IF } Z \leq \frac{f(X)}{f(X)+f(-X)} \\
& \text { THEN RETURN } X \\
& \text { ELSE RETURN }-X
\end{aligned}
$$

2.6. Non-universal rejection methods.

The universal rejection algorithm developed in the previous sections is suboptimal for individual log-concave densitles in the following sense: one can flnd dominating curves which consist of a constant function around the mode and two exponentlal tails and have at the same time a smaller integral than that of the dominating curves for the unlversal method. The improvements are indivldual, because for each density we require additional Information about the density not normally avallable in the black box model. The resulting algorithms are comparable with the ratlo-of-unlforms method, where the exponentlal talls are replaced with quadratic talls. Slnce log-concave densltles have sub-exponential talls, the fit will often be much better than with the ratio-of-uniforms method. More importantly, we can give a very elegant recipe for finding the optimal
dominating curve which is valid for all log-concave densities.
By log-concavity, we know that $h=\log (f)$ can be majorized by the derlvatlve of h at any point (the derivative belng considered as a line). This corresponds to fittlng an exponentlal curve over f. The problem we have is that of finding points $m+a \geq m$ and $m-b \leq m$ (where m is the mode of f) such that the area under

$$
\begin{gathered}
g(x)=\min \left(f(m), f(m+a) e^{(x-(m+a)) h^{\prime}(m+a)},\right. \\
\left.f(m-b) e^{(x-(m-b)) h^{\prime}(m-b)}\right)
\end{gathered}
$$

Is minlmal. We will formally allow $h^{\prime}(m+a)=-\infty$ and $h^{\prime}(m-b)=+\infty$. In those cases, the corresponding terms in the definition of g are elther ∞ or 0 . This distinction is important for compact support densities where a or b point at the extremal point in the support of f. We can offer the following general princlple for finding a and b.

Theorem 2.6.

Let f be decomposed as $f_{r}+f_{l}$ where f_{r}, f_{l} refer to the parts of of f to the right and left of the mode respectively. The inverses of f_{r} and f_{l} are welldeflned when evaluated at a point strictly between 0 and $f(m)$. (In case of a continuous f_{r}, there is no problem. If f_{r} has a discontinulty at y, then we know that $f_{r}(x)>0$ for $x<y$ and $f_{r}(x)=0$ for $x>y$. In that case, the inverse, If necessary, is forced to be y.)

The area under g is minimal when

$$
\begin{aligned}
& m+a=f_{\tau}^{-1}\left(\frac{f(m)}{e}\right) \\
& m-b=f_{l}^{-1}\left(\frac{f(m)}{e}\right)
\end{aligned}
$$

The minimal area is given by

$$
f(m)(a+b)
$$

Furthermore, the minimal area does not exceed $\frac{2 e}{e-1}$, and can be as small as 1. When $\ln g$ we use values of $m+a$ and $m-b$ further away from the mode than those given above, the area under g is bounded from above by $f(m)(a+b)$.

Proof of Theorem 2.6.

We will prove the theorem for a monotone density f on (m, ∞) only. The full theorem then follows by a simple combination of antlsymmetric results. We begin thus witi the inequallty

$$
g(x)=\min \left(f(m), f(m+a) e^{(x-(m+a)) h^{\prime}(m+a)}\right)
$$

The cross-over point between the top curves is at a point z between m and $m+a$:

$$
z=m+a+\frac{1}{h^{\prime}(m+a)} \log \left(\frac{f(m)}{f(m+a)}\right)
$$

The area under the curve g to the right of m is given by

$$
\begin{aligned}
& f(m)(z-m)+\int_{z}^{\infty} f(m+a) e^{(x-a) h^{\prime}(m+a)} d x \\
& =f(m)(z-m)+\frac{f(m+a)}{-h^{\prime}(m+a)} e^{(z-(m+a)) h^{\prime}(m+a)} \\
& =f(m)\left(z-m-\frac{1}{h^{\prime}(m+a)}\right) \\
& =f(m)\left(a+\frac{1}{h^{\prime}(m+a)}(h(m)-h(m+a)-1)\right)
\end{aligned}
$$

The derivative of this expression with respect to a is

$$
\frac{f(m) h^{\prime \prime}(m+a)(1+h(m+a)-h(m))}{h^{\prime 2}(m+a)}
$$

which is zero for $h(m+a)=h(m)-1$, i.e. $f(m+a)=\frac{f(m)}{e}$. Note also that $h^{\prime \prime}(m+a) \leq 0$, and thus that the derlvative is nonpositive for values of $m+a$ smaller than thls threshold value, and that it is nonnegative for larger values of $m+a$, so that we do indeed have a global minimum for the area under g. At the suggested value of $m+a$, the area ls given by $a f(m)$. For $m+a$ larger than the suggested value, the area is bounded from above by af (m), since $h^{\prime}(m+a) \leq 0$, $h(m)-h(m+a)-1 \geq 0$.

To obtain a distribution-free upper bound for the area $a f(m)$ when a is optlmally chosen, we use the Inequality of Theorem 2.1. If we use the upper bound on f given there, and set it equal to $\frac{1}{e}$, then the solution is a number greater than $a f(m)$. But that solution is $\frac{e}{e-1}$. Thus, for the optimal a, af $(m) \leq \frac{e}{e-1}$.

Theorem 2.8 is important. If a lot is known about the density in question, good rejection algorlthms can be obtained. Several examples will be given below. If we want to bound f from above by a combination of pleces of exponential functions, then the area can be reduced even further although, as we will see from the examples glven below, the reduction is often hardly worth the extra effort since the rejection constant is already good to begin with.

The formal algorithm is as follows:

Rejection with two exponential tails touching at $m-b$ and $m+a$

[SET-UP]

m is the mode; $a, b \geq 0$ are assumed given.
$\lambda_{r} \leftarrow-1 / h^{\prime}(m+a), \lambda_{l} \leftarrow 1 / h^{\prime}(m-b)$ (where $h=\log (f)$).
$f_{m}-f(m)$
$a * \leftarrow a+\lambda_{r} \log \left(\frac{f(m+a)}{f_{m}}\right), b * \leftarrow b+\lambda_{l} \log \left(\frac{f(m-b)}{f_{m}}\right) .(m+a *$ and $m-b *$ are the thresholdsk)
Compute the mixture probabilities: $s \leftarrow \lambda_{l}+\lambda_{r}+a *+b *, \quad p_{l} \leftarrow \lambda_{l} / s, \quad p_{r} \leftarrow \lambda_{r} / s$, $p_{m} \leftarrow(a *+b *) / s$.
[GENERATOR]
REPEAT
Generate id uniform $[0,1]$ random varlates U, V.
IF $U \leq p_{\dot{m}}$ THEN
Generate a uniform $[0,1]$ random variate Y (which can be done as $\left.Y \leftarrow U / p_{m}\right)$.
$X \leftarrow m-b^{*}+Y(a *+b *)$
Accept $\leftarrow\left[V f_{m} \leq f(X)\right]$
ELSE IF $p_{m}<U \leq p_{m}+p_{r}$ THEN
Generate an exponential random varlate E (which can be done as $\left.E \leftarrow-\log \left(\frac{U-p_{m}}{p_{r}}\right)\right)$.
$X-m+a *+\lambda_{r} E$
Accept $\leftarrow\left[V f_{m} e^{-(X-(m+a *)) / \lambda_{+}} \leq f(X)\right]$ (which is equivalent to Accept $\leftarrow\left[\dot{V} f_{m} e^{-E} \leq f(X)\right]$, or to Accept $\left.\leftarrow\left[V f_{m} \frac{U-p_{m}}{p_{r}} \leq f(X)\right]\right)$
ELSE

$$
\begin{aligned}
& \text { Generate an exponential random variate } E \quad \text { (which can be done as } \\
& \left.E \leftarrow-\log \left(\frac{U-\left(p_{m}+p_{r}\right)}{1-p_{m}-p_{r}}\right)\right) \text {. } \\
& X \leftarrow m-b *-\lambda_{l} E \\
& \text { Accept }-\left[V f_{m} e^{(X-(m-b *)) / \lambda_{1}} \leq f(X)\right] \quad \text { (which is equivalent to Accept } \\
& \left.\leftarrow\left[V f_{m} e^{-E} \leq f(X)\right] \text {, or to Accept } \leftarrow\left[V f_{m} \frac{U-\left(p_{m}+p_{r}\right)}{1-p_{m}-p_{r}} \leq f(X)\right]\right)
\end{aligned}
$$

UNTIL Accept
RETURN X

In most implementations, this algorithm can be considerably simpllfled. For one thing, the set-up step can be integrated in the algorithm. When the density is
monotone or symmetric unimodal, other obvious simplifications are possible.

Example 2.1. The exponential power distribution (EPD).

The EPD density with parameter $r>0$ is

$$
f(x)=\left(2 \Gamma\left(1+\frac{1}{\tau}\right)\right)^{-1} e^{-|x|^{\tau}}
$$

Generation for this density has been dealt with in Example IV.6.1, by transformations of gamma random variables. For $\tau \geq 1$, the density is log-concave. The values of a, b in the optimal rejection algorithm are easily found in this case: $a=b=1$. Before glving the detalls of the algorithm, observe that the rejection constant, the area under the dominating curve, is $f(0)(a+b)$, which is equal to $1 / \Gamma\left(1+\frac{1}{\tau}\right)$. As a function of τ, the rejection constant is a unimodal function with value 1 at the extremes $\tau=1$ (the Laplace density) and $\tau \uparrow \infty$ (the unlform $[-1,1]$ denslty), and peak at $\tau=\frac{1}{0.4616321449 \ldots . .}$. At the peak, the value is $\frac{1}{0.8856031944 \ldots .}$ (see e.g. Abramowltz and Stegun (1970, p. 259)). Thus, untformly over all $r \geq 1$, the refection rate is extremely good. For the important case of the normal denslty ($\tau=2$) we obtaln a value of $1 / \Gamma\left(\frac{3}{2}\right)=\sqrt{\frac{4}{\pi}}$. The algorithm can be summarized as follows:

REPEAT

Generate a uniform $[0,1]$ random variate U and an exponential random variate $E *$. IF $U \leq 1-\frac{1}{\tau}$ THEN
$X \leftarrow U$ (note that X is uniform on $\left.\left[0,1-\frac{1}{\tau}\right]\right)$
Accept $\leftarrow\left[|X|^{\top} \leq E *\right]$
ELSE
Generate an exponential random variate E (which can be done as $E \leftarrow-\log (\pi(1-U)))$.
$X-1-\frac{1}{\tau}+\frac{1}{\tau} E$
Accept $\leftarrow\left[|X|^{r} \leq E+E *\right]$
UNTLL Accept
RETURN $S X$ where S is a random sign.

The reader will have llttle dlfflculty verlfylng the validity of the algorithm. Consider the monotone density on $[0, \infty)$ glven by $\left(\Gamma\left(1+\frac{1}{\tau}\right)\right)^{-1} e^{-x^{5}}$. Thus, with $m=0, a=1, h^{\prime}(1)=-\tau$, we obtaln $a *=1-\frac{1}{\tau}$. Since we know that $|X|^{\tau}$ is distributed as a gamma ($\frac{1}{\tau}$) random varlable, it is easily seen that we have at the same time a good generator for gamma random varlates with parameter less than one. For the sake of easy reference, we glve the algorlthm in full:

Gamma generator with parameter a less than one

REPEAT

Generate a uniform $[0,1]$ random variate U and an exponential random variate $E *$. IF $U \leq 1-a$ THEN
$X \leftarrow U^{\frac{1}{a}}$ (note that U is uniform on $[0,1-a]$)
Accept $\leftarrow\left[|X| \leq E^{*}\right]$
ELSE
Generate an exponential random variate E (which can be done as $\left.E \leftarrow-\log \left(\frac{1-U}{a}\right)\right)$.
$X \leftarrow(1-a+a E)^{\frac{1}{a}}$
Accept $\leftarrow[|X| \leq E+E *]$
UNTIL Accept
RETURN X

Example 2.2. Complicated densities.

For more complicated densitles, the equation $f(x)=f(m) / e$ can be difficult to solve explicitly. It is always possible to take the pessimlstlc, or minimax, approach, by setting a and b both equal to $\frac{e}{(e-1) f(m)}$. In some cases, b can be set equal to 0 . In the set-up of the algorithm, it is still necessary to evaluate the derlvative of $\log (f)$ at the points $m+a, m-b$, but this can be done explicltly when f is given in analytic form. This approach can be automated for the beta and generallzed inverse gausslan distributlons, for example. When $m+a$ or $m-b$ fall outslde the support of f, one should consider one-talled dominating curves with the constant section truncated at the relevant extremal point of the support. For the beta density for example, this leads to an algorithm which resembles in many respects algorithm B2PE of Schmelser and Babu (1980).

Example 2.3. Algorithm B2PE (Schmeiser and Babu, 1980) for beta random variates.

In 1980, Schmelser and Babu proposed a highly efflclent algorthm for generating beta random varlates with parameters a and b when both parameters are at least one. Recall that for these values of the parameters, the beta density Is log-concave. Schmelser and Babu partition the interval $[0,1]$ into three intervals: In the center interval, around the mode $m=\frac{a-1}{a+b-2}$, they use as domInating function a constant function $f(m)$. In the tall intervals, they use exponentlal dominating curves that touch the graph of f at the breakpoints. At the breakpoints, Schmelser and Babu have a discontinulty. Nevertheless, analysis similar to that carrled out in Theorem 2.8 can be used to obtain the optimal placement of the breakpolnts. Schmelser and Babu suggest placing the breakpoints at the inflection points of the density, if they exist. The inflection points are at

$$
\max (m-\sigma, 0)
$$

and

$$
\min (m+\sigma, 1)
$$

where $\sigma=\sqrt{\frac{m(1-m)}{a+b-3}}$ if $a+b>3$ and $\sigma=\infty$ otherwise. Two inflection polnts exist on $[0,1]$ when $m-\sigma$ and $m+\sigma$ both take values in [0,1$]$. In that case, the area under the dominating curve is easily seen to be equal to

$$
\begin{aligned}
& 2 \sigma f(m)+f(m)\left(\frac{1}{\left|h^{\prime}(m-\sigma)\right|}+\frac{1}{\left|h^{\prime}(m+\sigma)\right|}\right) \\
& =f(m)\left(2 \sigma+\frac{1}{\sigma(a+b-2)}((m+\sigma)(1-m-\sigma)+(m-\sigma)(1-m+\sigma))\right) \\
& =f(m)\left(2 \sigma+\frac{1}{\sigma(a+b-2)} 2 m(1-m)\left(1-\frac{1}{a+b-3}\right)\right) \\
& =f(m)\left(2 \sigma+2 \sqrt{\frac{m(1-m)}{a+b-3}}\right) \\
& =4 f(m) \sigma .
\end{aligned}
$$

Thus, we have the interesting result that the probabillty mass under the exponentlal talls equals that under the constant center plece. One or both of the talls could be missing. In those cases, one or both of the contributions $f(m) \sigma$ needs to be replaced by $f(m) m$ or $f(m)(1-m)$. Thus, $4 f(m) \sigma$ is a conservative upper bound which can be used in all cases. It can be shown (see exercises) that as $a, b \rightarrow \infty, 4 f(m) \sigma \rightarrow \sqrt{\frac{8}{\pi}}$. Furthermore, a Ilttle additional analysis shows that the expected area under the dominating curve is unfformly bounded over all values of $a, b \geq 1$. Even though the fit is far from perfect, the algorithm can be made very fast by the Judiclous use of the squeeze princlple. Another acceleration trick proposed by Schmelser and Babu (algorlthm B4PE) conslsts of partitioning [0,1] into 5 intervals instead of 3 , with a linear dominating curve
added In the new lntervals.

Algorithm B2PE for beta (a,b) random variates
[SET-UP]
$m \leftarrow \frac{a-1}{a+b-2}$
IF $a+b>3$ THEN $\sigma \leftarrow \sqrt{\frac{m(1-m)}{a+b-3}}$
IF $a<2$
THEN $x \leftarrow 0, p \leftarrow 0$
ELSE

$$
\begin{aligned}
& x \leftarrow m-\sigma \\
& \lambda \leftarrow \frac{a-1}{x}-\frac{b-1}{1-x} \\
& v \leftarrow e^{(a-1) \log \left(\frac{x}{a-1}\right)+(b-1) \log \left(\frac{1-x}{b-1}\right)+(a+b-2) \log (a+b-2)} \\
& p \leftarrow \frac{v}{\lambda}
\end{aligned}
$$

Now, x is the left breakpoint, p the probability under the left exponential tail, λ the exponential parameter, and v the value of the normalized density f at x.
IF $b<2$
THEN $y \leftarrow 1, q \leftarrow 0$
ELSE

$$
\begin{aligned}
& y \leftarrow m+\sigma \\
& \mu \leftarrow \frac{a-1}{y}+\frac{b-1}{1-y} \\
& w \leftarrow e^{(a-1) \log \left(\frac{y}{a-1}\right)+(b-1) \log \left(\frac{1-y}{b-1}\right)+(a+b-2) \log (a+b-2)} \\
& q \leftarrow \frac{w}{\mu}
\end{aligned}
$$

Now, y is the left breakpoint, q the probability under the left exponential tail, μ the exponential parameter, and w the value of the normalized density f at y.

[GENERATOR]

REPEAT

Generate id uniform $[0,1]$ random variates U, V. Set $U \leftarrow U(p+q+y-x)$.
CASE

$$
\begin{aligned}
& U \leq y-x: \\
& X \leftarrow x+U(X \text { is uniformly distributed on }[x, y]) \\
& \text { IF } X<m \\
& \quad \text { THEN Accept } \leftarrow\left[V \leq v+\frac{(X-x)(1-v)}{m-x}\right] \\
& \quad \text { ELSE Accept } \leftarrow\left[V \leq w+\frac{(y-X)(1-w)}{y-m}\right] \\
& y-x<U \leq y-x+p: \\
& U \leftarrow \frac{U-(y-x)}{p} \text { (create a new uniform random variate) } \\
& X \leftarrow x+\frac{1}{\lambda} \log (U)(X \text { is exponentially distributed) } \\
& \text { Accept } \leftarrow\left[V \leq \frac{\lambda(X-x)+1}{U}\right] \\
& V \leftarrow V U v \text { (create a new uniform random variate) } \\
& y-x+p \leq U: \\
& U \leftarrow \frac{U-(y-x+p)}{q} \text { (create a new uniform random variate) } \\
& X \leftarrow y-\frac{1}{\mu} \log (U)(X \text { is exponentially distributed) } \\
& \text { Accept } \leftarrow\left[V \leq \frac{\mu(y-X)+1}{U}\right] \\
& V \leftarrow V U w \text { (create a new uniform random variate) }
\end{aligned}
$$

IF NOT Accept THEN
$T \leftarrow \log (V)$
IF $T>-2(a+b-2)(X-m)^{2}$
THEN

$$
\text { Accept } \leftarrow\left[T \leq(a-1) \log \left(\frac{X}{a-1}\right)+(b-1) \log \left(\frac{1-X}{b-1}\right)+(a+b-2) \log (a+b-2)\right]
$$

UNTL Accept
RETURN X

The algorithm can be Improved in many ways. For example, many constants can be computed in the set-up step, and quick rejection steps can be added when X falls outside $[0,1]$. Note also the presence of another quick rejection step, based upon the following inequallty:

$$
\log \left(\frac{f(x)}{f(m)}\right) \leq-2(a+b-2)(x-m)^{2}
$$

The quick rejection step is useful in situations Just llke this, l.e. when the fit is not very good.

Example 2.4. Tails of log-concave densities.

When f is log-concave, and a random varlate from the right tall of f, truncated at $t>m$ where m is the mode of f, is needed, one can always use the exponentlal majorizing function:

$$
f(x) \leq f(t) e^{\frac{f^{\prime}(t)}{f(t)}(x-t)} \quad(x \geq t)
$$

The first systematic use of these exponentlal talls can be found in Schmelser (1980). The expected number of iterations in the refection algorithm is

$$
\frac{f^{2}(t)}{\left|f^{\prime}(t)\right| \int_{t}^{\infty} f}
$$

2.7. Exercises.

1. The Pearson IV density. The Pearson IV density on R has two parameters, $m>\frac{1}{2}$ and $s \in R$, and is given by

$$
f(x)=\frac{c}{\left(1+x^{2}\right)^{m}} e^{-s \arctan x}
$$

Here c is a normallzation constant. For $s=0$ we obtain the t denslty. Show the following:
A. If X is Pearson IV (m, s), and $m \geq 1$, then $\operatorname{arc} \tan (X)$ has a \log concave density

$$
g(x)=c \cos ^{2(m-1)}(x) e^{-s x} \quad\left(|x| \leq \frac{\pi}{2}\right)
$$

B. The mode of g occurs at $\arctan \left(-\frac{s}{2(m-1)}\right)$.
C. Glve the complete rejection algorithm (exponential version) for the distribution. For the symmetric case of the t density, glve the detalls of the rejection algorlthm with rejection constant 2.
D. Find a formula for the computation of c.
2. Prove that a mixture of two log-concave denslties is not necessarly logconcave.
3. Glve the detalls of the rejection algorithm that is based upon the Inequallty of Theorem 2.4.
4. Log-concave densities can also occur in R^{d}. For example, the multivarlate normal density is log-concave. The closure under convolutions also holds in R^{d} (Davidovic et al., 1969), and marginals of log-concave densities are agaln log-concave (Prekopa, 1873). Unfortunately, it is useless to try to look for a generallzation of the inequalitles of this section to R^{d} with $d \geq 2$ because of the following fact which you are asked to show: the supremum over all logconcave densitles with mode at 0 and $f(0)=1$ is the constant function 1.
5. To speed up the algorlthms of thls section at the expense of preprocessing, we can compute the normalized log-concave density at $n>1$ carefully selected points, and use rejection (perhaps comblned with squeezing) with a dominating curve consisting of several pleces. Can you give a universal reclpe for locating the points of measurement so that the rejection constant is guaranteed to be smaller than a function of n only, and thls function of n tends to 1 as $n \rightarrow \infty$? Make sure that random varlate generation from the dominating density is not difficult, and provide the detalls of your algorithm.
8. This is about the area under the dominating curve in algorithm B2PE (Schmelser and Babu, 1980) for beta random varlate generation (Example 2.3). Assume throughout that $a, b \geq 1$.
(1) $\sigma \leq m$ if and only if $a \geq 2, \sigma \leq 1-m$ if and only if $b \geq 2$. (Thus, for $a, b \geq 2$, the area under the dominating curve is precisely $4 f(m) \sigma$.)
(ii) $\lim _{a, b \rightarrow \infty} 4 f(m) \sigma=\sqrt{\frac{8}{\pi}}$. Use Stirling's approximation.
(III) The area under the dominating curve is unlformly bounded over all $a, b \geq 1$. Use sharp inequalities for the gamma function to bound $f(m)$. Consider 3 cases: both $a, b \geq 2$, one of a, b is ≥ 2, and one is <2, and both a, b are <2. Try to obtaln as good a unlform bound as possible.
(iv) Prove the quick rejection Inequallty used in the algorithm:

$$
\log \left(\frac{f(x)}{f(m)}\right) \leq-2(a+b-2)(x-m)^{2}
$$

3. INEQUALITIES FOR DENSITIES.

3.1. Motivation.

The prevlous section has shown us the utility of upper bounds in the development of universal methods or black box methods. The strategy is to obtaln upper bounds for denslties in a large class which
(1) have a small Integral;
(11) are defined in terms of quantitles that are elther computable or present in the definitlon of the class.
For the log-concave densitles with mode at 0 we have for example obtalned an upper bound in section VII. 2 with integral 4, which requires knowledge of the position of the mode (this is in the defnition of the class), and of the value of $f(0)$ (thls can be computed). In general, quantities that are known could include:
A. A unlform upper bound for f (called M);
B. The r-th moment μ_{r};
C. The value of a functional $\int f^{\alpha}$;
D. A Llpschitz constant;
E. A uniform bound for the s-th derivative;
F. The entlre moment generating function $M(t), t \in R$;
G. The entlre distribution function $F(x), x \in R$;
H. The support of f.

When this information is combined in varlous ways, a multitude of useful domInating curves can be obtained. The goodness of a dominating curve is measured in terms of its integral and the ease with which random variates with a density proportlonal to the dominating curve can be generated. We show by example how some inequallties can be obtained.

3.2. Bounds for unimodal densities.

Let us start with the class of monotone densities on $[0,1]$ which are bounded by M. Note that if M is unknown, it can easlly be computed as $f(0)$. Thus, the only true restriction is that we must know that f vanishes off $[0,1]$. The trivial Inequality

$$
f(x) \leq M I_{[0,1]}(x)
$$

is not very useful, since the integral under the dominating curve is M. There are several ways to Increase the efficlency:

1. Use a table method by evaluating in a set-up step the value of f at many polnts. Basically, the dominating curve is plecewise constant and hugs the curve of f much better. These methods are very fast but the need for extra storage (usually growing with M) and an additlonal preprocessing step makes this approach somehow different. It should not be compared with
methods not requiring these extra costs. It wlll be developed systematically in chapter VIII.
2. Use as much information as possible to improve the bound. For example, in the inequallty $f(x) \leq M$, the monotoniclty is not used.
3. Ask the user if he has additlonal knowledge in the form of moments, quantlles, functlonals and the llke. Then construct good dominating curves.
We will illustrate approaches 2 and 3. For all monotone densities, the following is true:

Theorem 3.1.

For all monotone densities f on $[0, \infty)$,

$$
f(x) \leq \frac{1}{x}
$$

If f is also convex, then

$$
f(x) \leq \frac{1}{2 x}
$$

Proof of Theorem 3.1.

Flx $x>0$. Then, by monotonlcity,

$$
x f(x) \leq \int_{0}^{x} f(y) d y \leq 1
$$

When f is also convex, we can in fact use a geometrical argument: if we wish to find the convex f for which $f(x)$ is maximal, it suffices to consider only triangles. This class is the class of all densitles $2 a(1-a x)_{+}, 0 \leq x \leq \frac{1}{a}$. Thus, we find a for which $f(x)$ is maximal. Setting the derivative with respect to a equal to 0 glves the equation $1-a x-a x=0$, l.e. $a=\frac{1}{2 x}$. Resubstitution gives the bound. \square

The bounds of Theorem 3.1 cannot be Improved In the sense that for every x, there exists a monotone (or monotone and convex) f for which the upper bound is attalned. If we return now to the class of monotone densities on $[0,1]$ bounded by M, we see that the following Inequallty can be used:

$$
f(x) \leq \min \left(M, \frac{1}{x}\right) I_{\{0,1]}(x) .
$$

The area under the dominating curve is $1+\log (M)$. Clearly, this is always less than M. In most appllcations the improvement in computer time obtalnable by using the last inequality is noticeable if not spectacular. Let us therefore take a
moment to glve the detalls of the corresponding rejection algorlthm. The domInating density for rejection is

$$
g(x)=\frac{1}{1+\log (M)} \min \left(M, \frac{1}{x}\right) I_{[0,1]}(x) .
$$

It has distribution function

$$
\begin{cases}\frac{M x}{1+\log (M)} & , 0 \leq x \leq \frac{1}{M} \\ \frac{1+\log (M x)}{1+\log (M)} & , \frac{1}{M} \leq x \leq 1\end{cases}
$$

Using Inversion for generation from g, we obtain

Rejection algorithm for monotone densities on [0,1] bounded by M

REPEAT

Generate lid uniform $[0,1]$ random variates U, V.
IF $U \leq \frac{1}{1+\log (M)}$
THEN

$$
\begin{aligned}
& X \leftarrow \frac{U}{M}(1+\log (M)) \\
& \text { IF } V M \leq f(X) \text { THEN RETURN } X
\end{aligned}
$$

ElSE

$$
\begin{aligned}
& X \leftharpoondown \frac{1}{M} e^{U(1+\log (M))-1} \\
& \text { IF } V \leq X f(X) \text { THEN RETURN } X
\end{aligned}
$$

UNTIL False

When f is also convex, we can use the inequality

$$
f(x) \leq c g(x)
$$

where

$$
g(x)=\frac{2}{1+\log (2 M)} \min \left(M, \frac{1}{2 x}\right) I_{[0,1]}(x)
$$

It has distribution function

$$
\begin{cases}\frac{2 M x}{1+\log (2 M)} & , 0 \leq x \leq \frac{1}{2 M} \\ \frac{1+\log (2 M x)}{1+\log (2 M)} & , \frac{1}{2 M} \leq x \leq 1\end{cases}
$$

Using Inverslon for generation from g, we obtaln

Rejection algorithm for monotone convex densities on [0,1] bounded by M REPEAT

Generate iid uniform $[0,1]$ random variates U, V.
IF $U \leq \frac{1}{1+\log (2 M)}$ THEN

$$
X \leftarrow \frac{U}{2 M}(1+\log (2 M))
$$

IF $V M \leq f(X)$ THEN RETURN X
ELSE
$X \leftarrow \frac{1}{2 M} e^{U(1+\log (2 M))-1}$
IF $V \leq 2 X f(X)$ THEN RETURN X

UNTIL False

The expected number of iterations now is $\frac{1+\log (2 M)}{2}$, which is for large M roughly speaking half of the expected number of lteratlons for the nonconvex cases.

The function $\frac{1}{x}$ is not integrable on $[1, \infty)$, so that Theorem 3.1 is useless for handling infinite talls of monotone densitles. We have to tuck the talls under some integrable function, yet uniformly over all monotone densitles we cannot get anything better than $\frac{1}{x}$. Thus, additlonal information is required.

Theorem 3.2.

Let f be a monotone density on $[0, \infty)$.
A. If $\int x^{r} f(x) d x \leq \mu_{r}<\infty$ where $r>0$, then

$$
f(x) \leq \frac{(r+1) \mu_{r}}{x^{r+1}} \quad(x>0)
$$

B. In any case, for all $0<\alpha \leq 1$,

$$
f(x) \leq \frac{\left(\int f^{\alpha}\right)^{\frac{1}{\alpha}}}{x^{\frac{1}{\alpha}}} \quad(x>0)
$$

Proof of Theorem 3.2.

For part A we proceed as follows:

$$
\mu_{r} \geq \int_{0}^{x} y^{r} f(y) d y \geq \frac{f(x) x^{r+1}}{r+1}
$$

For part B, we use the trivial observation

$$
x f^{\alpha}(x) \leq \int f^{\alpha}
$$

For monotone densitles on $[0, \infty)$, bounded by $M=f(0)$, Theorem 3.2 provides us with bounds of the form

$$
f(x) \leq \min \left(M, \frac{A}{x^{a}}\right) \quad(x>0)
$$

where we can take (A, a) as follows:

Information	A	a
$\int x^{r} f(x) d x \leq \mu_{r}<\infty$	$(r+1) \mu_{r}$	$r+1$
$\left(\int f^{\alpha}\right)^{\frac{1}{\alpha}} \leq \nu_{\alpha}<\infty$	ν_{α}	$\frac{1}{\alpha}$

In all cases, the area under the dominating curve is

$$
\frac{a}{a-1} A^{\frac{1}{a}} M^{\frac{a-1}{a}} .
$$

Furthermore, random varlate generation for the dominating density can be done quite easlly via the inversion method or the inverse-of-f method (section N.6.3):

Theorem 3.3.

Let g be the density on $[0, \infty)$ proportional to $\min \left(M, \frac{A}{x^{a}}\right)$ where $M>0, A>0, a>1$ are parameters. Then the following random variables X have density g :
A. $\quad X=\left(\frac{A}{M}\right)^{\frac{1}{a}} \frac{U}{V^{a-1}}$ where U, V are ind uniform $[0,1]$ random varlates.
B. Let $x *$ be $\left(\frac{A}{M}\right)^{\frac{1}{a}}$ and let U be unlform on $[0,1]$. Then $X \leftarrow \frac{a}{a-1} U x *$ if

$$
U \leq \frac{a-1}{a}, \text { and } X \leftarrow \frac{x *}{(a U-(a-1))^{\frac{1}{a-1}}} \text { else. }
$$

Proof of Theorem 3.3.

By the Inverse-of-f method (section $\mathrm{N} . \theta \cdot 3$), it suffices to note that a random varlate with monotone denslty f can be obtalned as $U f^{-1}(Y)$ where Y has density f^{-1}. It is easy to see that for monotone g not necessarlly integrating to one, $U g^{-1}(Y)$ has density proportional to g if Y has density proportional to g^{-1}. In our case, $g^{-1}(y)=\left(\frac{A}{y}\right)^{\frac{1}{a}} \quad, 0 \leq y \leq M$. To generate Y with density proportional to this, we apply the inversion method. Verify that $M V^{\frac{a}{a-1}}$ has distribution function $\left(\frac{y}{M}\right)^{1-\frac{1}{a}}$ on $[0, M]$, which yields a density proportional to g^{-1}. Plugging this Y back into $U g^{-1}(Y)$ proves part A.

Part B is obtalnable by stralghtforward inversion. Note that $x *$ is the breakpoint where $M=\frac{A}{x^{a}}$, that $\int_{0}^{x *} g=M x^{*}$, and that $\int_{x *}^{\infty} g=\frac{A}{a-1} x^{-(a-1)}$. The sum of the two areas is

$$
A^{\frac{1}{a}} M^{1-\frac{1}{a}}\left(1+\frac{1}{a-1}\right)
$$

Thus, with probabllity $\frac{a-1}{a}, X$ is distributed unlformly on $[0, x *]$, and with the complementary probability, X is distributed as $\frac{x^{*}}{V^{\frac{1}{a-1}}}$ where V is uniformly distributed on $[0,1]$ (the latter random varlable has density decreasing as x^{-a} on $(x *, \infty)$). The unfform random varlates needed here can be recovered from the uniform random variate U used in the comparison with $\frac{a-1}{a}$: given that $U \leq \frac{a-1}{a}, U \frac{a}{a-1}$ is again uniform. Given that $U>\frac{a-1}{a}, a U-(a-1)$ is in turn
unlformly distributed on $[0,1]$.

For the sake of completeness, we will now glve the rejection algorithm for generating random variates with density f based upon the Inequallity

$$
f(x) \leq \min \left(M, \frac{A}{x^{a}}\right) \quad(x \geq 0)
$$

Rejection method based upon part A of Theorem 3.3

REPEAT

Generate iid unform $[0,1]$ random variates U, V.

$$
\begin{aligned}
& Y \leftarrow M V^{\frac{a}{a-1}} \\
& X \leftarrow U\left(\frac{A}{Y}\right)^{\frac{1}{a}}
\end{aligned}
$$

UNTIL $Y \leq f(X)$
RETURN X

The valldity of this algorithm is based upon the fact that $\left(Y, U g^{-1}(Y)\right)=(Y, X)$ is unlformly distributed under the curve of g^{-1}. By swapping coordinate axes, we see that (X, Y) is uniformly distributed under g, and can thus be used in the rejection method. Note that the power operation is unavoldable. Based upon part B, we can use rejection with fewer powers.

Rejection method based upon part B of Theorem 3.3.

REPEAT

Generate ild uniform $[0,1]$ random variates U, V.
IF $U \leq \frac{a-1}{a}$
THEN

$$
X-\frac{a}{a-1} U x *
$$

IF $V M \leq f(X)$ THEN RETURN X
ELSE

$$
\begin{aligned}
& X-x *(a U-(a-1))^{-\frac{1}{a-1}} \\
& \text { IF } V A \leq X^{a} f(X) \text { THEN RETURN } X
\end{aligned}
$$

UNTIL False

For both Implementations, the expected number of computations of f is equal to the expected number of iterations,

$$
E(N)=\frac{a}{a-1} A^{\frac{1}{a}} M^{\frac{a-1}{a}}
$$

It is instructlve to analyze this measure of the performance in more detall. Conslder the moment version for example, where $A=(r+1) \mu_{r}, a=r+1$ and μ_{r} is the r-th moment of the monotone density. We have

Theorem 3.4.

Let $E(N), M, r, A, a, \mu_{r}$ be as deflned above. Then for all monotone densltles on $[0, \infty)$,

$$
E(N) \geq 1+\frac{1}{r}
$$

For all monotone densitles that are concave on their support,

$$
E(N) \leq 2\left(1+\frac{1}{r}\right)(r+2)^{-\frac{1}{r+1}} \leq 2\left(1+\frac{1}{r}\right)
$$

Finally, for all monotone log-concave densitles,

$$
E(N) \leq\left(1+\frac{1}{r}\right)(\Gamma(r+2))^{\frac{1}{r+1}} \sim \frac{r+1}{e}(\text { as } r \rightarrow \infty)
$$

Proof of Theorem 3.4.

We start from the expression

$$
E(N)=\left(1+\frac{1}{r}\right)\left((r+1) M^{r} \mu_{r}\right)^{\frac{1}{r+1}}
$$

The product $M \mu_{r}$ is scale invarlant, so that we can take $M=1$ without loss of generallty. For all such bounded densitles, we have $1-F(x) \geq(1-x)_{+}$. Thus,

$$
\begin{aligned}
& \mu_{r}=\int_{0}^{\infty} x^{r} f(x) d x=\int_{0}^{\infty} r x^{r-1}(1-F(x)) d x \\
& \geq \int_{0}^{1} r x^{r-1}(1-x) d x \\
& =1-\frac{r}{r+1}=\frac{1}{r+1}
\end{aligned}
$$

This proves the first part of the theorem. Note that we have impllcitly used the fact that every random varlable with a density bounded by 1 on $[0, \infty)$ is stochastlcally larger than a unlform $[0,1]$ random variate.

For the second part, we use the fact that all random variables with a monotone concave density satisfying $f(0)=M=1$ are stochastically smaller than a random variable with denslty $\left(1-\frac{x}{2}\right)_{+}$(exercise 3.1). Thus, for this density,

$$
\mu_{r}=\int_{0}^{2} x^{r}\left(1-\frac{x}{2}\right) d x=2^{r=1}\left(\frac{1}{r+1}-\frac{1}{r+2}\right)=\frac{2^{r+1}}{(r+1)(r+2)} .
$$

Resubstitution gives us part B for concave densitles. Finally, for log-concave densitles we need the fact that $f(0) X$ is stochastically smaller than an exponential random varlate. Thus, in particutar,

$$
M^{\tau} \mu_{r} \leq \int_{0}^{\infty} y^{\tau} e^{-y} d y=\Gamma(r+1)
$$

This proves the last part of the theorem.

A brief discussion of Theorem 3.4 is in order here. Flrst of all, the Inequallthes are quite inefliclent when r is near 0 in view of the lower bound $E(N) \geq 1+\frac{1}{r}$. What is important here is that for important subclasses of monotone densitles, the performance is unlformly bounded provided that we know the r-th moment of the density in case. For example, for the log-concave densitles,
we have the following values for the upper bound for $E(N)$:

r	$E(N) \leq$	Approximate value
1	$\frac{4}{\sqrt{3}}$	$2.3094 \ldots$
2	$\frac{3}{4^{\frac{1}{3}}}$	$1.88988 \ldots$
3	$\frac{8}{85^{\frac{1}{4}}}$	$1.7833 \ldots$
4	$\frac{5}{\frac{5}{\frac{1}{5}}}$	$1.7470 \ldots$
5	$\frac{12}{\frac{12}{\frac{1}{6}}}$	$1.7352 \ldots$
6	$\frac{7}{78^{\frac{1}{7}}}$	$1.73366 \ldots$
7	$\frac{16}{79^{\frac{1}{8}}}$	$1.7367 \ldots$
$\uparrow \infty$	$\dagger 2$	

The upper bound is minimal for r near 6 . The algorithm is guaranteed to perform at its best when the slxth moment is known. In the exerclses, we will develop a sllghtly better Inequallty for concave monotone densitles. One of the features of the present method is that we do not need any information about the support of f - such information would be required if ordinary rejection from a uniform density is used. Unfortunately, very few Important densitles are concave on their support, and often we do not know whether a density is concave or not.

The family of log-concave densitles is more Important. The upper bound for $E(N)$ in Theorem 3.4 has acceptable values for the usual values of r :

r	$E(N) \leq$	Approximate value
1	$\sqrt{8}$	$2.82 \ldots$
2	$\frac{3}{2} 6^{\frac{1}{3}}$	$2.7256 \ldots$
3	$\frac{4}{3} 24^{\frac{1}{4}}$	$2.9511 \ldots$
$\dagger \infty$	$\dagger \infty$	

In this case, the optimal Integer value of r is 2 . Note that if μ_{r} is not known, but is replaced in the algorithm and the analysls by its upper bound $\frac{\Gamma(r+1)}{M^{r}}$, then both the algorithm and the performance analysis of Theorem 3.4 remaln valld. In that case, we obtaln a black box method for all log-concave densitles on $[0, \infty)$ with mode at 0 , as in the previous section. For $r=2$, the expected number of Iterations (about 2.72) is about 36% larger than the algorithm of the previous sectlon which was spectally developed for log-concave densitles only.

3.3. Densities satisfying a Lipschitz condition.

We say that a function f is Lipschitz (C) when

$$
\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|} \leq C
$$

When f is absolutely continuous with a.e. derivative f^{\prime}, then we can take $C=\sup \left|f^{\prime}\right|$. Unfortunately, some important functions are not Llpschitz, such as \sqrt{x}. However, many of these functions are Lipschitz of order α : formally, we say that f is Lipschitz of order α with constant C (and we write $f \in \operatorname{Lip} p_{\alpha}(C)$) when

$$
\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \leq C
$$

Here $\alpha \in(0,1]$ is a constant. It can be shown (exercise 3.6) that the classes $\operatorname{Lip}_{\alpha}(C)$ for $\alpha>1$ contain no densities. The fundamental inequality for the Lipschitz classes is given below:

Theorem 3.5.

When f is a density in $\operatorname{Lip} \alpha_{\alpha}(C)$ for some $C>0, \alpha \in(0,1]$, then

$$
f(x) \leq\left(\min (F(x), 1-F(x)) \frac{\alpha+1}{\alpha} C^{\frac{1}{\alpha}}\right)^{\frac{\alpha}{\alpha+1}}
$$

Here F is the distribution function for f. In particular, for $\alpha=1$, we have

$$
f(x) \leq \sqrt{2 C \min (F(x), 1-F(x))}
$$

Proof of Theorem 3.5.

FIx x, and define $y=\int(x)$. Then fix $z>x$. We clearly have

$$
f(z) \geq f(x)-C(z-x)^{\alpha}
$$

The density f which ylelds the maximal value for $f(x)$ is equal to the lower bound for $f(z)$ given above. It vanlshes beyond

$$
z^{*}=x+\left(\frac{f(x)}{C}\right)^{\frac{1}{\alpha}}
$$

By Integration of the prevlous Inequality we have

$$
\begin{aligned}
& 1-F(x) \geq \int_{x}^{z *}\left(f(x)-C(z-x)^{\alpha}\right) d z \\
& =f(x)\left(z^{*}-x\right)-\frac{C\left(z^{*}-x\right)^{\alpha+1}}{\alpha+1} \\
& =f(x)\left(\frac{f(x)}{C}\right)^{\frac{1}{\alpha}}-\frac{C}{\alpha+1}\left(\frac{f(x)}{C}\right)^{\frac{\alpha+1}{\alpha}}
\end{aligned}
$$

$$
=f(x)^{\frac{\alpha+1}{\alpha}} \frac{\alpha}{\alpha+1} C^{-\frac{1}{\alpha}}
$$

By symmetry, the same lower bound is valld for $F(x)$. Rearranging the terms glves us our result.

Theorem 3.5 provides us with an important bridging device. For many distributlons, tall inequallties are readlly avallable: standard textbooks usually give Markov's and Chebyshev's inequalitles, and these are sometimes supplemented by varlous exponentlal inequalities. If f is in $L i p_{\alpha}(C)$ on $(0, \infty)$ (thus, a discontinulty could occur at 0), then we stlll have

$$
f(x) \leq\left((1-F(x)) \frac{\alpha+1}{\alpha} C^{\frac{1}{\alpha}}\right)^{\frac{\alpha}{\alpha+1}}
$$

Before we proceed with some examples of the use of Theorem 3.5, we collect some of the best known tall Inequallties in a lemma:

Lemma 3.1.

Let F be a distribution function of a random varlable X. Then the followIng Inequalitles are valld:
A. $P(|X| \geq x) \leq \frac{E\left(|X|^{r}\right)}{|x|^{r}}, r>0$ (Chebyshev's inequallty).
B. $\quad 1-F(x) \leq M(t) e^{-t x}, t>0$ where $M(t)=E\left(e^{t X}\right)$ is the moment generatIng function (Markov's inequallity); note that by symmetry, $F(x) \leq M(-t) e^{t x} \quad, t>0$.
C. For log-concave f with mode at 0 and support on $[0, \infty)$, $1-F(x) \leq e^{-f(0) x}$.
D. For monotone f on $[0, \infty), \quad 1-F(x) \leq\left(\frac{r}{r+1}\right)^{r} \frac{E\left(|X|^{r}\right)}{|x|^{r}}, x, r>0$ (Narumi's Inequallty).

Proof of Lemma 3.1.

Parts A and B are but special cases of a more general inequallty: assume that ψ is a nonnegatlve function at least equal to one on a set A. Then

$$
P(X \in A)=\int_{A} d F(x) \leq \int_{A} \psi(x) d F(x) \leq E(\psi(X))
$$

For part A, take $A=[x, \infty) \cup(-\infty, x]$ and $\psi(y)=\frac{\left.\perp y\right|^{r}}{|x|^{r}}$. For part B, take
$A=[x, \infty)$ and $\psi(y)=e^{t(y-x)}$ for some $t>0$. Part C follows slmply from the fact that for log-concave densitles on $[0, \infty)$ with mode at $0, f(0) X$ is stochastically smaller than an exponential random varlable. Thus, only part D seems nontrivial; see exerclse 3.7.

If inequallties other than those glven here are needed, the reader may want to consult the survey article of Savage (1881) or the specialized text by Godwin (1984).

Example 3.1. Convex densities.

When a convex density f on $[0, \infty)$ is $\ln \operatorname{Lip}_{1}(C)$, we can take $C=f^{\prime}(0)$. By Narumi's inequality for monotone densitles,

$$
f(x) \leq \min \left(f(0), \frac{\sqrt{2 f^{\prime}(0)\left(\frac{r}{r+1}\right)^{r} \mu_{r}}}{x^{\frac{r}{2}}}\right)
$$

where $\mu_{r}=E\left(|X|^{r}\right)$. This is of the general form dealt with in Theorem 3.3. It should be noted that for this inequally to be useful, we need $r>2$.

Example 3.2. Densities with known moment generating function.

Patel, Kapadia and Owen (1978) give several examples of the use of moment generating functions $M(t)$ in statistics. Using the exponentlal version of Markov's Inequallty, we can bound any $L i p_{1}(C)$ density as follows:

$$
f(x) \leq \begin{cases}\sqrt{2 C e^{-t|x|} M(t)} & , x \geq 0 \\ \sqrt{2 C e^{-t|x|} M(-t)} & , x<0\end{cases}
$$

Here $t>0$ is a constant. There is nothing that keeps us from making t depend upon x except perhaps the simplicity of the bound. If we do not wish to upset this simplicity, we have to take one t for all x. When f is also symmetric about the origin, then the bound can be written as follows:

$$
f(x) \leq c g(x)
$$

where $g(x)=\frac{t}{4} e^{-\frac{t}{2}|x|}$ Is the Laplace denslty with parameter $\frac{t}{2}$, and $c=\sqrt{32 C M(t) / t^{2}}$ is a constant which depends upon t only. If thls bound is
used in a rejection algorithm, the expected number of iterations is c. Thus, the best value for t is the value that minimizes $M(t) / t^{2}$. Note that c Increases with C (decreasing smoothness) and with $M(t)$ (Increasing slze of the tall). HavIng picked t, the following rejection algorithm can be used:

Rejection method for symmetric Lipschitz densities with known moment generating function
[SET-UP]
$b \leftarrow \sqrt{2 C M(t)}$
[GENERATOR]
REPEAT
Generate E, U, independent exponential and uniform $[0,1]$ random variates. $X \leftarrow \frac{2}{t} E$
UNTIL Ube ${ }^{-E} \leq f(X)$
RETURN $S X$ where S is a random sign.

Example 3.3. The generalized gaussian family.

The generallzed gaussian family of distributions contalns all distributions for which for some constant $s \geq 0, M(t) \leq e^{s^{2} t^{2} / 2}$ for all t (Chow, 1988). The mean of these distributions exists and is 0 . Also, as shown by Chow (1986), both $1-F(x)$ and $F(-x)$ do not exceed $e^{-x^{2} /\left(2 s^{2}\right)}$ for all $x>0$. Thus, by Theorem 3.5, when $f \in \operatorname{Lip}_{1}(C)$,

$$
f(x) \leq s \sqrt{8 C \pi}\left(\frac{1}{s \sqrt{4 \pi}} e^{-\frac{x^{2}}{4 s^{2}}}\right)
$$

The function in parentheses is a normal ($0, s \sqrt{2}$) density. The rejection constant is $s \sqrt{8 C \pi}$. In its crudest form the algorithm can be summarized as follows:

```
Rejection algorithm for generalized gaussian distributions with a Lipschitz densi-
ty
REPEAT
    Generate N,E, independent normal and exponential random variates.
    X\leftarrowNs \sqrt{}{2}
UNTIL - N N
RETURN X
```


Example 3.4. Densities with known moments.

The prevlous three examples apply to rather small familles of distributions. If only the r-th absolute moment μ_{r} is known, the we have by Chebyshev's Inequallty,

$$
1-F(x) \leq \frac{\mu_{r}}{|x|^{r}}
$$

for all $x, r>0$. This leads to the inequallity

$$
f(x) \leq \sqrt{2 C} \min \left(1, \frac{\sqrt{\mu_{r}}}{|x|^{\frac{r}{2}}}\right)
$$

which is only useful to us for $r>2$ (otherwise, the dominating function is not integrable). The integral of the dominating curve is $\sqrt{8 C} \frac{r}{r-2} \mu_{r}^{\frac{1}{r}}$. Just which r is best depends upon the distribution: $\frac{r}{r-2}$ decreases monotonically with r whereas $\mu_{r}{ }^{\frac{1}{r}}$ is nondecreasing in r (this is known as Lyapunov's inequality, which can be obtalned in one llne from Jensen's inequallty).

Example 3.5. Log-concave densities.

Assume that f is log-concave with mode at 0 and support contalned in $[0, \infty)$. Using $1-F(x) \leq e^{-x f(0)}$, we observe that

$$
f(x) \leq \frac{\sqrt{8 C}}{f(0)}\left(\frac{f(0)}{2} e^{-\frac{x f(0)}{2}}\right) \quad(x>0)
$$

The top bound is $\frac{\sqrt{8 C}}{f(0)}$ times a Laplace density. It is thus not difflcult to see that the following algorithm is useful:

Rejection method for log-concave Lipschitz densities

REPEAT

Generate iid exponential random variates E_{1}, E_{2}
$X \leftarrow \frac{2}{f(0)} E_{1}$
UNTIL $-E_{2}-E_{1} \leq \log \left(\frac{f(X)}{\sqrt{2 C}}\right)$
RETURN X

3.4. Normal scale mixtures.

Many distributions in statistics can be written as mixtures of normal densitles in which the varlance is the mixture parameter. These normal scale mixtures have far-reaching applicatlons ranging from modeling to mathematical statistics. The corresponding random vartables X are thus distributed as $N Y$, where N is normal, and Y is a positive-valued random varlable. The class of normal scale mixtures is selected here to be contrasted agalnst the class of log-concave densitles. It should be clear that we could have picked other classes of mixture distributions.

There are two sltuations that should be clearly distingulshed: In the first case, the distribution of Y is known. In the second case, the distribution of Y is not expllcitly glven, but it is known nevertheless that X is a normal scale mixture. The first case is trivial: one just generates N and Y and exits with $N Y$. In
the table below, some examples are glven:

DENSITY OF X	DENSITY OF Y
Cauchy	Density of $1 / N$ where N is normal
Laplace	Density of $1 / \sqrt{2 E}$ where E is exponential
Logistic	Density of $2 K$ where K has the Kolmogorov-Smirnov distribution
t_{a}	Density of $\sqrt{\frac{2 a}{G}}$ where G is gamma $\left(\frac{a}{2}\right)$
Symmetric stable (α)	Density of \sqrt{S} where S is positive stable $\left(\frac{\alpha}{2}\right)$

This table is far from complete, and all the representations have been known for quite some time. For the inclusion of the symmetric stable, see e.g. Feller (1971), and for the inclusion of the logistic, see e.g. Andrews and Mallows (1974). In fact, it is known that an even density f is a normal scale mixture if and only if the derlvatives of $f(\sqrt{x})$ are of alternating slg for all $x>0$ (Kelker, 1971). Unfortunately, for all the densities given in the table, efflclent direct methods of generation are known, so there is no reason why one should use the decomposition.

The more interesting case is the one in whlch we just know that the distrlbution is a normal scale mixture. To develop universal rejection methods for this class of distributions, general inequalitles are needed. The following inequalities are useful for this purpose:

Theorem 3.6.

Let f be the density of a normal scale mixture, and let X be a random varlable with density f. Then f is symmetric and unlmodal, $f(x) \leq f(0)$, and for all $a \geq-1$,

$$
f(x) \leq C_{a} \frac{\mu_{a}}{|x|^{1+a}}
$$

where

$$
\mu_{a}=E\left(|X|^{a}\right)
$$

is the a-th absolute moment of X, and

$$
C_{a}=\left(\frac{1+a}{e}\right)^{\frac{1+a}{2}} \frac{1}{2^{\frac{1+a}{2}} \Gamma\left(\frac{1+a}{2}\right)}
$$

For $a=1$ and $a=2$, we have respectively,

$$
\begin{aligned}
& f(x) \leq m \ln \left(f(0), \frac{E(|X|)}{e|x|^{2}}\right) \\
& f(x) \leq \min \left(f(0),\left(\frac{3}{e}\right)^{\frac{3}{2}} \frac{E\left(X^{2}\right)}{\sqrt{2 \pi}|x|^{3}}\right)
\end{aligned}
$$

The areas under the dominating curves are respectively, $\frac{4}{\sqrt{e}} \sqrt{f(0) \mu_{1}}$, and $C\left(\mu_{2} f(0)^{2}\right)^{1 / 3}$ where $C=3(3 / e)^{1 / 2}(2 \pi)^{-1 / 6}$.

Proof of Theorem 3.6.

The unlmodality is obvlous. The upper bounds for f follow directly from slmllar upper bounds for the normal denslty. Note that we have, for all $x, \sigma>0$,

$$
e^{-\frac{x^{2}}{2 \sigma^{2}}} \leq\left(\frac{\sigma}{|x|}\right)^{1+a}\left(\frac{1+a}{e}\right)^{\frac{1+a}{2}}
$$

Observe that

$$
f(x)=E\left(\frac{1}{\sqrt{2 \pi} Y} e^{-\frac{x^{2}}{2 Y^{2}}}\right)
$$

where Y is a random varlable used in the mixture (recall that $X=N Y$). Using the normal-polynomlal bound mentloned above, this leads to the Inequallty

$$
f(x) \leq E\left(Y^{a}\right) \frac{1}{\sqrt{2 \pi}|x|^{1+a}}\left(\frac{1+a}{e}\right)^{\frac{1+a}{2}}
$$

But in vlew of the relationship $X=N Y$, we have $E\left(Y^{a}\right)=E\left(|X|^{a}\right) / E\left(|N|^{a}\right)$. Now, use the fact that $E\left(|N|^{a}\right) \sqrt{2 \pi}=2^{\frac{1+a}{2}} \Gamma\left(\frac{1+a}{2}\right)$ (which follows by definition of the gamma integral). This gives the maln inequallty. The special cases are easlly obtalned from the main inequality, as are the areas under the dominating curves.

The algorithms of sectlon 3.2 are once agaln applicable. However, we are in much better shape now. If we had just used the unlmodallty, we would have obtalned the Inequallity

$$
f(x) \leq \min \left(f(0), \frac{a+1}{2} \frac{\mu_{a}}{|x|^{a+1}}\right)
$$

which is useful for $a>0$. See the proof of Theorem 3.2. The area under this domInating curve is larger than the corresponding area for Theorem 3.6, which should come as no surprise because we are using more information in Theorem 3.6. Notice that, Just as in section 3.2, the areas under the dominating curves are scale invarlant. The cholce of a depends of course upon f. Because the class of normal mlxtures contains densitles with arbltrarlly large talls, we may be forced to choose a very close to $0 \ln$ order to make μ_{a} finlte. Such a strategy is appropriate for the symmetric stable density.

3.5. Exercises.

1. Prove the following fact needed in Theorem 3.4: all monotone densities on $[0, \infty)$ with value 1 at 0 and concave on their support are stochastically smaller than the trlangular density $f(x)=\left(1-\frac{x}{2}\right)_{+}$, i.e. their distribution functions all dominate the distribution function of the trlangular density.
2. In the rejection algorithm Immediately preceding Theorem 3.4, we exit some of the time with $X \leftarrow \frac{x^{*}}{\sqrt{a U-(a-1)}}$. The square root is costly. The special case $a=3$ is very important. Show that $\sqrt{3 U-2}$ is distributed as $\max (3 U-2, W)$ where W is another unlform $[0,1]$ random varlate.
3. Concave monotone densities. In this exerclse, we conslder densitles f which are concave on thelr support and monotone on $[0, \infty)$. Let us use $M=f(0), \mu_{r}=\int x^{r} f(x) d x$.
A. Show that $f(x) \leq \min \left(M,\left(\frac{2 \mu_{r}(r+1)}{x^{\top+1}}-M\right)_{+}\right)$.
B. Show that the area under the dominating curve is $2-2^{\frac{1}{\tau+1}}$ times the
area under the dominating curve shown in Theorem 3.4. That is, the area is

$$
\left(2-2^{\frac{1}{r+1}}\right)\left(1+\frac{1}{r}\right) M^{\frac{r}{r+1}}\left((r+1) \mu_{r}\right)^{\frac{1}{r+1}} .
$$

C. Noting that the Improvement is most outspoken for $r=1(2-\sqrt{2} \approx 0.59)$ and $r=2$ and that it is negllgible when r is very large, give the detalls of the rejection algorithm for these two cases.
4. Give the strongest counterparts of Theorems 3.1-3.4 you can find for unimodal densitles on the real line with a mode at 0 . Because this class contalns the class dealt with in the section, all the bounds given in the section remain valld for $f(|x|)$, and this leads to performances that are precisely double those of the varlous theorems. Mimicking the development of section VII. 2 for log-concave densities, this can be improved if we know $F(0)$, the value of the distribution function at 0 , or are willing to apply Brent's mirror principle (generate a random varlate X with density $f(x)+f(-x), x>0$, and exit with X or $-X$ with probabilitles $\frac{f(x)}{f(x)+f(-x)}$ and $\frac{f(-x)}{f(x)+f(-x)}$ respectively). Work out the detalls.
5. Compare the rejection constant of Example 3.5 (log-concave densitles on $[0, \infty)$) with 2 , the rejection constant obtalned for the algorithm of section VII.2. Show that it is always at least 2, that is, show that for all logconcave densities on $[0, \infty)$ belonging to $\operatorname{Lip}_{1}(C)$,

$$
\frac{\sqrt{8 C}}{f(0)} \geq 2
$$

Hint: flx C, and try to find the density in the class under conslderation for which $f(0)$ is maximal. Conclude that one should never use the algorithm of Example 3.5.
8. Show that the class $\operatorname{Lip} p_{\alpha}(C)$ has no densitles whenever $\alpha>1$.
7. Prove Narumi's Inequalltles (Lemma 3.1, part D).
8. When f is a normal scale mixture, show that for all $a>0$, the bound of Theorem 3.6 Is at least as good as the corresponding bound of Theorem 3.2.
8. Show that f is an exponential scale mixture if and only if for all $x>0$, the derivatives of f are of alternating slgn (see e.g. Feller (1971), Kellson and Steutel (1974)). These mixtures consist of convex densities densities on $[0, \infty)$. Derive useful bounds slmilar to those of Theorem 3.8.
10. The z-distribution. Barndorff-Nielsen, Kent and Sorensen (1982) Introduced the class of z-distributions with two shape parameters. The symmetric members of thls famlly have density

$$
f(x)=\frac{1}{4^{a} B_{a, a} \cosh ^{2 a}\left(\frac{x}{2}\right)} \quad(x \in R)
$$

where $a>0$ is a parameter. The translation and scale parameters are omitted. For $a=1 / 2$, this glves the hyperbolic cosine distribution. For $a=1$ we have the logistic distribution. For integer a it is also called the generallzed loglstlc distribution (Gumbel, 1944). Show the following:
A. The symmetric z-distributions are normal scale mixtures (BarndorffNlelsen, Kent and Sorensen, 1982).
B. A random varlate can be generated as $\log \left(\frac{Y}{1-Y}\right)$ where Y is symmetric beta distributed with parameter a.
C. If a random variate is generated by rejection based upon the inequalities of Theorem 3.6, the expected time stays unlformly bounded over all values of a.
Additional note: the general z distribution with parameters $a, b>0$ is defined as the distribution of $\log \left(\frac{Y}{1-Y}\right)$ where Y is beta (a, b).
11. The residual life density. In renewal theory and the study of Polsson processes, one can assoclate with every distribution function F on $[0, \infty)$ the residual life density

$$
f(x)=\frac{1-F(x)}{\mu}
$$

where $\mu=\int(1-F)$ is the mean for F. Assume that besides the mean we also know the second moment μ_{2}. This is the second moment of F, not f. Show the following:
A. $f(x) \leq \mu_{2} /\left(\mu\left(x^{2}+\mu_{2}\right)\right)$
B. The black box algortthm shown below is valld and has refection constant $\pi \sqrt{\mu_{2}} / \mu$. The rejection constant is at least equal to π, and can be arbltrarlly large.

REPEAT
Generate a Cauchy random variate Y, and a uniform $[0,1]$ random variate U.
$X \leftarrow \sqrt{\mu_{2}} Y$
UNTLL $U \leq\left(1+Y^{2}\right)(1-F(X))$
RETURN X
12. Assume that f is a monotone density on $[0, \infty)$ with distribution function F. Show that for all $0 \leq t<x$,

$$
f(x) \leq \frac{1-F(t)}{x-t}
$$

Derive from this the inequallty

$$
f(x) \leq f(0)\left(1-F\left(x-\frac{1}{f(0)}\right)\right)
$$

Note that these Inequalities can be used to derive rejection algorithms from tall inequalitles for the distribution function.

4. THE INVERSION-REJECTION METHOD.

4.1. The principle.

Assume that f is a density on R, and that we know a few things about f, but not too much. For example, we may know that f is bounded by M, or that $f \in \operatorname{Li} p_{1}(C)$, or that f is unimodal with mode at 0 . We have in addition two black boxes, one for computing f, and one for computing the distribution functlon F. The rejection method is not applicable because we cannot a prlorl find an Integrable dominating curve as for example in the case of log-concave densitles. In many cases, this problem can be overcome by the inversion-rejection method (Devroye, 1984). In its most elementary form, it can be put as follows: consider a countable partition of R into intervals $\left[x_{i}, x_{i+1}\right)$ where i can take positive and negative values. This partition is fixed but need not be stored: often we can compute the next polnt x_{i} from i and/or the previous polnt. Generate a unlform $[0,1]$ random variate U, and find the Index i for which

$$
F\left(x_{i}\right) \leq U<F\left(x_{i+1}\right)
$$

Thus, Interval $\left[x_{i}, x_{i+1}\right.$) is chosen with probabllity $F\left(x_{i+1}\right)-F\left(x_{i}\right)$ by inversion. If the x_{i} 's are not stored, then some version of sequentlal search can be used. After i is selected, return a random varlate X with denslty f restricted to the given interval. What we have galned is the fact that the interval is compact, and that in most cases we can easily find a unlform dominating density and use rejection. For example, if f is known to be bounded by M, then we can use a unlform curve with value M. When $f \in \operatorname{Lip}_{1}(C)$, we can use a triangular dominating curve with value $\min \left(f\left(x_{i}\right)+C\left(x-x_{i}\right), f\left(x_{i+1}\right)+C\left(x_{i+1}-x\right)\right)$. When f is unlmodal, then a dominating curve with value $\max \left(f\left(x_{i}\right), f\left(x_{i+1}\right)\right)$ can always be used.

There are two contributors to the expected time taken by the inversionrejection algorlthm:
(1) $E\left(N_{s}\right)$: the expected number of computations of F in the sequential search.
(11) $E\left(N_{r}\right)$: the expected number of iterations in the rejection method. It is not difficult to see that this is the area under the dominating curve.
In the example of a density bounded by M but otherwise arbltrary, the area under the dominating curve is ∞. Thus, $E\left(N_{r}\right)=\infty$. Nevertheless $N_{r}<\infty$ with probabillty one. This fact does not come as a surprise considering the magnitude of the class of densitles involved. For unimodal f, even with an infinite peak at
the mode and two blg talls, it is always possible to construct a partition such that the area under the dominating plecewise constant function is finite. Thus, in the analysls of the different cases, it will be important to distingulsh between the familles of densitles.

The inversion-rejection method is of the black-box type. Its main disadvantage is that programs for calculating both f and F are needed. On the positive slde, the famllies that can be dealt with can be gigantic. The method is not recommended when speed is the most important issue.

We look at the three familles introduced above in separate sub-sections. A little extra time is spent on the important class of unimodal densities. The analysis is \ln all cases based upon the distributional propertles of N_{s} and N_{r}.

4.2. Bounded densities.

As our first example, we take the famlly of densities f on $[0, \infty)$ bounded by M. There is nothing sacred about the positive half of R, the cholce is made for convenlence only. Assume that $[0, \infty)$ is partitioned by a sequence

$$
0=x_{0}<x_{1}<x_{2}<\cdots .
$$

Let us write $p_{i}=F\left(x_{i+1}\right)-F\left(x_{i}\right), i \geq 0$. In a black box method, the inversion step should preferably be carrled out by sequentlal search, starting from 0 . In that case, we have

$$
P\left(N_{s} \geq j\right)=\sum_{i=j-1}^{\infty} p_{i}=\int_{x_{j-1}}^{\infty} f=1-F\left(x_{j-1}\right) \quad(j \geq 1)
$$

Also,

$$
E\left(N_{s}\right)=1+\sum_{i=0}^{\infty} i p_{i}=\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right)
$$

Given that we have chosen the i-th interval, the number of iterations in the rejection step is geometrically distributed with parameter $p_{i} /\left(M\left(x_{i+1}-x_{i}\right)\right), i \geq 0$. Thus,

$$
P\left(N_{r} \geq j\right)=\sum_{i=0}^{\infty} p_{i}\left(1-\frac{p_{i}}{M\left(x_{i+1}-x_{i}\right)}\right)^{j}
$$

Also,

$$
E\left(N_{r}\right)=\sum_{i=0}^{\infty} p_{i} \frac{M\left(x_{i+1}-x_{i}\right)}{p_{i}}=\infty
$$

Example 4.1. Equi-spaced intervals.

When $x_{i+1}-x_{i}=\delta>0$, we obtain perhaps the slmplest algorithm of the inverslon-rejection type. We can summarize its performance as follows:

$$
\begin{aligned}
& E\left(N_{s}\right)=1+\sum_{i=0}^{\infty} i \int_{\delta i}^{\delta(i+1)} f \leq 1+\frac{1}{\delta} \sum_{i=0}^{\infty} \int_{\delta i}^{\delta(i+1)} x f=1+\frac{E(X)}{\delta} ; \\
& E\left(N_{s}\right) \geq \frac{E(X)}{\delta} ; \\
& P\left(N_{r} \geq j\right)=\sum_{i=0}^{\infty} p_{i}\left(1-\frac{1}{M \delta} p_{i}\right)^{j} .
\end{aligned}
$$

The sequentlal search is Intimately linked with the size of the tall of the density (as measured by $E(X)$). It seems reasonable to take $\delta=c E(X)$ for some unlversal constant c. When we take c too large, the probabilitles $P\left(N_{r} \geq j\right)$ could be unacceptably high. When c is too small, $E\left(N_{s}\right)$ is too large. What is needed here is a compromise. We cannot choose c so as to minlmize $E\left(N_{s}+N_{r}\right)$ for example, since thls is ∞. Another method of design can be followed: flx j, and minimize $P\left(N_{r} \geq j\right)+P\left(N_{s} \geq j\right)$. This is

$$
\begin{aligned}
& \sum_{i=0}^{\infty} p_{i}\left(1-\frac{p_{i}}{M \delta}\right)^{j}+\sum_{i=j-1}^{\infty} p_{i} \\
& \leq \sum_{i=J}^{\infty} p_{i}+\frac{J M \delta}{j+1}\left(\frac{j}{j+1}\right)^{j}+\sum_{i=j-1}^{\infty} p_{i}
\end{aligned}
$$

where J is a positive integer to be plcked later. We have used the following simple inequality:

$$
u\left(1-\frac{u}{a}\right)^{j} \leq \frac{a}{j+1}\left(1-\frac{\frac{a}{j+1}}{a}\right)^{j}
$$

Since we have difficulty minimizing the orlginal expression and the last upper bound, it seems loglcal to attempt to minimize yet another bound. This strategy is dellberately suboptimal. What we hope to buy is simplicity and insight. Assume that $\mu=E(X)$ is known. Then the tall sums of p_{i} 's can be bounded from above by Markov's Inequallty. In partlcular, using also $\left(1+\frac{1}{j}\right)^{j} \geq 2, j \geq 1$, the last expression is bounded by

$$
\frac{\mu}{\delta J}+\frac{J M \delta}{2(j+1)}+\frac{\mu+2}{\delta(j+1)}
$$

The optimal non-integer J is

$$
\sqrt{\frac{2(j+1) \mu}{M \delta^{2}}}
$$

and we will take the celling of thls. Our upper bound now reads

$$
2 \sqrt{\frac{M \mu}{2(j+1)}}+\frac{\frac{\mu+2}{\delta}+\frac{M \delta}{2}}{j+1} .
$$

The last thing left to do is to minimize this with respect to δ, the interval width. Notlce however that thls will affect only the second order term in the upper bound (coefflclent of $\frac{1}{j+1}$), and not the maln asymptotlc term. For the cholce $\delta=\sqrt{\frac{2 \mu+4}{M}}$, the second term is

$$
\frac{\sqrt{2 M(\mu+2)}}{j+1} .
$$

The important observation is that for any cholce of δ that is independent of j,

$$
P\left(N_{s} \geq j\right)+P\left(N_{\tau} \geq j\right) \leq 2 \sqrt{\frac{M \mu}{2(j+1)}}+O\left(\frac{1}{j}\right)
$$

The factor $M \mu$ is scale invariant, and is both a measure of how spread out f is and how diffcult f is for the present black box method. For this bound to hold, it is not necessary to know μ. The main term in the upper bound is the contribution from N_{r}. If we assume the existence of higher moments of the distribution, or the moment-generating function, we can obtaln upper bounds which decrease faster than $1 / \sqrt{j}$ as $j \rightarrow \infty$ (exerclse 4.1).

There are other obvlous cholces for interval slzes. For example, we could start with an interval of width δ, and then double the width of consecutive intervals. Because thls will be dealt with in greater detall for monotone densitles, it wlll be sklpped here. Also, because of the better complexity for monotone densltles, it is worthwhile to spend more time there.

4.3. Unimodal and monotone densities.

This entlre subsection is an adaptation of Devroye (1984). Let us first reduce the problem to one that is manageable. If we know the position of the mode of a unlmodal density, and if we can compute $F(x)$ at all x, which is our standing assumption, then it is obvious that we need only consider monotone densitles. These can be conven!ently filpped around and/or translated to 0 , so that all monotone densitles to be considered can be assumed to have a mode at 0 and support on $[0, \infty)$. Unfortunately, compact support cannot be assumed because nonlinear transformations to $[0,1]$ could destroy the monotonicity. One thing we can assume however is that we either have an infinite peak at 0 or an infinite tall but not both. Just use the following splitting device:

Splitting algorithm for monotone densities

[SET-UP]

Choose a number $z>0$. (If f is known to be bounded, set $z \leftarrow 0$, and if f is known to have compact support contained in $[0, c]$, set $z \leftarrow c$.)

$$
t \leftarrow F(z)
$$

[GENERATOR]
Generate a uniform $[0,1]$ random variate U.
IF $U>t$
THEN generate a random variate X with (bounded monotone) density $f(x) /(1-t)$ on $[z, \infty)$.
ELSE generate a random variate X with (compact support) density $f(x) / t$ on [$0, z$].
RETURN X

Thus, it suffices to treat compact support and bounded monotone densitles separately. We will provide the reader with three general strategles, two for bounded monotone densitles, and one for compact support monotone densitles. Undoubtedly, there are other strategles that could be preferable for certaln densltles, so no clalms of optlmallty are made. The emphasis is on the manner in whlch the problem is attacked, and on the interaction between design and analysis. As we polnted out in the introduction, the whole story is told by the quantlies $E\left(N_{s}\right)$ and $E\left(N_{r}\right)$ when they are finite.

4.4. Monotone densities on $[0,1]$.

In this section, we wlll analyze the following Inversion-rejection algorithm:

Inversion-rejection algorithm with intervals shrinking at a geometrical rate

Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 1$
REPEAT

$$
X-\frac{X}{r}
$$

UNTIL $U \geq F(X)$
REPEAT
Generate two independent uniform $[0,1]$ random variates, V, W. $Y \leftarrow X(1+(r-1) V)(Y$ is uniform on $[X, r X))$
UNTIL $W \leq \frac{f(Y)}{f(X)}$
RETURN Y

The constant $r>1$ is a design constant. For a first quick understanding, one can take $r=2$. In the first REPEAT loop, the inversion loop, the following intervals are considered: $\left[\frac{1}{r}, 1\right),\left(\frac{1}{r^{2}}, \frac{1}{r}\right), \ldots$. For the case $r=2$, we have interval halving as we go along. For thls algorlthm,

$$
\begin{aligned}
& E\left(N_{s}\right)=\sum_{i=1}^{\infty} i \int_{r^{-i}}^{r^{-(i-1)}} f(x) d x \\
& E\left(N_{r}\right)=\sum_{i=1}^{\infty} \frac{r-1}{r^{i}} f\left(r^{-i}\right) .
\end{aligned}
$$

The performance of this algorithm is summarized in Theorem 4.1:

Theorem 4.1.

Let f be a monotone density on $[0,1]$, and deflne

$$
H(f)=\int_{0}^{1} \log \left(\frac{1}{x}\right) f(x) d x
$$

Then, for the algorithm described above,

$$
\frac{H(f)}{\log (r)} \leq E\left(N_{s}\right) \leq 1+\frac{H(f)}{\log (r)}
$$

and

$$
1 \leq E\left(N_{r}\right) \leq r
$$

The functional $H(f)$ satisfles the following inequalltles:
A. $1 \leq H(f)$.
B. $\log \left(\frac{1}{\int_{0}^{\infty} x f(x) d x}\right) \leq H(f)$ (valld even if f has unbounded support).
C. $H(f) \leq 1+\log (f(0))$.
D. $H(f) \leq \frac{4}{e}+2 \int_{0}^{1} \log _{+} f(x) f(x) d x$ (valld even if f is not monotone).

Proof of Theorem 4.1.

For the first part, note that on $\left[r^{-i}, r^{-(i-1)}\right]$,

$$
\frac{\log (x)}{\log (r)} \leq i \leq 1+\frac{\log (x)}{\log (r)} .
$$

Thus, resubstitution in the expression of $E\left(N_{s}\right)$ ylelds the first Inequallty. We also see that $E\left(N_{r}\right) \geq 1$. To obtain the upper bound for $E\left(N_{r}\right)$, we use a short geometrical argument:

$$
\begin{aligned}
& E\left(N_{r}\right)=\sum_{i=1}^{\infty} \frac{r-1}{r^{i}} f\left(r^{-i}\right) \\
& =\sum_{i=1}^{\infty} \int_{r^{-1}}^{r^{-(i-1)}} f\left(r^{-i}\right) d x \\
& \leq \sum_{i=1 r^{-(i+1)}}^{\infty} f(x) d x \times r \\
& \frac{r^{-1}}{r} \\
& =r \int_{0}^{1} f(x) d x
\end{aligned}
$$

$$
\leq r
$$

Inequality A uses the fact that $-\log (x)$ and $f(x)$ are both nonincreasing on $[0,1]$, and therefore, by Steffensen's Inequally (1825),

$$
\int_{0}^{1}-\log (x) f(x) d x \geq \int_{0}^{1}-\log (x) d x \int_{0}^{1} f(x) d x=1
$$

Inequality B uses the convexity of $-\log (x)$ and Jensen's inequallty. If X is a random variable with density f, then

$$
H(f)=E(-\log (X)) \geq-\log (E(X))
$$

Inequallty C can be obtalned as a special case of another inequality of Steffensen's (1818): In its original form, it states that if $0 \leq h \leq 1$, and if g is nonincreasing and integrable on $[0,1]$, then

$$
\int_{0}^{1} g(x) h(x) d x \leq \int_{0}^{a} g(x) d x
$$

where $a=\int_{0}^{1} h(x) d x$. Apply this Inequality with $g(x)=-\log (x), h(x)=\frac{f(x)}{f(0)}$. Thus, $a=\frac{1}{f(0)}$. Therefore,

$$
\begin{aligned}
& \frac{H(f)}{f(0)} \leq \int_{0}^{\frac{1}{f(0)}}-\log (x) d x \\
& =\int_{\log (f(0))}^{\infty} y e^{-y} d y=\frac{1}{f(0)}(1+\log (f(0)) .
\end{aligned}
$$

Inequality D is a Young-type Inequallty which can be found in Hardy, Littlewood and Polya (1952, Theorem 239).

In Theorem 4.1, we have shown that $E\left(N_{s}\right)<\infty$ if and only if $H(f)<\infty$. On the other hand, $E\left(N_{r}\right)$ is unlformly bounded over all monotone f on $[0,1]$. Our maln concern is thus with the sequential search. We do at least as well as in the black box method of section 3.2 (Theorem 3.2), where the expected number of iterations in the rejection method was $1+\log (f(0))$. We are guaranteed to have $E\left(N_{s}\right) \leq 1+(1+\log (f(0))) / \log (r)$, and even if $f(0)=\infty$, the inversion-rejection
method can have $E\left(N_{s}\right)<\infty$.

Example 4.2. The beta density.

Consider the beta $(1, a+1)$ denslty $f(x)=(a+1)(1-x)^{a}$ on $[0,1]$ where $a>0$ is a parameter. We have $f(0)=a+1, E(X)=\frac{1}{a+2}$. Thus, by inequalities B and C of Theorem 4.1,

$$
\log (a+2) \leq H(f) \leq 1+\log (a+1)
$$

We have $H(f) \sim \log (a)$ as $a \rightarrow \infty$: the average time of the given inversionrejection algorithm grows as $\log (a)$ as $a \rightarrow \infty$.

In the absence of extra information about the density, it is recommended that r be set equal to 2 . This cholce also glves small computational advantages. It is important nevertheless to realize that this cholce is not optimal in general. For example, assume that we wish to minimize $E\left(N_{s}+N_{r}\right)$, a criterion in which both contributions are given equal welght because both N_{s} and N_{r} count in effect numbers of computations of f and/or F. The minimization problem is rather difficult. But if we work on a good upper bound for $E\left(N_{s}+N_{r}\right)$, then it is nevertheless possible to obtaln:

Theorem 4.2.

For the inversion-rejection algorithm of this section with design constant $r>1$, we have

$$
\begin{aligned}
& \operatorname{lif}_{r>1} E\left(N_{s}+N_{r}\right) \\
& \leq 1+H(f)\left(\frac{1}{\log ^{2}(H(f))}+\frac{1}{\log (H(f))-2 \log (\log (H(f)))}\right) \\
& \sim \frac{H(f)}{\log (H(f))}
\end{aligned}
$$

as $H(f) \rightarrow \infty$. The bound is attalned for

$$
r=\frac{H(f)}{\log ^{2}(H(f))}
$$

Proof of Theorem 4.2.

We start from

$$
E\left(N_{s}+N_{r}\right) \leq 1+r+\frac{H(f)}{\log (r)}
$$

Resubstltution of the value of r glven in the theorem glves us the inequality. Thls value was obtained by functional Iteration applled to

$$
r=\frac{H(f)}{\log ^{2}(r)}
$$

an equation which must be satisfled for the minimum of the upper bound (set the derlvative of the upper bound with respect to r equal to 0). The functlonal iteration was started at $r=H(f)$. That the value is not bad follows from the fact that for $H(f) \geq e$,

$$
1+r+\frac{H(f)}{\log (r)} \geq 1+\frac{H(f)}{\log (H(f))}
$$

so that at least from an asymptotic polnt of view no improvement is possible over the glven bound.

As a curlous apphcation of Theorem 4.2, consider the case again of a monotone denslty on $[0,1]$ with finlte $f(0)$. Recalling that $H(f) \leq 1+\log (f(0))$, we see that if we take

$$
r=\frac{1+f(0)}{\log ^{2}(1+f(0))}
$$

a cholce which is indeed implementable, then

$$
\begin{aligned}
& E\left(N_{s}+N_{r}\right) \\
& \leq 1+1+\frac{\log (f(0))}{\log ^{2}(1+\log (f(0)))}+\frac{\log (f(0))}{\log (1+\log (f(0)))-2 \log (\log (1+\log (f(0))))} \\
& \sim \log \frac{(f(0))}{\log (1+\log (f(0)))}
\end{aligned}
$$

as $f(0) \rightarrow \infty$. Thls should be compared with the value of $E\left(N_{r}\right)=1+\log (f(0))$ for the black box rejection algorlthm following Theorem 3.1.

For densities that are also known to be convex, a slight improvement in $E\left(N_{r}\right)$ is possible. See exercise 4.5.

4.5. Bounded monotone densities: inversion-rejection based on Newton-Raphson iterations.

In this section, we assume that f is monotone on $[0, \infty)$ and that $f(0)<\infty$. It is possible that f has a large tall. In an attempt to automatically balance $E\left(N_{s}\right)$ agalnst $E\left(N_{r}\right)$, and thus to avold the eternal problem of having to find a good design constant, we could determine intervals for sequentlal search based upon Newton-Raphson Iterations started at $x_{0}=0$. Recall the definition of the hazard rate

$$
h(x)=\frac{f(x)}{1-F(x)} .
$$

If we try to solve $F(x)=1$ for x by Newton-Raphson Iterations started at $x_{0}=0$, we obtain a sequence $x_{0} \leq x_{1} \leq x_{2} \leq \cdots$ where

$$
x_{n+1}=x_{n}+\frac{1-F\left(x_{n}\right)}{f\left(x_{n}\right)}=x_{n}+\frac{1}{h\left(x_{n}\right)} .
$$

The x_{n} 's need not be stored. Obviously, storing them could considerably speed up the algorithm.

Inversion-rejection algorithm for bounded densities based upon NewtonRaphson iterations

Generate a uniform $[0,1]$ random variate U.

$X \leftarrow 0, R \leftarrow F(X), Z \leftarrow f(X)$
REPEAT
$X * \leftarrow X+\frac{1-R}{Z}, R * \leftarrow F(X *), Z * \leftarrow f(X *)$
IF $U \leq R *$
THEN Accept \leftarrow True
ELSE $R \leftarrow R *, ~ Z \leftarrow Z *, ~ X \leftarrow X^{*}$
UNTIL Accept
REPEAT
Generate two independent uniform $[0,1]$ random variates V, W.
$Y \leftarrow X+\left(X^{*}-X\right) V, T \leftarrow W Z$ (Y is uniformly distributed on $[X, X *)$)
Accept $\leftarrow\left[T \leq Z^{*}\right]$ (optional squeeze step)
IF NOT Accept THEN Accept $\leftarrow[T \leq f(Y)]$
UNTIL Accept
RETURN Y

One of the differences with the algorthm of the previous section is that in every Iteration of the inversion step, one evaluation of both F and f is required as compared to one evaluation of F. The performance of the algorithm is dealt with In Theorem 4.3.

Theorem 4.3.

Let f be a bounded monotone denslty on $[0, \infty)$ with mode at 0 . For the inversion-rejection algorithm given above,

$$
E\left(N_{s}\right)=E\left(N_{r}\right)=\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right)
$$

where $0=x_{0} \leq x_{1} \leq x_{2} \leq \cdots$ is the sequence of numbers deffned by

$$
x_{n+1}=x_{n}+\frac{1-F\left(x_{n}\right)}{f\left(x_{n}\right)} \quad(n \geq 0)
$$

If f is also DHR (has nonincreasing hazard rate), then

$$
1 \leq E\left(N_{r}\right)=E\left(N_{s}\right) \leq 1+E(X f(0))
$$

If f is also IHR (has nondecreasing hazard rate), then

$$
1 \leq E\left(N_{r}\right)=E\left(N_{s}\right) \leq \frac{e}{e-1}
$$

Proof of Theorem 4.3.

$$
\begin{aligned}
& E\left(N_{s}\right)=\sum_{i=1}^{\infty} i\left(\left(1-F\left(x_{i-1}\right)\right)-\left(1-F\left(x_{i}\right)\right)\right)=\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right), \\
& E\left(N_{r}\right)=\sum_{i=0}^{\infty} f\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)=\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right)
\end{aligned}
$$

When f is DHR, then

$$
E(X f(0))=f(0) \int_{0}^{\infty}(1-F(x)) d x=\int_{0}^{\infty} \frac{f(0)}{h(x)} f(x) d x \geq 1
$$

For IHR densitles, the inequality should be reversed. Thus, for DHR densitles,

$$
\begin{aligned}
& \sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right) \leq 1+\sum_{i=1}^{\infty} \frac{\int_{x_{i-1}}^{x_{i}}(1-F(x)) d x}{x_{i}-x_{i-1}} \\
& =1+\sum_{i=1}^{\infty} \int_{x_{i-1}}^{x_{i}}(1-F(x)) d x h\left(x_{i-1}\right) \\
& \leq 1+\int_{0}^{\infty} f(0)(1-F(x)) d x=1+E(X f(0))
\end{aligned}
$$

When f is IHR, then

$$
1-F\left(x_{i+1}\right)=\left(1-F\left(x_{i}\right)\right) e^{-\int_{x_{i}}^{x_{i}+1} h(x) d x}
$$

$$
\begin{aligned}
& \leq\left(1-F\left(x_{i}\right)\right) e^{-h\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)} \\
& =\frac{1-F\left(x_{i}\right)}{e} .
\end{aligned}
$$

Thus,

$$
\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right) \leq \sum_{i=0}^{\infty} e^{-i}=\frac{e}{e-1}
$$

We have thus found an algorithm with a perfect balance between the two parts, slnce $E\left(N_{s}\right)=E\left(N_{r}\right)$. This does not mean that the algorithm is optimal. However, in many cases, the performance is very good. For example, Its expected time is unlformly bounded over all IHR densitles. Examples of IHR densitles on $[0, \infty)$ are given in the table below.

Name	Density f	Hazard rate h	$E\left(N_{a}\right)=E\left(N_{r}\right)$
Halfnormal	$\sqrt{\frac{2}{\pi} e^{-\frac{x^{2}}{2}}}$		$\leq \frac{e}{e-1}$
Gamma $(a), a \geq 1$	$\frac{x^{a-1} e^{-x}}{\Gamma(a)}$		$\leq \frac{e}{e-1}$
Exponential	e^{-x}	1	$\frac{e}{e-1}$
Weibull $(a), a \geq 1$	$a x^{a-1} e^{-x^{a}}$	$\leq \frac{e x^{a-1}}{e-1}$	
Beta $(a, 1), a \geq 1$	$a x^{a-1}(0 \leq x \leq 1)$	$\frac{x^{a-1}}{1-x^{a}}$	$\leq \frac{e}{e-1}$
Beta $(1, a+1), a \geq 0$	$(a+1)(1-x)^{a}(0 \leq x \leq 1)$	$\frac{a+1}{1-x}$	$\left(1-\left(1-\frac{1}{a+1}\right)^{a+1}\right)^{-1}$
Truncated extreme value, $a>0$	$\frac{1}{a} e^{x-\frac{e^{x}-1}{a}}$	$\frac{e^{3}}{a}$	$\leq \frac{e}{e-1}$

This is not the place to enter into a detalled study of IHR densitles. It suffices to state that they are an important family in dally statistics (see e.g. Barlow and Proschan (1965, 1975), and Barlow, Marshall and Proschan (1983)). Some of its sallent propertles are covered in exerclse 4.6. Some entrles for $E\left(N_{s}\right)$ In the table glven above are expllctly known. They show that the upper bound of Theorem 4.3 is sharp in a strong sense. For example, for the exponential density, we have $x_{n}=n$, and thus

$$
E\left(N_{s}\right)=E\left(N_{r}\right)=\sum_{i=0}^{\infty}(1-F(i))=\sum_{i=0}^{\infty} e^{-i}=\frac{e}{e-1}
$$

For the beta $(1, a+1)$ density mentioned in the table, we can verlfy that

$$
x_{n+1}=\frac{a}{a+1} x_{n}+\frac{1}{a+1},
$$

and thus,

$$
x_{n}=1-\left(\frac{a}{a+1}\right)^{n} \quad(n \geq 0)
$$

Thus,

$$
\begin{aligned}
& E\left(N_{s}\right)=\sum_{i=0}^{\infty}\left(1-F\left(x_{i}\right)\right)=\sum_{i=0}^{\infty}\left(1-x_{i}\right)^{a+1} \\
& =\sum_{i=0}^{\infty}\left(\frac{a}{a+1}\right)^{i(a+1)}=\left(1-\left(1-\frac{1}{a+1}\right)^{a+1}\right)^{-1} .
\end{aligned}
$$

This varles from $1(a=0)$ to $\frac{e}{e-1}(a \uparrow \infty)$ without exceeding $\frac{e}{e-1}$. Thus, once agaln, the inequality of Theorem 4.3 is tlght.

For DHR densitles, the upper bound is often very loose, and not as good as the performance bounds obtalned for the dynamic thinning method (section VI.2). For example, for the Pareto density $\frac{a}{(1+x)^{a+1}}$ (where $a>0$ is a parameter), we have a hazard rate $h(x)=\frac{a}{1+x}$, and $E\left(N_{s}\right)=\left(1-\left(1+\frac{1}{a}\right)^{-a}\right)^{-1}$. Thls can be seen as follows:

$$
\begin{aligned}
& \left(x_{n+1}+1\right)=\left(x_{n}+1\right)\left(1+\frac{1}{a}\right) \\
& \left(x_{n}+1\right)=\left(1+\frac{1}{a}\right)^{n} \quad(n \geq 0) \\
& E\left(N_{8}\right)=\sum_{i=0}^{\infty}\left(1+\frac{1}{a}\right)^{-i a}=\left(1-\left(1+\frac{1}{a}\right)^{-a}\right)^{-1} .
\end{aligned}
$$

The last expression varles from $\frac{e}{e-1}(a \uparrow \infty)$ to $2(a=1)$ and up to ∞ as $a \downarrow 0$.

4.6. Bounded monotone densities: geometrically increasing interval sizes.

For bounded densitles, we can use a sequentlal search from left to right, symmetric to the method used for unbounded but compact support densitles. There are two design parameters: $t>0$ and $r>1$, and the consecutlve intervals are

$$
[0, t),[t, t r),\left[t r, t r^{2}\right), \ldots
$$

A typlcal cholce is $t=1, r=2$. General guldellnes follow after the performance analysls. Let us begln with the algorithm:

Inversion-rejection method for bounded monotone densities based upon geometrically exploding intervals

Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 0, X * \leftarrow t$
WHILE $U>F\left(X^{*}\right)$ DO
$X \leftarrow X^{*}, ~ X * \leftarrow r X^{*}$
REPEAT
Generate two iid uniform $[0,1]$ random variates, V, W.
$Y \leftarrow X+(X *-X) V(Y$ is uniformly distributed on $[X, X *))$
UNTLL $W \leq \frac{f(Y)}{f(X)}$
RETURN Y

Theorem 4.4.

Let f be a bounded monotone denslty, and let $t>0$ and $r>1$ be constants. Deflne

$$
H_{t}(f)=\int_{0}^{\infty} \log _{+}\left(\frac{x}{t}\right) f(x) d x
$$

Then, for the algorithm glven above,

$$
1+\frac{H_{t}(f)}{\log (r)} \leq E\left(N_{s}\right) \leq 2+\frac{H_{t}(f)}{\log (r)},
$$

and

$$
1 \leq t f(0)+\int_{t}^{\infty} f(x) d x \leq E\left(N_{r}\right) \leq t f(0)+r
$$

Proof of Theorem 4.4.

We repeatedly use the fact that $t r^{i-1} \leq x<t r^{i}$ if and only if $i-1 \leq \log \left(\frac{x}{t}\right) / \log (r)<i, i>1$. Now,

$$
\begin{aligned}
& E\left(N_{s}\right)=\int_{0}^{t} f(x) d x+\sum_{i=1}^{\infty}(i+1) \int_{t r^{i-1}}^{t r^{\prime}} f(x) d x=1+\sum_{i=1}^{\infty} i \int_{t r^{i,-1}}^{t r^{\prime}} f(x) d x \\
& \leq 2+\int_{t}^{\infty} \frac{\log \left(\frac{x}{t}\right)}{\log (r)} f(x) d x=2+\frac{H_{t}(f)}{\log (r)}
\end{aligned}
$$

and

$$
E\left(N_{s}\right) \geq 1+\int_{t}^{\infty} \frac{\log \left(\frac{x}{t}\right)}{\log (r)} f(x) d x=1+\frac{H_{t}(f)}{\log (r)}
$$

Also,

$$
\begin{aligned}
& E\left(N_{r}\right)=t f(0)+\sum_{i=1}^{\infty}\left(t r^{i}-t r^{i-1}\right) f\left(t r^{i-1}\right) \\
& \leq t f(0)+\sum_{i=1}^{\infty} \frac{t r^{i}-t r^{i-1}}{t r^{i-1}-t r^{i-2}} \int_{t r^{i-2}} f(x) d x \\
& \leq t f(0)+r
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left(N_{r}\right) \geq t f(0)+\sum_{i=1}^{\infty} \frac{t r^{i}-t r^{i-1}}{t r^{i}-t r^{i-1}} \int_{t r^{i-1}} f(x) d x \\
& =t f(0)+\int_{t}^{\infty} f(x) d x \geq 1
\end{aligned}
$$

We would llke the algorlthm to perform at a scale-invarlant speed. This can be achleved for $t=\frac{1}{f(0)}$. In that case, the upper bounds of Theorem 4.4 read:

$$
\begin{aligned}
& E\left(N_{s}\right) \leq 2+\frac{H *(f)}{\log (r)} \\
& E\left(N_{r}\right) \leq 1+r
\end{aligned}
$$

where

$$
H *(f)=\int_{0}^{\infty} \log _{+}(x f(0)) f(x) d x
$$

is the scale invariant counterpart of the quantity $H(f)$ defined in Theorem 4.1. $H *(f)$ can be considered as the normalized logarithmic moment for the density f. For the vast majorlty of distributions, $H *(f)<\infty$. In fact, one must search hard to find a monotone denslty for which $H *(f)=\infty$. The tall of the density must at least of the order of $1 /\left(x \log ^{2}(x)\right)$ as $x \rightarrow \infty$, such as is the case for

$$
f(x)=\frac{1}{(x+e) \log ^{2}(x+e)} \quad(x>0)
$$

With ilttle a priorl information, we suggest the cholce

$$
\begin{gathered}
r=2 \\
t=\frac{1}{f(0)} \\
\hline
\end{gathered}
$$

It is interesting to derlve a good gulding formula for r. We start from the inequallty

$$
E\left(N_{s}\right)+E\left(N_{r}\right) \leq 3+r+\frac{H *(f)}{\log (r)},
$$

which is minimal for the unique solution $r>1$ for which $r \log ^{2}(r)=H *(f)$. By functional iteration started at $r=H *(f)$, we obtain the crude estimate

$$
r=\frac{H *(f)}{\log ^{2}(H *(f))}
$$

For this cholce, we have as $H *(f) \rightarrow \infty$,

$$
E\left(N_{s}\right)+E\left(N_{r}\right) \leq(1+o(1)) \frac{H *(f)}{\log (H *(f))} .
$$

Example 4.3. Moment known.

A loose upper bound for $H *(f)$ is afforded by Jensen's Inequality:

$$
H^{*}(f) \leq \int_{0}^{\infty} \log (1+x f(0)) f(x) d x \leq \log (1+E(X f(0)))
$$

where X is a random variable with density f. Thus, the expected time of the algorlthm grows at worst as the logarithm of the first moment of the distribution. For example, for the beta $(1, a+1)$ denslty of Example 4.1, thls upper bound is $\log \left(1+\frac{a+1}{a+2}\right) \leq \log (2)$ for all $a>0$. This is an example of a family for which the flrst moment, hence $H^{*}(f)$, is unlformly bounded. From this,

$$
\begin{aligned}
& E\left(N_{s}\right) \leq 2+\frac{\log (2)}{\log (r)} \\
& E\left(N_{r}\right) \leq 1+r
\end{aligned}
$$

The ad hoc choice $r=2$ makes both upper bounds equal to 3 .

4.7. Lipschitz densities on $[0, \infty)$.

The inversion-rejection method can also be used for Lipschitz densities f on $[0, \infty)$. This class is smaller than the class of bounded densitles, but very large compared to the class of monotone densitles. The black box method of section 3 for thls class required knowledge of a moment of the distribution. In contrast, the method presented here works for all densltles $f \in \operatorname{Lip}{ }_{1}(C)$ where only C must be given beforehand. The moments of the distribution need not even exist. If the positive half of the real line is partitioned by

$$
0=x_{0}<x_{1}<x_{2}<\cdots,
$$

then, it is easily seen that on $\left[x_{n}, x_{n+1}\right]$,

$$
f(x) \leq \min \left(f\left(x_{n}\right)+C\left(x-x_{n}\right), f\left(x_{n+1}\right)+C\left(x_{n+1}-x\right)\right)
$$

and

$$
f(x) \leq \sqrt{2 C\left(1-F\left(x_{n}\right)\right)}
$$

where the last Inequality is based upon Theorem 3.5. The areas under the respective dominating curves are

$$
E\left(N_{r}\right)=\sum_{n=0}^{\infty} \frac{1}{2 C}\left(c \Delta_{n}\left(f\left(x_{n}\right)+f\left(x_{n+1}\right)\right)-\frac{1}{2}\left(f\left(x_{n}\right)+f\left(x_{n+1}\right)\right)^{2}+\frac{C^{2} \Delta_{n}^{2}}{2}\right)
$$

and

$$
E\left(N_{r}\right)=\sum_{n=0}^{\infty} \Delta_{n} \sqrt{2 C\left(1-F\left(x_{n}\right)\right)},
$$

where $\Delta_{n}=x_{n+1}-x_{n}$. The value of $E\left(N_{s}\right)$ depends only upon the partition, and not upon the inequalitles used in the rejection step, and plays no role when the Inequallities are compared. Generally speaking, the second inequality is better because it uses more information (the value of F is used). Consider the first inequality. To guarantee that $E\left(N_{r}\right)$ be finlte, for the vast majorlty of $L_{i p}$ densltles we need to ask that

$$
\sum_{n=0}^{\infty} \Delta_{n}^{2}<\infty
$$

But, since we require a valid partition of R, we must also have

$$
\sum_{n=0}^{\infty} \Delta_{n}=\infty
$$

In particular, we cannot afford to take $\Delta_{n}=\delta>0$ for all n. Consider now Δ_{n} satisfying the conditions stated above. When $\Delta_{n} \sim n^{-a}$, then it is necessary that $a \in\left(\frac{1}{2}, 1\right]$. Thus, the intervals shrink rapidly to 0 . Consider for example

$$
\Delta_{n}=\frac{c}{n+1} \quad(n \geq 0)
$$

For this cholce, the intervals shrink so rapldly that we spend too much time searching unless f has a very small tall. In particular,

$$
\begin{aligned}
& E\left(N_{s}\right)=\sum_{n=0}^{\infty} P\left(X \geq \sum_{i=0}^{n} \Delta_{i}\right) \\
& \leq \sum_{n=0}^{\infty} P(X \geq c \log (n+2)) \\
& =\sum_{n=0}^{\infty} P\left(e^{\frac{X}{c}} \geq n+2\right) \\
& \leq E\left(e^{\frac{X}{c}}\right)
\end{aligned}
$$

A similar lower bound for $E\left(N_{s}\right)$ exists, so that we conclude that $E\left(N_{s}\right)<\infty$ if and only if the moment generating function at $\frac{1}{c}$ is finite, i.e.

$$
m\left(\frac{1}{c}\right)=E\left(e^{\frac{X}{c}}\right)<\infty
$$

In other words, f must have a sub-exponential tall for good expected time. Thus, Instead of analyzing the first Inequality further, we concentrate on the second Inequallty.

The algorlthm based upon the second inequallty can be summarlzed as follows:

Inversion-rejection algorithm for Lipschitz densities

Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 0, R \leftarrow F(X)$
REPEAT
$X^{*} \leftarrow \operatorname{Next}(X), R * \leftarrow F\left(X^{*}\right)$ (The function Next computes the next value in the partition.)
IF $U \leq R *$
THEN Accept \leftarrow True
ELSE $R \leftarrow R *, X \leftarrow X *$
UNTIL Accept
REPEAT
Generate two independent uniform $[0,1]$ random variates V, W.
$Y \leftarrow X+V\left(X^{*}-X\right)(Y$ is uniformly distributed on $[X, X *)$.
UNTIL $W \sqrt{2 C(1-R)} \leq f(Y)$
RETURN Y

There are three partitloning schemes that stand out as belng elther important or practical. These are deflned as follows:
A. $x_{n}=n \delta$ for some $\delta>0$ (thus, $x_{n+1}-x_{n}=\delta$).
B. $x_{n+1}=t r^{n}$ for some $t>0, r>1, x_{1}=t$ (note that $x_{n+1}=r x_{n}$ for all $n \geq 1$). The intervals grow exponentlally fast.
C. $x_{n+1}=x_{n}+\sqrt{\frac{1-F\left(x_{n}\right)}{2 C}}$ (thls cholce provides a balance between $E\left(N_{s}\right)$ and $\left.E\left(N_{r}\right)\right)$.
Schemes A and B require additional design constants, whereas scheme C is completely automatlc. Whlch scheme is actually preferable depends upon varlous factors, foremost among these the size of the tall of the distribution. By imposing conditions on the tall, we can derlve upper bounds for $E\left(N_{s}\right)$ and $E\left(N_{r}\right)$. These are collected in Theorem 4.5:

Theorem 4.5.

Let $f \in L i p_{1}(C)$ be a density on $[0, \infty)$. Let $p>1$ be a constant. When the p-th moment exists, it is denoted by μ_{p}.

For scheme A,

$$
\max \left(1, \frac{\mu_{1}}{\delta}\right) \leq E\left(N_{s}\right) \leq 1+\frac{\mu_{1}}{\delta}
$$

$$
\delta \sqrt{2 C} \max \left(1, \frac{1}{\sqrt{\mu_{2}}}, \frac{\sqrt{\mu_{2}}}{\delta}\right) \leq E\left(N_{r}\right) \leq \delta \sqrt{2 C}\left(2+\frac{p}{p-1} \frac{\left(\mu_{2 p}\right)^{\frac{1}{2 p}}}{\delta}\right)
$$

In particular, if $\delta=\sqrt{\frac{\mu_{1}}{\sqrt{8 C}}}$, then

$$
E\left(N_{s}\right)+E\left(N_{r}\right) \leq 1+(8 C)^{\frac{1}{4}} \sqrt{\mu_{1}}+\sqrt{8 C}\left(\mu_{4}\right)^{\frac{1}{4}}
$$

and when $\delta=\frac{1}{\sqrt{8 C}}$,

$$
E\left(N_{s}\right)+E\left(N_{r}\right) \leq 2+\sqrt{8 C}\left(\left(\mu_{4}\right)^{\frac{1}{4}}+\mu_{1}\right) \leq 2+\sqrt{32 C}\left(\mu_{4}\right)^{\frac{1}{4}}
$$

For scheme B,

$$
\begin{aligned}
& E\left(N_{s}\right) \leq 2+E\left(\frac{\log _{+}\left(\frac{X}{t}\right)}{\log (r)}\right) \\
& E\left(N_{r}\right) \leq \sqrt{2 C}\left(t+\frac{\sqrt{\mu_{2 p}} r^{p-1}(r-1)}{t^{p-1}\left(r^{p-1}-1\right)}\right)
\end{aligned}
$$

For scheme C,

$$
E\left(N_{s}\right)=E\left(N_{r}\right) \leq \sqrt{8 C} \int_{0}^{\infty} \sqrt{1-F(x)} d x \leq \frac{p}{p-1} \sqrt{8 C}\left(\mu_{2 p}\right)^{\frac{1}{2 p}}
$$

At the same time, even if $\mu_{2}=\infty$, the following lower bound is valld:

$$
\sqrt{2 C \mu_{2}} \leq \frac{1}{2} \sqrt{8 C} \int_{0}^{\infty} \sqrt{1-F(x)} d x \leq E\left(N_{s}\right)=E\left(N_{r}\right)
$$

Proof of Theorem 4.5.

In this proof, X denotes a random varlate with denslty f. Rewrite $E\left(N_{s}\right)$ as follows:

$$
E\left(N_{s}\right)=\sum_{n=0}^{\infty} \int_{\delta n}^{\infty} f(x) d x=\int_{0}^{\infty}\left\lfloor\frac{x}{\delta}+1\right\rfloor d x
$$

This can be obtalned by an interchange of the sum and the integral. But then, by Jensen's inequallty and trivial bounds,

$$
\begin{aligned}
& \max \left(1, \frac{E(X)}{\delta}\right) \leq \int_{0}^{\infty} \max \left(1, \frac{x}{\delta}\right) f(x) d x \leq E\left(N_{s}\right) \\
& \leq \int_{0}^{\infty}\left(\frac{x}{\delta}+1\right) f(x) d x=1+\frac{E(X)}{\delta}
\end{aligned}
$$

Next,

$$
E\left(N_{r}\right)=\sum_{n=0}^{\infty} \sqrt{2 C(1-F(\delta n))} \delta
$$

so that by Chebyshev's Inequallty,

$$
\begin{aligned}
& \frac{E\left(N_{r}\right)}{\delta \sqrt{2 C}} \leq \sum_{n=0}^{\infty} \min \left(1, \frac{\sqrt{\mu_{2 \dot{p}}}}{(n \delta)^{p}}\right) \\
& \leq 1+\frac{1}{\delta}\left(\mu_{2 p}\right)^{\frac{1}{2 p}}+\sum_{n=n_{0}}^{\infty} \frac{\sqrt{\mu_{2 p}}}{(n \delta)^{p}}
\end{aligned}
$$

where $n_{0}=\left[\frac{1}{\delta}\left(\mu_{2 p}\right)^{\frac{1}{2 p}}\right]$. By a simple argument, we see that

$$
\begin{aligned}
& \sum_{n=n_{0}}^{\infty} n^{-p} \leq n_{0}^{-p}+\int_{n_{0}}^{\infty} x^{-p} d x \\
& =n_{0}^{-p}+\frac{1}{p-1} n_{0}^{-(p-1)}
\end{aligned}
$$

Combining this shows that

$$
\begin{aligned}
& \frac{E\left(N_{r}\right)}{\delta \sqrt{2 C}} \leq 1+\frac{1}{\delta}\left(\mu_{2 p}\right)^{\frac{1}{2 p}}+1+\frac{1}{(p-1) \delta}\left(\mu_{2 p}\right)^{\frac{1}{2 p}} \\
& =2+\frac{p}{p-1} \frac{\left(\mu_{2 p}\right)^{\frac{1}{2 p}}}{\delta}
\end{aligned}
$$

Thls brlngs us to the lower bounds for scheme A. We have, by the CauchySchwarz Inequality,

$$
\frac{E\left(N_{r}\right)}{\delta \sqrt{2 C}}=\sum_{n=0}^{\infty} \sqrt{\int_{\delta n}^{\infty} f}
$$

$$
\begin{aligned}
& \geq \sum_{n=0}^{\infty} \frac{\int_{\delta n}^{\infty} \sqrt{f}(x \sqrt{f})}{\sqrt{\int(x \sqrt{f})^{2}}} \\
& =\sum_{n=0}^{\infty} \frac{\int_{\delta n}^{\infty} x f}{\sqrt{\mu_{2}}} \\
& \geq \frac{1}{\sqrt{\mu_{2}}} \int x f(x) \max \left(1, \frac{x}{\delta}\right) d x \\
& \geq \frac{1}{\sqrt{\mu_{2}}} \max \left(1, \frac{\mu_{2}}{\delta}\right) \\
& =\max \left(\frac{1}{\sqrt{\mu_{2}}}, \frac{\sqrt{\mu_{2}}}{\delta}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \frac{E\left(N_{r}\right)}{\delta \sqrt{2 C}}=\sum_{n=0}^{\infty} \sqrt{\int_{\delta n}^{\infty} f} \\
& \geq \sum_{n=0 \delta n}^{\infty} \int_{0}^{\infty} f \\
& \geq \max \left(1, \frac{\mu_{1}}{\delta}\right)
\end{aligned}
$$

For scheme B, we have

$$
\begin{aligned}
& E\left(N_{s}\right)=1+\sum_{n=0}^{\infty}\left(1-F\left(t r^{n}\right)\right) \\
& =1+\sum_{n=0 t r^{n}}^{\infty} f(x) d x \\
& \leq 2+E\left(\frac{\log _{+}\left(\frac{X}{t}\right)}{\log (r)}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
& E\left(N_{r}\right)=\sum_{n=0}^{\infty} \sqrt{2 C} \sqrt{1-F\left(t r^{n}\right) t(r-1) r^{n}}+\sqrt{2 C} t \\
& \leq \sqrt{2 C} t+\sqrt{2 C} \sum_{n=0}^{\infty} t(r-1) r^{n} \frac{\sqrt{\mu_{2 p}}}{t^{p} r^{n p}} \\
& =\sqrt{2 C}\left(t+\frac{\sqrt{\mu_{2 p}} r^{p-1}(r-1)}{t^{p-1}\left(r^{p-1}-1\right)}\right) .
\end{aligned}
$$

Finally, we consider scheme C. Consider the graph of $1-\sqrt{1-F(x)}$. Construct for glven x_{n} the triangle with top on the given curve, and base $\left[x_{n}, x_{n+1}\right]$ at helght 1 . Its area is $\frac{1-F\left(x_{n}\right)}{\sqrt{8 C}}$. The triangle lles completely above the given curve because the slope of the hypothenusa is $\sqrt{2 C}$, which is at least as steep as the derivative of $1-\sqrt{1-F}$ at any point. To see this, note that the latter derivative at x is

$$
\frac{f(x)}{2 \sqrt{1-F(x)}} \leq \frac{\sqrt{2 C(1-F(x))}}{2 \sqrt{1-F(x)}}=\sqrt{\frac{C}{2}}
$$

Thus, the sums of the areas of the triangles is not greater than the integral $\int_{0}^{\infty} \sqrt{1-F(x)} d x$. But this sum is

$$
\sum_{n=0}^{\infty} \frac{1-F\left(x_{n}\right)}{\sqrt{8 C}}=\frac{E\left(N_{r}\right)}{\sqrt{8 C}}=\frac{E\left(N_{s}\right)}{\sqrt{8 C}}
$$

Also, twice the area of the triangles is at least equal to $\int_{0}^{\infty} \sqrt{1-F(x)} d x$. The bounds in terms of the various moments mentioned are obtained without further trouble. First, by Chebyshev's Inequality,

$$
\int_{0}^{\infty} \sqrt{1-F(x)} d x \leq \int_{0}^{\infty} \min \left(1, \frac{\sqrt{\mu_{2 p}}}{x^{p}}\right) d x=\left(\mu_{2 p}\right)^{\frac{1}{2 p}}+\frac{1}{p-1}\left(\mu_{2 p}\right)^{\frac{1}{2 p}}
$$

Also, by the Cauchy-Schwarz Inequality,

$$
\begin{aligned}
& \int_{0}^{\infty} \sqrt{\int_{x}^{\infty}} d x \geq\left(\mu_{2}\right)^{-\frac{1}{2}} \int_{0}^{\infty} \int_{x}^{\infty} y f(y) d y d x \\
& =\left(\mu_{2}\right)^{-\frac{1}{2}} \int_{0}^{\infty} \int_{0}^{y} d x y f(y) d y=\sqrt{\mu_{2}} .
\end{aligned}
$$

We observe that $\sqrt{C} X$ is a scale-invarlant quantlty. Thus, one upper bound for scheme A (cholce $\delta=\frac{1}{\sqrt{8 C}}$) and the upper bound for scheme C are scaleInvarlant: they depend upon the shape of the density only. Scheme C is attractive because no deslgn constants have to be chosen at any time. In scheme A for example, the cholce of δ is critical. The geometrically increasing interval sizes of scheme B seem to offer little advantage over the other methods, because $E\left(N_{r}\right)$ is relatively large.

4.8. Exercises.

1. Obtaln an upper bound for $P\left(N_{r} \geq j\right)$ In terms of j when equi-spaced intervals are used for bounded densitles on $[0, \infty)$ as In Example 4.1. Assume first that the r-th moment μ_{r} is finlte. Assume next that $E\left(e^{t X}\right)=m(t)<\infty$ for some $t>0$. The interval width δ does not depend upon j. Check that the main term in the upper bound is scale-Invariant.
2. Prove Inequality D of Theorem 4.1.
3. Give an example of a monotone density on $[0,1]$, unbounded at 0 , with $H(f)<\infty$.
4. Inequalltles A through C in Theorem 4.1 are best possible: they can be attalned for some classes of monotone densitles on [0,1]. Describe some classes of densitles for which we have equality.
5. When f is a monotone convex density on $[0,1]$, then the Inversion-rejection algorithm based on shrinking Intervals given in the text can be adapted so that rejection is used with a trapezoldal dominating curve joining [$X, f(X)$] and $[r X, f(r X)$] where $r>1$ is the shrinkage parameter used in the original algorithm. Such a change would leave N_{s} the same. It reduces $E\left(N_{r}\right)$ however. Formally, the algorlthm can be written as follows:
```
Inversion-rejection algorithm with intervals shrinking at a geometrical
rate
Generate a uniform \([0,1]\) random variate \(U\).
\(X \leftarrow 1\)
REPEAT
    \(X \leftarrow \frac{X}{r}\)
UNTIL \(U \geq F(X)\)
\(Z \leftarrow f(X), Z * \leftarrow f(r X)\)
REPEAT
    Generate three independent uniform \([0,1]\) random variates, \(U, V, W\).
    \(R \leftarrow \min \left(U, V \frac{Z+Z *}{Z-Z^{*}}\right)\)
    \(Y \leftarrow X(1+(r-1) R)(Y\) has the given trapezoidal density \()\)
    \(T \leftarrow W(Z+(Z *-Z) R)\)
    Accept \(\leftarrow[T \leq Z *]\) (optional squeeze step)
    IF NOT Accept THEN Accept \(\leftarrow[W \leq f(Y)]\)
UNTIL Accept
RETURN \(Y\)
```

Prove that $E\left(N_{r}\right) \leq \frac{1}{2}(1+r)$. In other words, for large values of r, this
corresponds to an Improvement of the order of 50%.
6. IHR densities. Prove the following statements:
A. If X has an IHR density on $[0, \infty)$, then $X f(0)$ is stochastically smaller than an exponentlal random variate, i.e. for all $x>0$, $P(X f(0)>x) \leq e^{-x}$. Conclude that for $r>0, E\left(X^{r}\right) \leq \frac{\Gamma(r+1)}{f(0)^{r}}$.
B. For $r>0, E\left(X^{\dagger}\right) \leq \Gamma(r+1) E^{r}(X)$ (Barlow, Marshall and Proschan, 1963).
C. The convolution of two IHR densities is again IHR.
D. Let Y, Z be Independent IHR random variables with hazard rates h_{Y} and h_{Z}. Then, if h_{Y+Z} is the hazard rate of thelr sum, $h_{Y+Z} \leq \min \left(h_{Y}, h_{Z}\right)$.
E. Construct an IHR density which is continuous, unbounded, and has infinitely many peaks.
7. Show how to choose r and t in the inversion-rejection algorithm with geometrically exploding intervals so as to obtaln performance that is sublogarlthmic in the first moment of the distribution in the following sense:

$$
E\left(N_{r}\right)+E\left(N_{s}\right) \leq C \frac{\log (1+\mu f(0))}{\log (\log (e+\mu f(0)))}
$$

where $\mu=E(X), C$ is some universal constant, and X is a random variable with denslty f.
8. Bounded convex monotone densities. Glve an algorithm analogous to that studied in Theorem 4.4 for thls class of densitles: Its sole difference is that the rejection step uses a trapezoldal dominating curve. For this algorithm, in the notation of Theorem 4.4, prove the inequallty

$$
E\left(N_{r}\right) \leq \frac{1}{2}(t f(0)+r+1)
$$

9. Prove that if $\Delta_{n}=\frac{c}{n+1}$ in the algorithm for Lipschitz densitles, then $E\left(N_{s}\right)<\infty$ if and only if $E\left(e^{\frac{X}{c}}\right)<\infty$.
10. Suggest good cholces for t and r in scheme B of Theorem 4.5. These cholces should preferably minimize $E\left(N_{s}\right)+E\left(N_{r}\right)$, or the upper bound for this sum given in the theorem. The resulting upper bound should be scale-invariant.
11. Consider a density f on $[0, \infty)$ which is $\ln \operatorname{Lip} p_{\alpha}(C)$ for some $\alpha \in(0,1]$. Using the inequallty of Theorem 3.5 for such densities, glve an algorithm generallzing scheme C of Theorem 4.5 for Lip_{1} densitles. Make sure that $E\left(N_{s}\right)=E\left(N_{r}\right)$ and give an upper bound for $E\left(N_{s}\right)$ which generalizes the upper bound of Theorem 4.5.
12. The lower bound for scheme $\mathrm{C} \ln$ Theorem 4.5 shows that when $\mu_{2}=\infty$, then $E\left(N_{s}\right)=\infty$. This is a nearly optimal result, in that for most densities with finite second moment, $E\left(N_{s}\right)<\infty$. For example, if $\mu_{2+\epsilon}<\infty$ for some
$\epsilon>0$, then $E\left(N_{s}\right)<\infty$. Find densitles for which $\mu_{2}<\infty$, yet $E\left(N_{s}\right)=\infty$.
