
Chapter O n e  
INTRODUCTION 

1. GENERAL OUTLINE. 
Random number generatlon has Intrigued sclentlsts for a few decades, and a 

lot of effort has been spent on the creatlon of randomness on a determlnlstlc 
(non-random) machlne, that Is, on the deslgn of computer algorlthms that are 
able t o  produce "random" sequences of lntegers. Thls Is a dlfflcult task. Such 
algorlthms are called generators, and all generators have flaws because all of 
them construct the n - th  number In the sequence In functlon of the n -1 numbers 
precedlng It, lnltlallzed wlth a nonrandom seed. Numerous quantltles have been 
lnvented over the years that measure Just how "random" a sequence Is, and most 
well-known generators have been subJected to rlgorous statlstlcal testlng. How- 
ever, for every generator, I t  ls always posslble to And a statlstlcal test of a (possl- 
bly odd) property t o  make the generator flunk. The mathernatlcal tools that are 
needed to  deslgn and analyze these generators are largely number theoretlc and 
comblnatorlal. These tools differ drastically from those needed when we want to 
generate sequences of lntegers wlth certain non-unlform dlstrlbutlons, glven that 
a perfect unlform random number generator 1s avallable. The reader should be 
aware that we provlde hlm wlth only half the story (the second half). The 
assGmptlon that  a perfect unlform random number generator 1s avallable 1s now 
qulte unreallstlc, but, wlth tlme, I t  should become less so. Havlng made the 
assumptlon, we can bulld qulte a powerful theory of non-unlform random varlate 
generatlon. 

The exlstence of a perfect unlform random number generator 1s not all that 
1s assumed. Statlstlclans are usually more lnterested In contlnuous random varl- 
ables than In dlscrete random variables. Since computers are flnlte memory 
rnachlnes, they cannot store real numbers, let alone generate random varlables 
wlth a glven denslty. 
Assumptlon 1. 

Assumptlon 2. 

This led us to the followlng assumptlons: 
Our computer can store and manlpulate real numbers. 
There exlsts a perfect unlform [0,1] random varlate generator, 
1.e. a generator capable of produclng a sequence U I , U ~ ~ . . .  of 
lndependent random varlables wlth a unlform dlstributlon on 
[0,1]. 

I I 
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The generator of assumptlon 2 1s our fundamental bulldlng block. The 
sequence of ui’s can be lntelllgently manlpulated to  glve us random varlables 
wlth speclfled dlstrlbutlons In , d -dlmenslonal Euclldean space. Occaslonally, 
we mentlon the effect that the flnlte word-length of the computer has on the 
manlpulated sequence. Wlth the two assumptlons glven above, we demand that 
the random varlables obtalned by comblnlng the Vi ‘5 have the exact dlstrlbutlon 
that was asked. Algorlthms or generators wlth thls property 1s called exact. 
Exact algorlthms approach reallty if we use extended preclslon arlthmetlc (some 
languages allow users to work wlth lntegers of vlrtually unllmlted length by llnk- 
lng words together In a llnked llst). Inexact algorlthms, whlch are usually algo- 
rlthms that are based upon a mathematlcal approxlmatlon of sorts, are forever 
excluded, because nelther extended preclslon arlthmetlc nor lmprovements In the 
baslc random number generator make them more exact. 

A random varlate generatlon algorlthm 1s a program that halts wlth proba- 
blllty one and exlts wlth a real number x. Thls X 1s called a random variate. 
Because of our assumptlons, we can treat random varlates as If they were random 
varlables! Note also that lf we can produce one random varlate X ,  then we are 
able t o  produce a sequence x 1,x2,... of lndependent random varlates dlstrlbuted 
as X (thls follows from assumptlon 2). Thls facllltates our task a lot: rather than 
havlng to concentrate on lnflnlte sequences, we Just need to look at the propertles 
of slngle random varlates. 

Slmple, easy-to-understand algorlthms wlll survlve longer, all other thlngs 
belng roughly equal. Unfortunately, such algorlthms are usually slower than 
thelr more sophlstlcated counterparts. The notlon of tlme ltself 1s of course rela- 
tlve. For theoretlcal purposes, I t  1s necessary to equate tlme wlth the number of 
”fundamental” operatlons performed before the algorlthm halts. Thls leads to  
our thlrd assumptlon: 
Assumptlon 3. The fundamental operatlons in our computer lnclude addltlon, 

multlpllcatlon, dlvlslon, compare, truncate, move, generate a unl- 
form random varlate, exp, log, square root, arc tan,  sln and cos. 
(Thls lmplles that each of these operatlons takes one unlt of tlme 
regardless of the slze of the operand(s). Also, the outcomes of the 
operatlons are real numbers.) 

The complexlty of an algorlthm, denoted by c ,  1s the tlme requlred by the 
algorlthm to  produce one random varlate. In many cases, C ltself 1s a random 
varlable slnce I t  1s a functlon of u1,u2, .... We note here that we are malnly 
lnterested in generatlng lndependent sequences of random varlables. The average 
complexlty per random varlate In a sequence of length n 1s 

l n  - Ci 
ni=1 

where C; 1s the complexlty for the i - th  random varlate. By the strong law of 
large numbers, we know that thls average tends wlth probablllty one to the 
expected complexlty, E (C ). There are examples of algorlthms wlth lnflnlte 
expected complexlty, but for whlch the probablllty that C exceeds a certain 
small constant 1s extremely small. These should not be a prior1 dlscarded. 
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We have now set the stage for the book. Our program 1s ambitious. In the 
remalnder of thls chapter, we lntroduce our notatlon, and deflne some dlstrlbu- 
tions. By carefully selectlng sectlons and exerclses from the book, teachers could 
use I t  to lntroduce their students to the fundamental propertles of dlstrlbutlons 
and random variables. Chapters I1 and 111 are cruclal to the rest of the book: 
here, the prlnclples of Inversion, rejectlon, and composltlon are explalned In all 
their generallty. Less unlversal methods of random varlate generatlon are 
developed In chapter W. All  of these technlques are then applled to generate ran- 
dom varlates wlth speclflc unlvarlate dlstrlbutlons. These lnclude small famllles 
of densitles (such as the normal, gamma or stable densltles), small familles of 
dlscrete dlstributlons (such as the binomlal and Poisson distrlbutlons), and faml- 
lles of dlstrlbutlons that are too large to be described by a flnite number of 
parameters (such as all unlmodal densitles or all denslties wlth decreaslng hazard 
rate). The correspondlng chapters are M, X and VII. We devote chapter XI to  
multlvarlate random varlate generation, and chapter VI to random process gen- 
eratlon. In these chapters, we want to create dependence In a very speclflc way. 
Thls effort 1s contlnued In chapters XI1 and XI11 on the generatlon of random 
subsets and the generatlon of random comblnatorlal objects such as random 
trees, random permutations and random partltlons. 

We do not touch upon the appllcatlons of random varlate generatlon In 
Monte Carlo methods for solvlng varlous problems (see e.g. Rubinsteln,l981): 
these problems lnclude stochastlc optlmlzatlon, Monte Carlo Integration, solvlng 
llnear equations, deciding whether a large number 1s prlme, etcetera. We will 
spend an entire sectlon, however, on the lmportant toplc of dlscrete event slmula- 
tlon, drlven by the beauty of some data structures used to make the slmulatlon 
more emclent. As usual, we wlll not descrlbe what happens lnslde some slmula- 
tlon languages, but merely give timeless prlnclples and some analysls. Some of 
this 1s done in chapter XIV .  

There are a few other chapters wlth speclallzed topics: the usefulness of 
order statlstlcs 1s pointed out In chapter V. Shortcuts in simulatlon are 
hlghlighted in chapter XVI, and the lmportant table methods are given speclal 
treatment In a chapter of thelr own (VIII). The reader will note that not a slngle 
experlmental result 1s reported, and not one computer Is expllcltly named. The 
lssue of programmlng In assembler language versus a high level language 1s not 
even touched (even though we thlnk that assembler language Implementations of 
many algorlthms are essential). All of this 1s done to insure the unlversallty of the 
text. Hopefully, the text wlll be a s  lnterestlng In 1995 a s  In 1985 by not dwelllng 
upon the shortcomings of today’s computers. In fact, the emphasis Is plalnly upon 
complexlty, the number of operations (instructions) needed to carry out certaln 
tasks. Thus, chapter XV could very well be the most important chapter In the 
book for the future of the subJect: here computers are treated as blt manlpulatlng 
machines. Thls approach allows us to deduce lower bounds for the time needed to 
generate random variates wlth certain dlstributions. 

We have taught some of the material a t  McG111 Unlversity’s School of Com- 
puter Sclence. For a graduate course on the subject for computer sclentlsts, we 
recommend the material with a comblnatorlal and algorlthmlc flavor. One could 



4 1.1.GENERAL OUTLINE 

cover, not necessarlly In the order glven, Parts of chapters I and 11, all of chapter 
111, sectlons V.2 and V.3, selected examples from chapter X, all of chapters XII, 
XI11 and X V ,  and sectlon XIV.5. In addltlon, one could add chapter VIII. We 
usually cover 1.1-3, 11.1-2, 11.3.1-2, 11.3.6, 11.4.1-2, 111, V.1-3, V.4.1-4, VI.1, VIII.2-3, 
XII.1-2, XII.3.1, XI.4-5,  XII.1,  XIII.2.1, XII.3.3, XIII.4-5, and XIV.5. 

In a statlstlcs department, the needs are very dlfferent. A good sequence 
would be chapters 11, 111, V, VI, VII.2.1-3, selected examples from chapters IX,X, 
and chapter X I .  In fact, this book can be used to  lntroduce some of these stu- 
dents to the famous dlstrlbutlons In statlstlcs, because the generators demand 
that we understand the connectlons between many dlstrlbutlons, that we know 
useful representatlons of dlstrlbutlons, and that we are well aware of the shape of 
densltles and dlstrlbutlon functlons. Some deslgns requlre that we dlsassemble 
some dlstrlbutlons, break densltles up lnto parts, And tlght lnequalltles for den- 
slty functions. 

The attentlve reader notlces very quickly that lnequalltles are ublqultous. 
They are requlred to obtaln emclent algorlthms of all klnds. They are also useful 
in the analysls of the complexity. When we can make a polnt wlth lnequalltles, 
we wlll do so. A subset of the book could be used as the basis of a fun readlng 
course on the development and use of lnequallties: use parts of chapter I as 
needed, cover sectlons 11.2, 11.3, 11.4.1, 11.5.1, brush through chapter 111, cover sec- 
tlons W.5-7, lnclude nearly all of chapter VII, and move on t o  sectlons VIII.1-0, 

Thls book 1s lntended for students in operatlons research, statlstlcs and com- 
puter sclence, and for researchers lnterested In random varlate generatlon. There 
1s dldactlcal material for the former group, and there are advanced technlcal sec- 
tlons for the latter group. The lntended audlence has to a large extent dlctated 
the layout of the book. The lntroductlon to probablllty theory In chapter I Is not 
sumclent for the book. It 1s malnly lntended t o  make the reader famlllar wlth 
our notatlon, and to ald the students who wlll read the slmpler sectlons of the 
book. A flrst year graduate level course In probablllty theory and mathernatlcal 
statlstlcs should be ample preparatlon for the entlre book. But pure statlstlclans 
should be warned that we use qulte a few ldeas and "trlcks" from the rich fleld of 
data structures and algorlthms In computer sclence. Our short PASCAL pro- 
grams can be read wlth only passlng famlllarlty wlth the language. 

Nonunlform random varlate generatlon has been covered In numerous books. 
See for example Jansson (1966), Knuth (1989), Newman and Ode11 (1971), 
Yakowltz (1977), Flshman (1978), Kennedy and Gentle (1980), Rubinsteln (1981), 
Payne (1982), Law and Kelton (1982), Bratley, Fox and Schrage (1983), Morgan 
(1984) and Banks and Carson (1984). In addltlon, there are qulte a few survey 
articles (Zelen and Severo (1972), McGrath and Irvlng (1973), Patll, Boswell and 
Frlday (1975), Marsaglla (1976), Schmelser (1880), Devroye (1981), Rlpley (1983) 
and Deak (1984)) and blbllographles (Sowey (1972), Nance and Overstreet (1972), 
Sowey (1978), Deak and Bene (1979), Sahal (1979)). 

IX.1.1-2, DL.3.1-3, lX.4, M.6, X.1-4, XIV.3-4. 



1.2.NOTATION 5 

2. ABOUT OUR NOTATION. 
In thls sectlon, v e  wlll brlefly lntroduce the reader to the dlfferent formats 

that are posslble for speclfylng a dlstrlbutlon, and to some of the most lmportant 
dens1 tles In mathematlc a1 statls tlcs. 

2.1. Definitions. 

A ,  
A random varlable X has a denslty f on the real llne If for any Borel set 

P ( X E A )  = Jf (z)  dz. 
A 

In other words, the probablllty that X belongs to  A 1s equal to the area under 
the graph of f . The dlstrlbutlon functlon F of X 1s deflned by 

2 

F ( z ) = P ( X < z ) =  J f ( Y ) d Y  9 ( z E R ) .  

E ( X ) = J a :  f ( z )  dx 9 

-cx) 

We have F'(z )=f (z ) for almost all z . The mean value of X 1s 

provlded that thls lntegral exlsts. The P -th moment of X 1s deflned by E (1' ). 
If the second moment of x 1s flnlte, then Its varlance 1s deflned by 

V U T ( X )  = E ( ( X - E ( X ) ) 2 )  = E ( X 2 ) - E 2 ( X )  , 

A mode of X ,  If I t  exlsts, 1s a polnt at whlch f attalns Its maxlmal value. If g 
1s an arbltrary Borel measurable functlon and X has denslty f , then 
E ( g  ( X ) ) = s g  (a:) f (3) dz . A p -th quantlle of a dlstrlbutlon, for p E(O,l), 1s 
any polnt a: for whlch F (z ) = p  . The 0.5 quantlle 1s also called the medlan. It 1s 
known that for nonnegatlve X , 

co 
E ( X )  = J P ( X > z )  dz . 

0 

A dlstrlbutlon 1s completely speclfled when Its dlstrlbutlon functlon 1s glven. 
We recall that any nondecreaslng functlon F , rlght-contlnuous, wlth llmlts 0 and 
1 as a: 4 - - 0 0  and z +oo respectlvely, 1s always the dlstrlbutlon functlon of some 
random varlable. The dlstrlbutlon of a random varlable 1s also completely known 
when the characterlstic function 

b ( t )  = E ( e i t X )  , t € R  , 

1s glven. For more detalls on the propertles of dlstrlbutlon functlons and charac- 
terlstlc functlons, we refer to standard texts In probablllty such as Chow and 
Telcher (1978). 
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A random vector In R has a dlstrlbutlon functlon 

F(z1, . . . , xd) = P ( X , s z , ,  . . , xd s z d ) .  

1.2.NOTATION 

The random vector (xl, . . . , Id) has a denslty f (a: , ,  . . . , xd) If and only If 
for all Borel sets A of R d ,  

The characterlstlc functlon of thls random varlable 1s 
it,X,+ . . . + i t d X d  

4(t1, . . . , t d )  = E ( e  ( ( t l ,  * - . J t d  )ER d l  * 
The Xi ' s  are called marglnal random varlables. The marglnal dlstrlbutlon func- 
tion of X, 1s 

Its marglnal characterlstlc functlon 1s 

Another lmportant notlon 1s that of Independence. Two random varlables 
X ,  and X, are lndependent If and only If for all Borel sets A and B , 

P (XIEA ,X,EB ) P (XlEA ) P (X2EB ) . 

Thus, If F 1s the dlstrlbutlon functlon of (x1,X2), then X, and X, are lndepen- 
dent if and only if 

F(a:,,a:,) = F,(a:,) F,(s , )  , all (a: , ,a : , )~R~ , 

for some functlons F ,  and F,. Slmllarly, If (X1,X2) has a denslty f , then X ,  
and X ,  are lndependent If and only If thls denslty can be wrltten as the product 
of two marglnal densltles. Flnally, x, and x, are lndependent If and only If for 
all bounded Borel measurable functlons g , and g ,: 

In partlcular, the characterlstlc functlon of two lndependent random varlables 1s 
the product of thelr characterlstlc functlons: 

b(t , , t 2 )  = E ( e  itlxle = E (e  i t l X 1 )  E (e  i t 2 X 2 )  = dl(t ,) 4 2 ( t  2 .  

All the prevlous observatlons can be extended wfthout trouble towards d random 
varlables X , ,  . . . , X d .  
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ne univariate densities. 
Var (X) 

U2 

ab a 

1 
_. 

xa 

does not exist 

ab 
( a  >2) 

( a  -2)( a -1)2 

ab 

2.2. A few important univariate densities. 
In the table shown below, several lmportant densltles are llsted., Most of 

them have one or two parameters. From a random varlate generatlon polnt of 
vlew, several of these parameters are unlmportant. For example, If X 1s a ran- 
dom variable with a dlstrlbutlon having three parameters, a ,b ,c , and when 
kX+l has a dlstrlbutlon with parameters ka + I  ,k6 ,c , then b 1s called a scale 
parameter, and a 1s called a translatlon parameter. The shape of the dlstrlbu- 
tlon is only determined by the parameter c :  slnce c is invarlant t o  changes In 
scale and t o  translatlons, i t  is called a shape parameter. For example, the normal 
distrlbutlon has no shape parameter, and the gamma dlstrlbutlon has one shape 
parameter. 

Mode(X) F ( 2 )  
2 

P S f ( Y )  dY 
-00 

t 

( a  -1)b $ f ( Y )  dY 
--oo 

1-e-Xr 0 

1 1  2 

2 n  U 
0 -+ -arctan( -) 

b a  
1-- 

2 
b 

0 

(ash j-r ( Y )  d Y  
a -1 

f ( 2 )  

Normal(p,2) 

1 2 2  -e 
_kt& 

U d G  

Gamma(a , b  ) 

E (X) 

P 

(X >o) 

Exponential(X) 
Xe-X2 (z >o) 

Cauchy(u) 
U 

Pareto(a , b  ) 

ab 

1 - 
x 

does not exist 

ab 
a -1 ( a  - 

I a 

A variety of shapes can be found In thls table. For example, the beta famlly 
of denslties on [0,1] has two shape parameters, and the shapes vary from stan- 
dard unlmodal forms to J-shapes and U-shapes. For a comprehenslve descrlptlon 
of most parametrlc famllles of densltles, we refer to the two volumes by Johnson 
and Kotz (1970). When we refer to  normal random variables, we mean normal 
random varlables with parameters 0 and 1. Slmllarly, exponentlal random varl- 
ables are exponentlal (1) random varlables. The unlform [0,1] denslty 1s the den- 
slty which puts Its mass unlformly over the lnterval [0,1]: 

f (z 1 = qo,l](x (5 Efi * 
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Here I 1s the lndlcator functlon of a set. Flnally, when we mentlon the gamma 
( a  ) denslty, we mean the gamma ( a  ,1) denslty. 

The strategy In thls book 1s to  bulld from slmple cases: slmple random varl- 
ables and dlstrlbutlons are random varlables and dlstrlbutlons that can easlly be 
generated on a computer. The context usually dlctates whlch random varlables 
are meant. For example, the unlform [O,l]  dlstrlbutlon 1s slmple, and so are the 
exponentlal and normal dlstrlbutlons in most clrcumstances. At the other end of 
the scale we have the dlmcult random varlables and dlstrlbutlons. Most of thls 
book 1s about the generatlon of random varlates wlth dlmcult dlstrlbutlons. To 
clarlfy the presentation, I t  1s convenient to  use the same capltal letters for all 
slmple random varlables. We wlll use N, E and U for normal, exponentlal and 
unlform [0,1] random varlables. The notatlons G and B are often used for 
gamma and beta random varlables. For random varlables In general, we wlll 
reserve the symbols X, Y ,  W, Z, V. 

3. ASSESSMENT OF RANDOM VARIATE GENERATORS. 
One of the most dimcult problems In random varlate generatlon 1s the cholce 

of an approprlate generator. Factors that play an lmportant role In thls cholce 
Include: 

1. Speed. 
2. Set-up (lnltlallzatlon) tlme. 
3. Length of the complled code. 
4. Machlne Independence, portablllty. 
5. Range of the set of appllcatlons. 
6. Slmpllclty and readablllty. 

Of these factors, the last one 1s perhaps the most neglected In the literature. 
Users are more llkely t o  work wlth programs they can understand. Flve llne pro- 
grams are easlly typed In, and the llkeIlhood of making errors 1s drastlcslly 
reduced. Even packaged generators can have subtle bugs In thelr conceptlon or 
lmplementatlon. It 1s nearly lmposslble t o  certlfy that programs wlth dozens, let 
alone hundreds, of llnes of code are correct. So, we wlll often spend more tlme on 
slmple algorlthms than on sophlstlcated ultra-fast ones. 

Subprograms for random varlate generatlon can be dlvlded into three 
groups: (1) subprograms wlth no varlable parameters, such as subprograms for 
the normal (0,l) density; (2) subprograms wlth a flnlte number of varlable param- 
eters (these are tYPlcallY for parametrlc classes of densltles such as the class of all 
beta densltles); (3) subprograms that accept names of other subprograms as argu- 
ments, and can be applied for a wlde class of dlstrlbutlons (the descrlptlon of thls 
class is of course not dependent upon parameters). 
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set-up tlme. 

255 100 83 

12 190 0 

1.3.ASSESSING GENERATORS 

An example. 
The admlsslblllty of a method now depends upon the set-up tlme as well, as 

1s seen from thls example. Stadlober (1981) gave the followlng table of expected 
tlmes per varlate (In microseconds) and slze of the program (In words) for several 
algorlthms for the t dlstrlbutlon: 

Algorithm: I TD TROU T3T 
t a=3.5 I 65 66 78 

I t  a=5 I 70 67 81 I 
I t  a=10 I 75 68 84 I 
I t  a=50 I 78 69 88 I 
I t a=1000 I 79 70 89 I 

Here t stands for the expected tlme, a for the parameter of the dlstrlbutlon, s 
for the slze of the complled code, and u for the set-up tlme. TD, TROU and 
T3T refer to three algorlthms In the llterature. For any algorlthm and any a ,  
the expected tlme per random varlate 1s t+Au where A€[O,l] 1s the fractlon of 
the varlates that requlred a set-up. The most important cases are A=O (one set- 
up In a large sample for Axed a )  and A=1 (parameter changes at every call). 
Also, l/A 1s about equal to  the waltlng tlme between set-ups. Clearly, one algo- 
rlthm domlnates another tlmewlse If t+Au consldered as a functlon of A never 
exceeds the correspondlng functlon for the other algorlthm. One can do thls for 
each a ,  and thls leads t o  qulte a compllcated sltuatlon. Usually, one should 
elther randomlze the entrles of t over varlous values of a .  Alternatively, one can 
compare on the basls of tmax=max, t .  In our example, the values would be 79, 
70 and 89 respectlvely. It 1s easy to check that tmax+Au 1s mlnlmal for TROU 
when O<A59/178, for TD when 9/1785A<_5/6, and for T3T when 5/6<1<1. - -  
Thus, there are no lnadmlsslble methods If we want t o  lnclude all values of A. 
For Axed values of A however, we have a glven ranklng of the tmax+Au values 
and the dlscusslon of the lnadmlsslblllty In terms of tmaX+Xu and s 1s as for the 
dlstrlbutlons wlthout parameters. Thus, TD 1s lnadmlssible In thls sense for 
A>5/6 or h<9/178, and TROU 1s lnadmlsslble for X>l/lO. 
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3.1. Distributions with no variable parameters. 
A frequently used subprogram for distrlbutlons wlth no varlable parameters 

should be chosen very carefully: usually, speed 1s very Important, while the length 
of the complled code 1s less cruclal. Clearly, the lnltlallzatlon tlme Is zero, and In 
some cases I t  1s worthwhlle to wrlte the programs In machine language. Thls 1s 
commonly done for dlstrlbutlons such as the normal distrlbutlon and the 
exponentlal dlstrlbutlon. 

For lnfrequently used subprograms, I t  1s probably not worth to spend a lot 
of tlme developlng a fast algorlthm. Rather, 'a slmple expedlent method wlll 
often do. In many cases, the portablllty of a program 1s the determinlng factor: 
can we use the program In dlfferent lnstallatlons under different clrcumstances? 
Portable programs have to be wrltten In a machlne-lndependent language. Furth- 
ermore, they should only use standard library subprograms and be compller- 
Independent. Optlmlzlng compllers often lead to unsuspected problems. Pro- 
grams should follow the unlversal conventlons for glvlng names to variables, and 
be protected agalnst lnput error. The calllng program should not be told to use 
speclal statements (such as the COMMON statement In FORTRAN). Finally, 
the subprogram ltself 1s not assumed to perform unasked tasks (such as prlntlng 
messages), and all conventlons for subprogram llnkage must be followed. 

Assume now that we have narrowed the competltlon down to a few pro- 
grams, all equally understandable and portable. The programs take expected 
tlme ti per random varlate where i refers to the i - th  program (1st' s K ) .  Also, 
they requlre si bytes of storage. Among these programs, the j - t h  program is 
sald to be inadmissible If there exlsts an i such that t i  2 ti and s j  >si  (wlth at 
least one of these lnequalltles strlct). If no such t' exlsts, then the j - t h  program 
1s admlsslble. If we measure the cost of the i - th  program by some functlon 
$ ( t i , s i ) ,  lncreaslng In both Its arguments, then I t  1s obvlous that the best pro- 
gram 1s an  admlsslble program. 

3.2. Parametric families. 
The new ingredlent for multl-parameter familles 1s the set-up tlme, that Is, 

the tlme spent computlng constants that depend only upon the parameters of the 
dlstrlbutlon. We are often In one of two sltuatlons: 
Case 1. The subprogram 1s called very often for Axed values of the parameters. 

The set-up tlme 1s unimportant, and one can only gain by initlallzlng 
as many constants as posslble: 
The parameters of the distrlbutlon change often between calls of the 
subprogram. The total time per varlate 1s deflnitely influenced by the 

Case 2. 
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Speed versus size. 
It 1s a general rule In computer sclence that speed can be reduced by using 

longer more sophlstlcated programs. Fast programs are seldom short, and short 
programs are llkely to be slow. But it 1s also true that long programs are often 
not elegant and more error-prone. Short smooth programs survlve longer and are 
understood by a larger audlence. Thls blas towards short programs wlll be 
apparent In chapters W ,  IX and X where we must make certaln recommendations 
to  the general readership. 1 

4. OPERATIONS O N  RANDOM VARIABLES. 
In thls sectlon we brlefly lndlcate how densltles and dlstrlbutlon functlons 

change when random varlables are comblned or operated upon In certaln ways. 
Thls will allow us to generate new random varlables from old ones. We are spe- 
clally Interested In operations on slmple random varlables (from a random varlate 
generatlon polnt of view) such as unlform [0,1] random varlables. The actual 
appllcatlons of these operatlons In random varlate generatlon are not dlscussed In 
thls Introductory chapter. Most of thls materlal is well-known to students in 
statlstlcs, and the chapter could be sklpped wtthout loss of contlnulty by most 
readers. For a unlfled and detalled treatment of operatlons on random varlables, 
we refer to Springer(l979). 

4.1. Transformations. 

Ing devlce: 
Transformations of random varlables are easlly taken care of by the follow- 

Theorem 4.1. 

lng functlon where 
dom varlable wlth dlstrlbutlon functlon F (h- '(x )). 

Let X have dlstrlbutlon functlon F ,  and let h :R +B be a strictly Increas- 
Is elther I? or a proper subset of R . Then h (X) Is a ran- 

If F has denslty f and h-' Is absolutely continuous, then h (X) has denslty 

(h- ' ) ' (x )  f ( h - ' ( x ) ) ,  for almost all x . 
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Proof of Theorem 4.1. 
Observe Arst that for arbltrary x , 

P ( h ( X ) < x )  = P ( X s h - ' ( x ) )  = F(h- ' (x) )  . 

This 1s thus the dlstrlbution function of h (X). If thls distrlbutlon functlon 1s 
absolutely continuous In x ,  then we know (Chow and Telcher (1978)) that h ( X )  
has a denslty that 1s almost everywhere equal to  the derlvatlve of the dlstrlbution 
functlon. Thls 1s the case for example when both F and h-' are absolutely con- 
tinuous , and the formal derlvatlve 1s the one shown In the statement of the 
Theorem. 

Example 4.1. Linear transformations. 
If F 1s the dlstributlon function of a random varlable X ,  then aX+b has 

dlstrlbution function F ((x -b ) / a  ) when a >O. The correspondlng densltles, If 

they exist, are f ( x )  and -f (-). Verify that when x 1s gamma ( a  ,b ) dls- 

trlbuted, then cX 1s gamma ( a  ,cb ), all c >O. 

1 x-6 
U U 

Example 4.2. The exponential distribution. 

--logx has distrlbution functlon 1-F ( e  
When X has dlstrlbutlon function F and x > O  1s a real number, then 

1 ), whlch can be verlAed dlrectly: x 
1 
x P ( - - l o g X L x ) =  P ( X L e - A 2 ) =  i - F ( e - A Z )  (z>o). 

1 In partlcular, If X 1s uniform [0,1], then --logx is exponential (A). Vlce versa, 

when x is exponentlal (A), then e- lX is unlform [0,1]. 
x 
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Example 4.3. Power transformations. 
When x has dlstrlbutlon functlon F and denslty f , then Xp ( p > O  is a 

real number, and the power Is defined as a slgn-preserving transformation ) has 

dlstrlbutlon functlon F (x Q) and denslty 
1 - 

1 --I 1 1 

-xP f ( x S ) . M  
P 

Example 4.4. Non-mono t one transformations. 
Non-monotone transformatlons are best handled by computlng the dlstrlbu- 

tlon functlon flrst from general prlnclples. To lllustrate thls, let us conslder a 
random varlable X wlth dlstrlbutlon functlon F and denslty f . Then, the ran- 
dom varlable X 2  has dlstrlbutlon functlon 

P ( X 2 < x )  = P (  I x I <&-) = F(&-)-F(-&-)  (5 >o) 

and denslty 

- 1 l(m+Nm 
6 2 

In partlcular, when x 1s normal (O,l), then x 2  Is gamma dlstrlbuted, as can be 
seen from the form of the denslty 

2 2 1 2  -- -- 

The latter denslty 1s known as the chl-square denslty wlth one degree of freedom 
(In shorthand: xI2). 

I 

Example 4.5. A parametric form for the density. 
Let x have denslty f and let h be a s  In Theorem 4.1. Then, puttlng 

T =h ( u  ) and y =f ( u ) / h ’ ( u  ), where y stands for the value of the denslty of 
11 (s) at 2 ,  and y and x are related through the parameter u ,  we verlfy by 
ellmlnatlon of u that 

y = f ( P ( X ) )  / h’(h--‘(X)) . 
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r 

i d  
. . .  

9 1 1  . 
. . . . . .  . . .  
. . . . . . . . , 

g d d  
. . .  

g d i  
~ 

Thls 1s equal to (h-’(x))h-’’(x) ,  which was to be shown. Thus, the parametrlc 
representatlon In terms of u glven above 1s correct, and wlll glve us a plot of the 
denslty versus x. Thls 1s particularly useful when the lnverse of h 1s dlmcult to 
obtaln In closed analytlcal form. For example, when X 1s unlform [O,l], then for 
a ,b  BO, uX+bX3 has a denslty with parametrlc representatlon 

x = au+bu 3 , 

By ellmlnatlon of u , we 
I 

The plot of y versus 5 

( 0 5 ~ ~  + b u 3 5 1 )  . 1 

u +3bu2 
Y =  

obtaln a slmple formula of 2 in terms of y : 

&(?+$I. 
has the followlng general form: I t  vanlshes outslde [0,1], 

1 
a and decreases monotonlcally on thls lnterval from y=- at x=O to a nonzero 

value at x =l. Furthermore, - at u =O (1.e. at x =O), 1s 0, so that the shape 
of the denslty resembles that of a piece of the normal denslty near 0. 

dY 
d X  

Let us now look at functlons of several random varlables. We can obtaln 
many dlstrlbutlons as relatlvely uncompllcated functlons of slmple random varl- 
ables. Many cases can be handled by the followlng d -dlmenslonal generallzatlon 
of Theorem 4.1: 
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Example 4.6. The t distribution. 
We wlll show here that when x 1s normal (0,l) and Y 1s lndependent of X 

and gamma (-,2) dlstrlbuted (thls 1s called the chl-square dlstrlbutlon wlth a 

degrees of freedom), then 

a 
2 

z = x / p  a 

1s t dlstrlbuted wlth a degrees of freedom, that Is, Z has denslty 
a +1 

r ( 2 )  1 

What one does In a sltuatlon llke thls 1s "lnvent" a 2-dlmenslonal vector random 
varlable (for example, (2, w)) that 1s a functlon of ( X ,  Y ) ,  one of whose com- 
ponent random varlables 1s Z .  The obvlous cholce In our example 1s 

W=Y 

The lnverse transformatlon 1s determlned by X =Z fl, Y = W .  Thls 

- where we use ~tr ,y ,z ,w for the run- lnverse transformatlon has a Jacoblan 
nlng values that correspond to  the random varlables X ,  Y ,Z , W . Thus, the den- 

fi 
slty of (2, W )  1s 

wz' a 

c e  

where 

1s a normallzatlon constant. From a Jolnt denslty, we obtaln a marglnal denslty 
by taklng the lntegral wlth respect to the non-lnvolved varlables (In thls case 

2 
) den- a fl 

wlth respect to  dw ) . In w , we have for Axed z a gamma (- 
2 ' 1 + z 2 / a  

c 
slty tlmes - After lntegratlon wlth respect to dw , we obtaln 6' 

where cy and p are the parameters of the gamma denslty glven above. Thls 1s 
Preclsely what we needed to  show. 
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4.2. Mixtures. 
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D isc r ete mixtures. 

let X have denslty f i  . Then the (uncondltlonal) denslty of X is 
Let Y be a posltive integer valued random varlable, and, given that Y = i  , 

00 

X P ( Y = i )  I & ) .  
i = 1  

Thls devlce can be used to cut a glven denslty f up lnto slmpler pieces f i  that 
can be handled qulte easlly. Often, the number of terms In the mlxture 1s Anlte. 
For example, if f 1s a piecewise llnear denslty wlth a flnlte number of break- 
polnts, then lt can always be decomposed (rewritten) as a Anlte mlxture of unl- 
form and trlangular densltles. 

Continuous mixtures. 
Let Y have density g on R , and glven that Y=y  , let X have denslty f y  

(thus, y can be considered as a parameter of the density of X ) ,  then the density 
f of X is glven by 

f ( a : ) = J f y ( x ) g ( y )  dY 

As an example, we conslder a mlxture of exponential densltles wlth parameter Y 
ltself exponentially dlstributed with parameter 1. Then x has denslty 

f ( a : )  = Jye-Y’e-Y dy 

(x >o> . - 
(a: +1)2 

Slnce the parameter of the exponentlal dlstrlbutlon 1s the lnverse of the scale 
parameter, we see without work that when E 1,E2 are lndependent exponentlal 
random varlables, then E J E 2  has denslty l / (x  +1)2 on [O,oo). 

Mixtures of uniform densities. 
If we consider a mlxture of unlform [O,y] densltles where y 1s the mlxture 

parameter, then we obtaln a denslty that 1s nonincreaslng on [O,cm). The random 
varlables X thus obtalned are dlstrlbuted as the product UY of a uniform [0,1] 
random varlable u and an arbltrary (mlxture) random varlable Y .  These dls- 
trlbutlons wlll be of great lnterest to  us since u 1s the fundamental random 
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varlable In random varlate generatlon. 

4.3. Order statistics. 

17 

If u,, . . . , U, are lld unlform [0,1] random varlables, then the order statls- 
tlcs for thls'sample are U(,), . . . , U(,), where 

U(1) 5 U(2) I * ' * < - U(,) 
and u(,), . . . , u(,) 1s a permutatlon of u,, . . . , U,. We know that 
(U,, . . . , u,) Is unlformly dlstrlbuted In the unit cube [ O , l ] , .  Thus, 
( u(,), . . . , u(,)) 1s unlformly dlstrlbuted In the slmplex S, : 

s, = { ( q ,  . . . , x,): o < x , < x , <  * * * < x n  < 1 } .  

The Jolnt denslty of (U,,), . . . , U(,)) 1s 

n!ISn(xl, . . . , x,) . 

The a -th order statlstlc U ( i )  ,has the beta denslty with parameters 
1.e. Its denslty 1s 

and n -a +1, 

Proof of Theorem 4.3. 
The Arst part 1s shown by a proJectlon argument: there are n !  polnts In 

[O,l]" that map to a glven polnt In S, when we order them. Thls can be formal- 
lzed as follows. Let A be an arbltrary Bore1 set contalned In s,, . Wrltlng 
x(,)< - . for the ordered permutatlon of x,, . . . , x, , we have 

s d x ,  * . - dx,  
A 
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The A r s t  part of the Theorem follows by the arbltrarlness of A .  For the second 
part, we choose a: In [0,1], and compute the marglnal denslty of U(j )  at a: by 
lntegratlng the denslty wlth respect to all varlables a:j , j  .f;. Thls ylelds 

2 2  2 1  1 

n ! J  * . . JJ . . . J da:, . * . da:j+lda:j-l . 1 . dx1 . 
0 o x  z. -1 

Thls glves the beta denslty wlth parameters i and n -i +1. w 
I 

Of partlcular lmportance wlll be the dlstrlbutlon of max(Ul, . . . , U,): the 

(a: E[o,ll) 

dlstrlbutlon functlon 1s easlly obtalned by a dlrect argument because 

P (max(U,, . . . , U, ) I x )  
= P(U,<a:)  * .  * P ( U ,  < a : )  

= P ( U l l a : n )  

= P ( U l y a : ) .  

= 5" 

1 - 

Thus, the dlstrlbutlon functlon 1s a: ,  on [0,1], and the denslty 1s nzn-l on [0,1]. 
We have also shown that max( U,, . . . , u, ) 1s dlstrlbuted as Ull ln  . 

Another lmportant order statlstlc Is the medlan. The medlan of 
U,, . . . , U2n+1  1s U,,). We have seen In Theorem 4.3 that tpe denslty 1s 

Example 4.7. 

random varlables, then thelr densltles on [0,1] are respectlvely, 
If U(l), U ( 2 ) ,  U(31 are the order statlstlcs of three lndependent unlform [0,1] 

3 ( 1 - ~  )2 , 
6a: (1-x ) 

and 
3x2  .. 
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The generallzatlons of the prevlous results to other dlstrlbutlons are stralght- 
forward. If x,, . . . , xn are lld random varlables wlth denslty f and dlstrlbu- 
tlon functlon F ,  then the maxlmum has dlstrlbutlon functlon F " .  From 
Theorem 4.3, we can also conclude that the 2-th order statlstlc X ( i )  has denslty 

F (a: Y - y l - F  (a: ))"-' f (5 ) . n !  
( i  - I ) ! (  n -i )! 

4.4. Convolutions. Sums of independent random variables. 
The dlstrlbutlon of the sum Sn of n random varlables XI, . . . , Xn 1s usu- 

ally derlved by one of two tools, convolutlon lntegrals or characterlstlc functlons. 
In thls sectlon, we wlll wrlte f i  ,Fi ,di for the denslty, dlstrlbutlon functlon and 
characterlstlc functlon of X i ,  and we wlll use the notatlon f ,F ,4 for the 
correspondlng functlons for the sum S, . In the convolutlon method, we argue as 
follows: 

F ( z ) = P ( X ~ + * * . + X ~ L ~ : )  

= J r~[ f i ( Y i )  Fn(x-Y1-  * . - ~ n - 1 )  dyi  * 

i <n i < n  

Also, 

f ( z )  = J n f i ( Y i )  fn (z -Y1-  * * * qYn-1)  n dy i  * 

i e n  i < n  

Except In the slmplest cases, these convolutlon lntegrals are dlfflcult to compute. 
In many Instances, I t  1s more convenlent to derive the 
flndlng Its characterlstlc functlon. By the lndependence of 

j = I  
n 

= n4j(t>- 
3 =1 

If the X i ' s  are lld , then 4 = Q l n .  

dlstrlbutlon of Sn by 
the Xi  's, we have 

Example 4.8. Sums of normal random variables. 

varlable 1s e- t  / 2 .  To see thls, note that It can be computed a s  follows for t ER : 
Flrst, wezshow that the characterlstlc functlon of a normal (0,l) random 
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From the deflnltlon of the characterlstlc functlon we see that If X has charac- 
terlstlc functlon q5(t ), then aX+b has characterlstlc functlon e ibt 9 (at  ). Thus, a 
normal (p ,a2 )  random varlable has characterlstlc functlon 

e i t p  4(at )  . 
If Xi 1s normal (p i  ,ai2), then S, has characterlstlc functlon 

n e i t p ,  e -cJ 2 t 2 / 2  

whlch 1s the characterlstlc functlon of a normal random varlable wlth parameters 
C p j  and Eaj'. 

Example 4.9. Sums of gamma random variables. 

tlon of a gamma ( a  , b  ) random varlable. I t  can be computed as follows: 
In thls example too, I t  1s convenlent to flrst obtaln the characterlstlc func- 

03 s y a - l e - y ' b  e itY dy (by deflnltlon ) 
0 J 3 a ) b a  

a-1 e - z  / b  03 

=.J dz (use z = y ( l - i t b )  ) 
(1-itb l a  r ( a  ) b  a 

1 - - 
(1-itb ) a  

Thus, If XI, . . . , X, are lndependent gamma random varlables wlth parameters 
a; and , then the sum S, Is gamma wlth parameters C u i  and b . 

I t  1s perhaps worth to mentlon that when the Xi ' s  are lld random varlables, 
then S,, , properly normallzed, 1s nearly normally dlstrlbuted when n grows large. 
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If the dlstrlbutlon of x, has mean p and varlance a2>0, then ( S f l - n p ) / ( a 6 )  
tends In dlstrlbutlon to a normal (0,l) random varlable, Le, 

Thls Is called.the central llmlt theorem (Chow and Telcher, 1978). This will be 
explolted further on In the deslgn of algorlthms for famllles o f  dlstrlbutlons that 
are closed under addltlons, such as the gamma or Polsson famllles. If the varl- 
ance 1s not flnlte, then the llmlt law Is no longer normal. See for example exer- 
clse 4.17, where an example 1s found of such non-normal attraction. 

4.5. Sums of independent uniform random variables. 
In thls sectlon we consider the dlstrlbutlon of 

where the a i ' s  are posltlve constants and the vi's are lndependent unlform [O,l] 
random varlables. We start wlth the maln result of thls sectlon. 

Theorem 4.4. 
n 

The dlstrlbutlon functlon of ai Vi (where ai >O , all i ,  and the Vi's are 
1 =l 

lndependent unlform [0,1] random varlables) 1s glven by 

1 .  f l  F ( x )  = (z+ -C(x-aj)+fl + ( z - a i - a j ) + n -  * ' . 
a l a 2  a i # j  

- a n n !  

Here (.)+ Is the posltlve part of (.). The denslty 1s obtained by taklng the derlva- 
tlve wlth respect to z . 

Proof of Theorem 4.4. 

Conslder the slmplex S formed by the orlgln and the vertlces on the n coor- 
dlnate axes at dlstances z / a , ,  . . . , x / a f l ,  where z >O 1s the polnt at which we 
want to calculate F (17: ). Let us deflne the sets Bi as 

Bi = [o,cQ)~-'x(l,co)x [o,m>fl-i 

where 15; 5 n  . Note now that the flrst quadrant mlnus the unlt cube [O,lIfl  can 
be decomposed by the lncluslon/excluslon prlnclple a s  follows: 

[o,oo)" --[O,1lfl 

= - p i - x B i n B j + .  . . . 
i i # j  

I 
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- ,  - 

Now, slnce F (a: ) = area (S n[O,l]" ) = area (S )-area (S n([O,oo)" -[O,i]" )), we 
obtaln 

I 

0 '  If z < o  
a: l f O < a : L l  
2-2 If 1 5 x 5 2 '  

0 l f 2 < 2  
\ 

F (a: ) = area (S )-E area (S nBi )+ area (S nBi n B j  )- 

Thls Is all we need, because for any subset J of 1, . . . , n ,  we have 
I i f j  

( Z - x a i  I+" 
i c J  area (S n Bi ) = 

i E J  a , . . .  a,  n ! 

Thls concludes the proof of Theorem 4.4. 

It Is lnstructlve to do the proof of Theorem 4.4 for the speclal case n=2,  
and to draw the slmplex and the varlous sets used In the geometrlc proof. For 
the lmportant case a1=a2= . * =a, =1, the dlstrlbutlon function Is 

In other words, the denslty has the shape of an lsosceles trlangle. In general, the 
densify of U , + U 2 +  3 - - +U, conslsts of pleces of polynomlals of degree n-1 
Wth  breakpoints at the Integers. The form approaches that of the normal den- 
S l t J '  as 71 ' 0 0 .  
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4.6. Exercises. 
1 .  

2 .  

3. 

4. 

5. 

6. 

7. 

8. 

If h 1s strlctly monotone, h' exlsts and 1s contlnuous, g 1s a glven denslty, 
and x 1s a random varlable wlth denslty h'(x )g ( h  (x )), then h ( X )  has den- 
slty g . (Thls 1s the lnverse of Theorem 4.1.)  

If X has denslty l / ( x 2 d z )  (x Z l ) ,  then d a  1s dlstrlbuted as the 
absolute value of a normal random varlable. (Use exerclse 1 . )  

If x 1s a gamma ( 1 , l )  random varlable, 1.e. X has denslty 

e-' /& (5 >O), then ?- 2 X  1s dlstributed as the absolute value of a nor- 
mal random varlable. (Use exerclse 1.)  

Let A be a d X d  matrlx wlth nonzero determlnant. Let Y=AX where 
both X and Y are R -valued random vectors. If x has denslty f , then Y 
has denslty 

f (A-ly) I detA-' I ( y E R d ) .  
s 

Thus, If x has a unlform denslty on a set 
dlstrlbuted on a set C of 
If Y 1s gamma ( a  , 1 )  and X 1s exponentlal ( y ) ,  then the denslty of x 1s 

of R ', then Y 1s unlformly 
. Also, determlne C from B and A . 

A random variable 1s sald to have the I? dlstrlbutlon wlth a and b degrees 
of freedom when Its denslty 1s 

a --1 
cx (x >O)  . f ( X I =  a + b  ' 

ax 2 
(1+$ 

a 
a + b  a 2 a b  Here, c 1s the constant I?(-)(-) /I'(-)l?(-). Show that when X and 

2 b  2 2  

- 

Y are lndependent chl-square random varlables wlth parameters a and b 
respectlvely, then (-)/(-) 1s F ( a  , b  ). Show also that when X 1s F ( a  , b  ), 

then - 1s F ( b  , a ) .  Show flnally that when X 1s t-dlstrlbuted wlth a 

degrees of freedom, x 2  1s F ( 1 , a ) .  Draw the curves of the denslties of 
F ( 2 , 2 )  and F ( 3 , l )  random varlables. 
When N, and N 2  are lndependent normal random varlables, the random 
variables N 12+N22 and N JN2 are lndependent. 
Let f be the trlangular denslty deflned by 

X Y  
a b  

1 
X 
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When U, and U, are lndependent unlform [ O , l ]  random varlables, then the 
followlng random varlables all have denslty f : 

2 mln (V,,U,> : 
2 I U,+U,-l I ; 

z ( 1 - G )  * 

n 

i = 1  

9. Show that  the denslty of the product n vi of n lld unlform I O , l ]  random 

varlables 1s 

10. When X 1s gamma ( a  ,l), then l /X has denslty 
1 -- 

k 

i=l  
11. Let Y = nxi where x,, . . . , xk are lld random varlables each dlstrl- 

buted as the maxlmum of n lld unlform [0,1] random varlables. Then Y has 
denslty 

f W = -  n k  x -l(-log(x ))k -l ( 0 5 x  51) . r(k 1 
(Rlder, 1955; Rahman, 1964). 

12. Let X,, . . . , xn be lld unlform [-1,1] random varlables, and let Y be equal 
to (rnln(X,, . . . , xn )+max(X,, . . . , xn ))/2. Show that Y has density 

(Neyman and Pearson, 1928; Carlton, 1940). 
2 and varlance 

13. We say that the power dlstrlbutlon wlth parameter a >-1 is the dlstrlbutlon 
correspondlng to the denslty 

(n +l)(n +2) 

I ( a : )  = ( a + l ) s U  (oca: <1) . 
If x,, ... are lld random varlables havlng the power dlstrlbutlon wlth parame- 
ter a ,  then show that 

A. x1/x2 has denslty 

o<x  < I  FXU 2 
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8 3x 2 1 1 
-<a; < 1  ----- 

3 2 3 $ 2 + 8 2 3  2 -  

2 x  8 3 

3 6 3x2 2x3 
--+-+--- l < x  < 2  

n 

i=l 
B. n X i  has denslty 

n-1 
x a (log-) (o<x <1)  . ( a  + 1 y  

r ( n  1 X 

(Springer, 1979, p. 161). 

14. The ratlo G, /Gb of two lndependent gamma random varlables wlth param- 
eters ( a  ,1) and ( b  ,1) respectlvely has denslty 

a-1  1 
(x >o) . 

( a  ,b 1 ( l+x  )a + b  

Here B ( a  ,b ) 1s the standard abbreviation for the constant in the beta 
Integral, Le. B ( a  ,b ) = r(a )r(b )/r(a +b ). Thls is called the beta density of 
the second kind. Furthermore, G, / ( G a  +Gb ) has the beta denslty with 
parameters a and b .  

15. Let u,, . . . , U ,  be lld unlform [0,1] random variables. Show that 
( U l +  u2)/( U3+ U,) has denslty 

1 o<x  <- 
2 

16. Show that NlN2+N3N,  has the Laplace density (Le., L e - 1 ’  I) ,  whenever 

the Ni ’s are lld normal random varlables (Mantel, 1973). 

17. Show that the characterlstlc functlon of a Cauchy random variable 1s e - ]  I . 
Uslng this, prove that when X , ,  . . . , X ,  are lld Cauchy random varlables, 

2 

1 n  
then xi 1s again Cauchy dlstrlbute.d, Le. the average 1s dlstrlbuted as 

ni=l 
X l .  

18. Use the convolution method to obtaln the densltles of Ul+U,  and 
Ul+U2+U3 where the Vi’s are lld unlform [-1,1] random variables. 

19. In the oldest FORTRAN subroutlne Ilbrarles, normal random varlates were 
generated as 

where the U j ’ s  are lld unlform [ O , l ]  random varlates. Usually n was equal to 
12. Thls generator is of course Inaccurate. Verlfy however that the mean 
and variance of such random varlables are correct. Bolshev (1959) later 
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proposed the corrected random varlate 

3X,-xh3 
Y =x,- 

100 

Deflne a notlon of closeness between densltles, and verlfy that Y is closer to 
a normal random varlable than X,. 

20. Let U,, . . . , U, ,VI ,  . . . , v,,, be lld unlform [0,1] random varlables. Deflne 
x=max(U1,  . . . , U,) , Y=max(V,, . . . , v,). Then X / Y  has denslty 

nm 
n +m 

where c =- (Murty, 1955). 

21. Show that If x 5 Y 52 are the order 5-atlstlcs for three lld normal random 
varlables, then 

mln(2-Y, Y -X) 
2 -x 

has denslty - 

See e.g. Llebleln (1952). 


