Chapter One INTRODUCTION

1. GENERAL OUTLINE.

Random number generation has intrigued sclentists for a few decades, and a lot of effort has been spent on the creation of randomness on a deterministic (non-random) machine, that is, on the design of computer algorithms that are able to produce "random" sequences of integers. This is a difflcult task. Such algorithms are called generators, and all generators have flaws because all of them construct the n-th number in the sequence in function of the $n-1$ numbers preceding it, initialized with a nonrandom seed. Numerous quantitles have been Invented over the years that measure Just how "random" a sequence is, and most well-known generators have been subjected to rlgorous statlistical testlng. However, for every generator, it is always possible to find a statistical test of a (posslbly odd) property to make the generator flunk. The mathematical tools that are needed to design and analyze these generators are largely number theoretlc and comblnatorlal. These tools differ drastically from those needed when we want to generate sequences of integers with certaln non-uniform distrlbutions, given that a perfect unlform random number generator is avallable. The reader should be aware that we provide him with only half the story (the second half). The assumption that a perfect uniform random number generator is avallable is now quite unreallstlc, but, with time, it should become less so. Having made the assumption, we can build quite a powerful theory of non-unlform random varlate generation.

The existence of a perfect unlform random number generator is not all that is assumed. Statistlclans are usually more interested in continuous random varlables than in discrete random varlables. Since computers are finlte memory machines, they cannot store real numbers, let alone generate random variables with a given density. This led us to the following assumptions:
Assumption 1. Our computer can store and manipulate real numbers.
Assumption 2. There exists a perfect unlform $[0,1]$ random varlate generator, 1.e. a generator capable of producing a sequence U_{1}, U_{2}, \ldots of independent random variables with a uniform distribution on [0,1].

The generator of assumption 2 is our fundamental bullding block. The sequence of U_{i} 's can be intelligently manipulated to give us random variables with specified distributions in R^{d}, d-dimensional Euclidean space. Occasionally, we mention the effect that the finlte word-length of the computer has on the manlpulated sequence. With the two assumptions given above, we demand that the random varlables obtalned by combining the U_{i} 's have the exact distribution that was asked. Algorithms or generators with this property is called exact. Exact algorithms approach reality if we use extended precision arlthmetic (some languages allow users to work with integers of virtually unlimited length by linking words together in a linked list). Inexact algorithms, which are usually algorithms that are based upon a mathematical approximation of sorts, are forever excluded, because nelther extended precision arlthmetic nor improvements in the basic random number generator make them more exact.

A random varlate generation algorithm is a program that halts with probabllity one and exits with a real number X. Thls X is called a random variate. Because of our assumptlons, we can treat random varlates as if they were random varlables! Note also that if we can produce one random variate X, then we are able to produce a sequence X_{1}, X_{2}, \ldots of independent random varlates distributed as X (thls follows from assumption 2). This facllitates our task a lot: rather than having to concentrate on infinite sequences, we Just need to look at the propertles of single random variates.

Slmple, easy-to-understand algorlthms will survive longer, all other things belng roughly equal. Unfortunately, such algorlthms are usually slower than their more sophisticated counterparts. The notion of time itself is of course relative. For theoretical purposes, it is necessary to equate time with the number of "fundamental" operations performed before the algorithm halts. This leads to our third assumption:
Assumption 3. The fundamental operations in our computer include addition, multiplication, division, compare, truncate, move, generate a uniform random varlate, exp, log, square root, arc tan, \sin and cos. (Thls implles that each of these operations takes one unlt of time regardless of the slze of the operand(s). Also, the outcomes of the operatlons are real numbers.)
The complexity of an algorithm, denoted by C, is the time required by the algorithm to produce one random variate. In many cases, C itself is a random varlable slnce it is a function of U_{1}, U_{2}, \ldots. We note here that we are malnly interested in generating independent sequences of random varlables. The average complexity per random varlate in a sequence of length n is

$$
\frac{1}{n} \sum_{i=1}^{n} C_{i}
$$

where C_{i} is the complexity for the i-th random varlate. By the strong law of large numbers, we know that this average tends with probability one to the expected complexity, $E(C)$. There are examples of algorithms with infinlte expected complexity, but for which the probabllity that C exceeds a certaln small constant is extremely small. These should not be a priorl discarded.

We have now set the stage for the book. Our program is ambitlous. In the remalnder of this chapter, we introduce our notation, and deflne some distributlons. By carefully selecting sections and exercises from the book, teachers could use it to introduce thelr students to the fundamental propertles of distributions and random variables. Chapters II and III are cruclal to the rest of the book: here, the principles of inversion, rejection, and composition are explained in all thelr generallty. Less unlversal methods of random varlate generation are developed in chapter IV. All of these technlques are then applled to generate random varlates with speclfic unlvariate distributions. These include small familles of densitles (such as the normal, gamma or stable densitles), small familles of discrete distributions (such as the blnomlal and Polsson distributions), and famllies of distributions that are too large to be described by a finite number of parameters (such as all unimodal densities or all densities with decreasing hazard rate). The corresponding chapters are IX, X and VII. We devote chapter XI to multivariate random varlate generation, and chapter VI to random process generation. In these chapters, we want to create dependence in a very speclfic way. Thls effort is contlnued in chapters XII and XIII on the generation of random subsets and the generation of random combinatorlal objects such as random trees, random permutations and random partitions.

We do not touch upon the appllcations of random variate generation in Monte Carlo methods for solving varlous problems (see e.g. Rubinstein,1981): these problems include stochastic optimization, Monte Carlo integration, solving llnear equations, deciding whether a large number is prime, etcetera. We will spend an entire sectlon, however, on the important topic of discrete event simulatlon, driven by the beauty of some data structures used to make the simulation more efflcient. As usual, we will not describe what happens inside some simulatlon languages, but merely give timeless principles and some analysis. Some of this is done in chapter XIV.

There are a few other chapters with speclallzed toplcs: the usefulness of order statistics is pointed out in chapter V. Shortcuts in simulation are highllghted in chapter XVI, and the important table methods are given special treatment In a chapter of their own (VIII). The reader will note that not a single experlmental result is reported, and not one computer is explicitly named. The Issue of programming in assembler language versus a high level language is not even touched (even though we think that assembler language implementations of many algorithms are essential). All of this is done to insure the universallty of the text. Hopefully, the text will be as Interesting In 1995 as $\ln 1985$ by not dwelling upon the shortcomings of today's computers. In fact, the emphasls is plainly upon complexity, the number of operations (Instructions) needed to carry out certaln tasks. Thus, chapter XV could very well be the most important chapter in the book for the future of the subject: here computers are treated as bit manlpulating machines. This approach allows us to deduce lower bounds for the time needed to generate random variates with certaln distributions.

We have taught some of the material at McGill University's School of Computer Sclence. For a graduate course on the subject for computer sclentlsts, we recommend the materlal with a combinatorial and algorithmic flavor. One could
cover, not necessarlly in the order given, parts of chapters I and II, all of chapter III, sections V. 2 and V.3, selected examples from chapter X, all of chapters XII, XIII and XV, and section XIV.5. In addition, one could add chapter VIII. We usually cover I.1-3, II.1-2, II.3.1-2, II.3.6, II.4.1-2, III, V.1-3, V.4.1-4, VI.1, VIII.2-3, XII.1-2, XII.3.1, XII.4-5, XIII.1, XIII.2.1, XIII.3.3, XIII.4-5, and XIV.5.

In a statlstlcs department, the needs are very different. A good sequence would be chapters II, III, V, VI, VII.2.1-3, selected examples from chapters IX,X, and chapter XII. In fact, this book can be used to introduce some of these students to the famous distributions in statistics, because the generators demand that we understand the connections between many distributlons, that we know useful representations of distributions, and that we are well aware of the shape of densitles and distribution functions. Some designs require that we disassemble some distributions, break densitles up into parts, find tight inequallties for density functions.

The attentive reader notices very quickly that inequalitles are ublquitous. They are required to obtain efficlent algorlthms of all kinds. They are also useful In the analysis of the complexity. When we can make a point with inequalitles, we will do so. A subset of the book could be used as the basis of a fun reading course on the development and use of inequallites: use parts of chapter I as needed, cover sections II.2, II.3, II.4.1, II.5.1, brush through chapter III, cover sections IV.5-7, include nearly all of chapter VII, and move on to sections VIII.1-2, LX.1.1-2, DX.3.1-3, IX.4, IX.6, X.1-4, XIV.3-4.

This book is intended for students in operations research, statistics and computer sclence, and for researchers interested in random varlate generation. There is didactical material for the former group, and there are advanced technical sectlons for the latter group. The intended audience has to a large extent dictated the layout of the book. The introduction to probabllity theory in chapter I is not sufficlent for the book. It is malnly intended to make the reader famlliar with our notation, and to ald the students who will read the slmpler sections of the book. A first year graduate level course in probabllity theory and mathematical statistics should be ample preparation for the entire book. But pure statisticlans should be warned that we use quite a few ideas and "tricks" from the rich field of data structures and algorlthms in computer sclence. Our short PASCAL programs can be read with only passing famillarlty with the language.

Nonunlform random varlate generation has been covered in numerous books. See for example Jansson (1968), Knuth (1969), Newman and Odell (1971), Yakowitz (1977), Fishman (1978), Kennedy and Gentle (1980), Rubinstein (1981), Payne (1982), Law and Kelton (1982), Bratley, Fox and Schrage (1983), Morgan (1984) and Banks and Carson (1984). In addition, there are quite a few survey articles (Zelen and Severo (1872), McGrath and Irving (1973), Pat11, Boswell and Friday (1875), Marsaglia (1976), Schmelser (1980), Devroye (1981), Ripley (1983) and Deak (1984)) and blbllographles (Sowey (1972), Nance and Overstreet (1972), Sowey (1978), Deak and Bene (1979), Sahal (1879)).

I.2.NOTATION

2. ABOUT OUR NOTATION.

In this section, we will brlefly Introduce the reader to the different formats that are possible for speclfying a distribution, and to some of the most important densities in mathematical statlstics.

2.1. Definitions.

A random varlable X has a denslty f on the real line if for any Borel set A,

$$
P(X \in A)=\int_{A} f(x) d x
$$

In other words, the probabillty that X belongs to A is equal to the area under the graph of f. The distribution function F of X is defined by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y, \quad(x \in R)
$$

We have $F^{\prime}(x)=f(x)$ for almost all x. The mean value of X is

$$
E(X)=\int x f(x) d x
$$

provided that this integral exists. The r-th moment of X is defined by $E\left(X^{r}\right)$. If the second moment of X is finite, then its varlance is deflned by

$$
\operatorname{Var}(X)=E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-E^{2}(X)
$$

A mode of X, if it exists, is a point at which f attains its maximal value. If g Is an arbltrary Borel measurable function and X has density f, then $E(g(X))=\int g(x) f(x) d x$. A p th quantlle of a distribution, for $p \in(0,1)$, is any polnt x for which $F(x)=p$. The 0.5 quantlle is also called the median. It is known that for nonnegative X,

$$
E(X)=\int_{0}^{\infty} P(X \geq x) d x
$$

A distribution is completely specifled when its distribution function is given. We recall that any nondecreasing function F, right-continuous, with limits 0 and 1 as $x \rightarrow-\infty$ and $x \rightarrow \infty$ respectively, is always the distribution function of some random varlable. The distribution of a random varlable is also completely known when the characteristic function

$$
\phi(t)=E\left(e^{i t X}\right), t \in R
$$

is glven. For more detalls on the propertles of distribution functions and characteristic functions, we refer to standard texts in probabillty such as Chow and Telcher (1978).

A random vector in R^{d} has a distribution function

$$
F\left(x_{1}, \ldots, x_{d}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{d} \leq x_{d}\right)
$$

The random vector $\left(X_{1}, \ldots, X_{d}\right)$ has a denslty $f\left(x_{1}, \ldots, x_{d}\right)$ if and only if for all Borel sets A of R^{d},

$$
P\left(\left(X_{1}, \ldots, X_{d}\right) \in A\right)=\int_{A} f\left(x_{1}, \ldots, x_{d}\right) d x_{1} \cdots d x_{d}
$$

The characteristic function of this random variable is

$$
\phi\left(t_{1}, \ldots, t_{d}\right)=E\left(e^{i t_{1} X_{1}+\cdots+i t_{d} X_{d}}\right) \quad\left(\left(t_{1}, \ldots, t_{d}\right) \in R^{d}\right)
$$

The X_{i} s are called marginal random variables. The marginal distribution function of X_{1} is

$$
F_{1}(x)=F(x, \infty, \ldots, \infty) \quad(x \in R)
$$

Its marginal characteristic function is

$$
\phi_{1}(t)=\phi(t, 0, \ldots, 0), \quad(t \in R)
$$

Another important notion is that of independence. Two random variables X_{1} and X_{2} are independent if and only if for all Borel sets A and B,

$$
P\left(X_{1} \in A, X_{2} \in B\right)=P\left(X_{1} \in A\right) P\left(X_{2} \in B\right)
$$

Thus, if F is the distribution function of $\left(X_{1}, X_{2}\right)$, then X_{1} and X_{2} are independent if and only if

$$
F\left(x_{1}, x_{2}\right)=F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right), \text { all }\left(x_{1}, x_{2}\right) \in R^{2},
$$

for some functions F_{1} and F_{2}. Simllarly, if $\left(X_{1}, X_{2}\right)$ has a density f, then X_{1} and X_{2} are independent if and only if this density can be written as the product of two marginal densities. Finally, X_{1} and X_{2} are independent if and only if for all bounded Borel measurable functions g_{1} and g_{2} :

$$
E\left(g_{1}\left(X_{1}\right) g_{2}\left(X_{2}\right)\right)=E\left(g_{1}\left(X_{1}\right)\right) E\left(g_{2}\left(X_{2}\right)\right)
$$

In partlcular, the characteristic function of two independent random variables is the product of their characteristic functions:

$$
\phi\left(t_{1}, t_{2}\right)=E\left(e^{i t_{1} X_{1}} e^{i t_{2} X_{2}}\right)=E\left(e^{i t_{1} X_{1}}\right) E\left(e^{i t_{2} X_{2}}\right)=\phi_{1}\left(t_{1}\right) \phi_{2}\left(t_{2}\right)
$$

All the prevlous observatlons can be extended without trouble towards d random varlables X_{1}, \ldots, X_{d}.

2.2. A few important univariate densities.

In the table shown below, several important densitles are llsted., Most of them have one or two parameters. From a random varlate generation point of vlew, several of these parameters are unimportant. For example, if X is a random variable with a distribution having three parameters, a, b, c, and when $k X+l$ has a distribution with parameters $k a+l, k b, c$, then b is called a scale parameter, and a is called a translation parameter. The shape of the distributlon is only determined by the parameter c : since c is Invarlant to changes in scale and to translations, It is called a shape parameter. For example, the normal distribution has no shape parameter, and the gamma distribution has one shape parameter.

Some univariate densities.				
$f(x)$	$E(X)$	$\operatorname{Var}(X)$	Mode (X)	$F(x)$
$\begin{aligned} & \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\ & \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \end{aligned}$	μ	σ^{2}	μ	$\int_{-\infty}^{x} f(y) d y$
$\begin{aligned} & \operatorname{Gammax}(a, b) \\ & \frac{1}{\Gamma(a) b^{a}} x^{a-1} e^{-\frac{x}{b}} \\ & (x>0) \end{aligned}$	$a b$	$a b^{2}$	$(a-1) b$	$\int_{-\infty}^{x} f(y) d y$
Exponential (λ) $\lambda e^{-\lambda x} \quad(x>0)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$	0	$1-e^{-\lambda x}$
$\begin{gathered} \text { Cauchy(} \sigma \text {) } \\ \frac{\sigma}{\pi\left(x^{2}+\sigma^{2}\right)} \end{gathered}$	does not exist	does not exist	0	$\frac{1}{2}+\frac{1}{\pi} \arctan \left(\frac{x}{\sigma}\right)$
$\begin{aligned} & \text { Pareto }(a, b) \\ & \frac{a b^{a}}{x^{a+1}}(x>b) \end{aligned}$	$\frac{a b}{a-1}(a>1)$	$\frac{a b^{2}}{(a-2)(a-1)^{2}}(a>2)$	b	$1-\frac{b^{a}}{}{ }^{\text {a }}$
$\begin{aligned} & \operatorname{Beta}(a, b) \\ & \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)}(x \in[0,1]) \end{aligned} x^{a-1}(1-x)^{b-1},$	$\frac{a}{a+b}$	$\frac{a b}{(a+b)^{2}(a+b+1)}$	$\frac{a-1}{a+b-2}(a, b>1)$	$\int_{-\infty}^{x} f(y) d y$

A varlety of shapes can be found in thls table. For example, the beta famlly of densitles on $[0,1]$ has two shape parameters, and the shapes vary from standard unimodal forms to J-shapes and U-shapes. For a comprehensive description of most parametric famlles of denstties, we refer to the two volumes by Johnson and Kotz (1970). When we refer to normal random variables, we mean normal random variables with parameters 0 and 1 . Simllarly, exponentlal random varlables are exponentlal (1) random varlables. The unlform $[0,1]$ density is the denslty which puts its mass unlformly over the interval $[0,1]:$

$$
f(x)=I_{[0,1]}(x) \quad(x \in R)
$$

Here I is the indicator function of a set. Finally, when we mention the gamma (a) denslty, we mean the gamma ($a, 1$) density.

The strategy in this book is to bulld from simple cases: simple random varlables and distributions are random varlables and distrlbutions that can easily be generated on a computer. The context usually dictates which random varlables are meant. For example, the unlform $[0,1]$ distribution is simple, and so are the exponentlal and normal distributions in most clrcumstances. At the other end of the scale we have the difficult random variables and distributions. Most of this book is about the generation of random varlates with difflcult distributions. To clarify the presentation, it is convenient to use the same capital letters for all simple random variables. We will use N, E and U for normal, exponentlal and unlform $[0,1]$ random varlables. The notations G and B are often used for gamma and beta random varlables. For random variables in general, we will reserve the symbols $\mathrm{X}, \mathrm{Y}, \mathrm{W}, \mathrm{Z}, \mathrm{V}$.

3. ASSESSMENT OF RANDOM VARIATE GENERATORS.

One of the most difflcult problems in random varlate generation is the cholce of an approprlate generator. Factors that play an important role in this cholce Include:

1. Speed.
2. Set-up (Initiallzation) time.
3. Length of the complled code.
4. Machine Independence, portabllity.
5. Range of the set of applications.
6. Simplicity and readability.

Of these factors, the last one is perhaps the most neglected in the literature. Users are more llkely to work with programs they can understand. Five line programs are easlly typed in, and the llkellhood of making errors is drastlcally reduced. Even packaged generators can have subtle bugs in their conception or implementation. It Is nearly Impossible to certify that programs with dozens, let alone hundreds, of llnes of code are correct. So, we will often spend more time on simple algorithms than on sophisticated ultra-fast ones.

Subprograms for random varlate generation can be divided into three groups: (1) subprograms with no varlable parameters, such as subprograms for the normal (0,1) denslty; (2) subprograms with a flnite number of variable parameters (these are typlcally for parametric classes of denslties such as the class of all beta densitles); (3) subprograms that accept names of other subprograms as arguments, and can be applled for a wide class of distributions (the description of this class is of course not dependent upon parameters).
set-up time.

An example.

The admissibllity of a method now depends upon the set-up time as well, as is seen from this example. Stadlober (1981) gave the following table of expected times per varlate (In microseconds) and size of the program (in words) for several algorlthms for the t distribution:

Algorithm:	TD	TROU	T3T
$\mathrm{t} a=3.5$	65	66	78
$\mathrm{t} a=5$	70	67	81
$\mathrm{t} a=10$	75	68	84
$\mathrm{t} a=50$	78	69	88
$\mathrm{t} a=1000$	79	70	89
s	255	100	83
u	12	190	0

Here t stands for the expected time, a for the parameter of the distribution, s for the slze of the complled code, and u for the set-up time. TD, TROU and T3T refer to three algorlthms in the literature. For any algorithm and any a, the expected time per random variate is $t+\lambda u$ where $\lambda \in[0,1]$ is the fraction of the varlates that required a set-up. The most important cases are $\lambda=0$ (one setup in a large sample for flxed a) and $\lambda=1$ (parameter changes at every call). Also, $1 / \lambda$ is about equal to the walting time between set-ups. Clearly, one algorithm dominates another timewise if $t+\lambda u$ considered as a function of λ never exceeds the corresponding function for the other algorithm. One can do this for each a, and this leads to quite a complicated sltuation. Usually, one should elther randomize the entrles of t over varlous values of a. Alternatively, one can compare on the basls of $t_{\max }=\max _{a} t$. In our example, the values would be 79, 70 and 88 respectively. It is easy to check that $t_{\max }+\lambda u$ is minimal for TROU when $0 \leq \lambda \leq 9 / 178$, for TD when $9 / 178 \leq \lambda \leq 5 / 8$, and for T3T when $5 / 8 \leq \lambda \leq 1$. Thus, there are no inadmissible methods if we want to include all values of λ. For flxed values of λ however, we have a given ranking of the $t_{\max }+\lambda u$ values and the discussion of the Inadmisslbility in terms of $t_{\max }+\lambda u$ and s is as for the distributlons without parameters. Thus, TD is inadmissible in this sense for $\lambda>5 / 6$ or $\lambda<9 / 178$, and TROU is inadmissible for $\lambda>1 / 10$.

3.1. Distributions with no variable parameters.

A frequently used subprogram for distributions with no varlable parameters should be chosen very carefully: usually, speed is very important, whlle the length of the complled code is less cruclal. Clearly, the initlallzation time is zero, and in some cases it is worthwhlle to write the programs in machine language. This is commonly done for distributions such as the normal distribution and the exponential distrlbution.

For infrequently used subprograms, it is probably not worth to spend a lot of time developing a fast algorithm. Rather, a slmple expedient method will often do. In many cases, the portabllity of a program is the determining factor: can we use the program in different installations under different circumstances? Portable programs have to be written in a machine-Independent language. Furthermore, they should only use standard library subprograms and be compllerIndependent. OptImizing compllers often lead to unsuspected problems. Programs should follow the universal conventlons for giving names to varlables, and be protected agalnst input error. The calling program should not be told to use speclal statements (such as the COMMON statement in FORTRAN). Finally, the subprogram itself is not assumed to perform unasked tasks (such as printing messages), and all conventions for subprogram linkage must be followed.

Assume now that we have narrowed the competition down to a few programs, all equally understandable and portable. The programs take expected time t_{i} per random varlate where i refers to the i-th program ($1 \leq i \leq K$). Also, they require s_{i} bytes of storage. Among these programs, the j-th program is sald to be inadmissible if there exists an i such that $t_{j} \geq t_{i}$ and $s_{j} \geq s_{i}$ (with at least one of these inequalities strict). If no such i exlsts, then the j-th program is admissible. If we measure the cost of the i-th program by some function $\psi\left(t_{i}, s_{i}\right)$, Increasing in both its arguments, then it is obvious that the best program is an admissible program.

3.2. Parametric families.

The new ingredient for multi-parameter familles is the set-up time, that is, the time spent computing constants that depend only upon the parameters of the distribution. We are often in one of two situations:

Case 1. The subprogram is called very often for flxed values of the parameters. The set-up time is unimportant, and one can only galn by inltalizing as many constants as possible.
Case 2. The parameters of the distrlbution change often between calls of the subprogram. The total time per varlate is definltely Influenced by the

Speed versus size.

It is a general rule in computer sclence that speed can be reduced by using longer more sophistlcated programs. Fast programs are seldom short, and short programs are likely to be slow. But it is also true that long programs are often not elegant and more error-prone. Short smooth programs survive longer and are understood by a larger audlence. Thls blas towards short programs will be apparent in chapters IV, IX and X where we must make certain recommendations to the general readership.

4. OPERATIONS ON RANDOM VARIABLES.

In this section we brlefly indicate how densitles and distribution functions change when random varlables are combined or operated upon in certaln ways. Thls will allow us to generate new random varlables from old ones. We are speclally interested in operatlons on slmple random varlables (from a random varlate generation point of view) such as unlform $[0,1]$ random varlables. The actual appllcatlons of these operations in random varlate generation are not discussed in this introductory chapter. Most of this materlal is well-known to students in statistics, and the chapter could be skipped without loss of continulty by most readers. For a unifled and detalled treatment of operations on random variables, we refer to Springer(1979).

4.1. Transformations.

Transformations of random variables are easlly taken care of by the followIng device:

Theorem 4.1.

Let X have distribution function F, and let $h: R \rightarrow B$ be a strictly increasIng function where B is elther R or a proper subset of R. Then $h(X)$ is a random variable with distribution function $F\left(h^{-1}(x)\right)$.

If F has density f and h^{-1} is absolutely continuous, then $h(X)$ has density

$$
\left(h^{-1}\right)^{\prime}(x) \quad f\left(h^{-1}(x)\right), \quad \text { for almost all } x
$$

Proof of Theorem 4.1.

Observe first that for arbltrary x,

$$
P(h(X) \leq x)=P\left(X \leq h^{-1}(x)\right)=F\left(h^{-1}(x)\right)
$$

This is thus the distribution function of $h(X)$. If this distribution function is absolutely continuous in x, then we know (Chow and Telcher (1978)) that $h(X)$ has a density that is almost everywhere equal to the derlvative of the distribution function. This is the case for example when both F and h^{-1} are absolutely continuous, and the formal derivative is the one shown in the statement of the Theorem.

Example 4.1. Linear transformations.

If F is the distribution function of a random varlable X, then $a X+b$ has distribution function $F((x-b) / a)$ when $a>0$. The corresponding densities, if they exist, are $f(x)$ and $\frac{1}{a} f\left(\frac{x-b}{a}\right)$. Verlfy that when X is gamma (a, b) distributed, then $c X$ is gamma ($a, c b$), all $c>0$.

Example 4.2. The exponential distribution.

When X has distribution function F and $\lambda>0$ is a real number, then $-\frac{1}{\lambda} \log X$ has distribution function $1-F\left(e^{-\lambda x}\right)$, which can be verifled directly:

$$
P\left(-\frac{1}{\lambda} \log X \leq x\right)=P\left(X \geq e^{-\lambda x}\right)=1-F\left(e^{-\lambda x}\right) \quad(x>0) .
$$

In particular, if X is uniform $[0,1]$, then $-\frac{1}{\lambda} \log X$ is exponential (λ). Vice versa, when X is exponential (λ), then $e^{-\lambda X}$ is uniform $[0,1]$.

Example 4.3. Power transformations.

When X has distrlbution function F and density f, then $X^{p}(p>0$ is a real number, and the power is defined as a sign-preserving transformation) has distribution function $F\left(x^{\frac{1}{p}}\right)$ and density

$$
\frac{1}{p} x^{\frac{1}{p}-1} f\left(x^{\frac{1}{p}}\right)
$$

Example 4.4. Non-monotone transformations.

Non-monotone transformations are best handled by computing the distributlon function first from general princlples. To lllustrate this, let us consider a random variable X with distribution function F and density f. Then, the random variable X^{2} has distribution function

$$
P\left(X^{2} \leq x\right)=P(|X| \leq \sqrt{x})=F(\sqrt{x})-F(-\sqrt{x}) \quad(x>0)
$$

and density

$$
\frac{1}{\sqrt{x}} \frac{f(\sqrt{x})+f(-\sqrt{x})}{2} .
$$

In particular, when X is normal (0,1), then X^{2} is gamma distributed, as can be seen from the form of the denslty

$$
\frac{1}{\sqrt{x}} \frac{1}{2 \sqrt{2 \pi}}\left(e^{-\frac{x}{2}}+e^{-\frac{x}{2}}\right)=\frac{1}{\sqrt{2 \pi}} x^{-\frac{1}{2}} e^{-\frac{x}{2}} \quad(x \geq 0)
$$

The latter density is known as the chl-square density with one degree of freedom (In shorthand: $\chi_{1}{ }^{2}$).

Example 4.5. A parametric form for the density.
Let X have density f and let h be as in Theorem 4.1. Then, putting $x=h(u)$ and $y=f(u) / h^{\prime}(u)$, where y stands for the value of the density of $h(X)$ at x, and y and x are related through the parameter u, we verify by ellmination of u that

$$
y=f\left(h^{-1}(x)\right) / h^{\prime}\left(h^{-1}(x)\right)
$$

This is equal to $f\left(h^{-1}(x)\right) h^{-1 \prime}(x)$, which was to be shown. Thus, the parametric representation in terms of u glven above is correct, and will give us a plot of the density versus x. This is particularly useful when the inverse of h is difficult to obtain in closed analytical form. For example, when X is uniform [0,1], then for $a, b>0, a X+b X^{3}$ has a density with parametric representation

$$
x=a u+b u^{3}, y=\frac{1}{a+3 b u^{2}} \quad\left(0 \leq a u+b u^{3} \leq 1\right) .
$$

By ellmination of u, we obtain a simple formula of $x \ln$ terms of y :

$$
x=\sqrt{\frac{1}{y}-a} \sqrt{\frac{1}{3 b}}\left(\frac{2 a}{3}+\frac{1}{3 y}\right) .
$$

The plot of y versus x has the following general form: it vanlshes outside $[0,1]$, and decreases monotonically on this interval from $y=\frac{1}{a}$ at $x=0$ to a nonzero value at $x=1$. Furthermore, $\frac{\partial y}{\partial x}$ at $u=0$ (1.e. at $x=0$), is 0 , so that the shape of the denslty resembles that of a plece of the normal density near 0 .

Let us now look at functions of several random variables. We can obtain many distributions as relatively uncomplicated functions of slmple random variables. Many cases can be handled by the following d-dimensional generallzation of Theorem 4.1:

Theorem 4.2.

Let X have a continuous density f on R^{d} and let $h: R^{d} \rightarrow R^{d}$ be a one-to-one and onto mapping to T, the Image of S, the support set of f, under h. Thus, the inverse of the transformation $Y=h(X)$ exists: $X=h^{-1}(Y)=g(Y)$. If we write $y=\left(y_{1}, \ldots, y_{d}\right)$ and $g=\left(g_{1}, \ldots, g_{d}\right)$, then if the partial derivatives $g_{i j}=\frac{\partial g_{i}}{\partial y_{j}}$ exist and are continuous on T, Y has density

$$
f(g(y))|J| \quad(y \in T)
$$

where J is the Jacoblan of the transformation and is defined as the determinant of the matrix

$$
\left[\begin{array}{ccc}
g_{11} & \cdots & g_{1 d} \\
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
g_{d 1} & \cdots & g_{d d}
\end{array}\right]
$$

Example 4.6. The t distribution.

We will show here that when X is normal $(0,1)$ and Y is Independent of X and gamma $\left(\frac{a}{2}, 2\right)$ distributed (thls is called the chl-square distribution with a degrees of freedom), then

$$
Z=X / \sqrt{\frac{Y}{a}}
$$

is t distributed with a degrees of freedom, that is, Z has density

$$
\frac{\Gamma\left(\frac{a+1}{2}\right)}{\Gamma\left(\frac{a}{2}\right) \sqrt{\pi a}} \frac{1}{\left(1+\frac{z^{2}}{a}\right)^{\frac{a+1}{2}}} \quad(z \in R)
$$

What one does in a sltuation like this is "Invent" a 2 -dimensional vector random varlable (for example, (Z, W)) that is a function of (X, Y), one of whose component random variables is Z. The obvlous cholce in our example is

$$
\begin{aligned}
& Z=X / \sqrt{\frac{Y}{a}} \\
& W=Y
\end{aligned}
$$

The inverse transformation is determined by $X=Z \sqrt{\frac{W}{a}}, Y=W$. This Inverse transformation has a Jacobian $\sqrt{\frac{w}{a}}$ where we use x, y, z, w for the running values that correspond to the random varlables X, Y, Z, W. Thus, the density of (Z, W) is

$$
c e^{-\frac{w z^{2}}{2 a}} w^{\frac{a}{2}-1} e^{-\frac{w}{2}} \sqrt{\frac{w}{a}}
$$

where

$$
c=\frac{1}{\Gamma\left(\frac{a}{2}\right) 2^{\frac{a}{2}} \sqrt{2 \pi}} \quad(w>0, z \in R)
$$

Is a normalization constant. From a joint density, we obtaln a marginal density by taking the integral with respect to the non-Involved variables (In this case with respect to $d w$). In w, we have for fixed z a gamma $\left(\frac{a+1}{2}, \frac{2}{1+z^{2} / a}\right)$ denslty times $\frac{c}{\sqrt{a}}$. After integration with respect to $d w$, we obtain

$$
\frac{c}{\sqrt{a}} \Gamma(\alpha) \beta^{\alpha}
$$

where α and β are the parameters of the gamma density given above. This is precisely what we needed to show.

4.2. Mixtures.

Discrete mixtures.

Let Y be a positlve integer valued random varlable, and, given that $Y=i$, let X have density f_{i}. Then the (unconditional) density of X is

$$
\sum_{i=1}^{\infty} P(Y=i) f_{i}(x)
$$

Thls device can be used to cut a glven density f up into simpler pleces f_{i} that can be handled quite easily. Often, the number of terms in the mixture is finite. For example, if f is a plecewise linear density with a finite number of breakpoints, then it can always be decomposed (rewritten) as a finlte mixture of unlform and triangular densitles.

Continuous mixtures.

Let Y have density g on R, and given that $Y=y$, let X have density f_{y} (thus, y can be considered as a parameter of the density of X), then the density f of X is given by

$$
f(x)=\int f_{y}(x) g(y) d y
$$

As an example, we consider a mixture of exponential densitles with parameter Y itself exponentlally distrlbuted with parameter 1 . Then X has density

$$
\begin{aligned}
& f(x)=\int y e^{-y x} e^{-y} d y \\
& =\int y e^{-\frac{y}{(x+1)^{-1}}} d y \\
& =\frac{1}{(x+1)^{2}} \quad(x>0)
\end{aligned}
$$

Since the parameter of the exponential distribution is the inverse of the scale parameter, we see without work that when E_{1}, E_{2} are independent exponential random varlables, then E_{1} / E_{2} has density $1 /(x+1)^{2}$ on $[0, \infty)$.

Mixtures of uniform densities.

If we conslder a mixture of unlform $[0, y]$ densities where y is the mixture parameter, then we obtain a density that is nonincreasing on $[0, \infty)$. The random varlables X thus obtained are distributed as the product $U Y$ of a unlform $[0,1]$ random varlable U and an arbltrary (mixture) random varlable Y. These distributions will be of great interest to us slnce U is the fundamental random
variable in random varlate generation.

4.3. Order statistics.

If U_{1}, \ldots, U_{n} are ind unfform $[0,1]$ random variables, then the order statistlcs for thls sample are $U_{(1)}, \ldots, U_{(n)}$, where

$$
U_{(1)} \leq U_{(2)} \leq \cdots \leq U_{(n)}
$$

and $U_{(1)}, \ldots, U_{(n)}$ is a permutation of U_{1}, \ldots, U_{n}. We know that $\left(U_{1}, \ldots, U_{n}\right)$ is uniformly distributed in the unit cube $[0,1]^{n}$. Thus, $\left(U_{(1)}, \ldots, U_{(n)}\right)$ is unformly distributed in the simplex S_{n} :

$$
S_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): 0<x_{1}<x_{2}<\cdots<x_{n}<1\right\}
$$

Theorem 4.3.

The joint density of $\left(U_{(1)}, \ldots, U_{(n)}\right)$ is

$$
n!I_{S_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

The i-th order statistic $U_{(i)}$ has the beta density with parameters i and $n-i+1$, 1.e. Its density is

$$
\frac{\Gamma(n+1)}{\Gamma(i) \Gamma(n-i+1)} x^{i-1}(1-x)^{n-i} \quad(x \in[0,1]) .
$$

Proof of Theorem 4.3.

The flrst part is shown by a projection argument: there are n ! points in $[0,1]^{n}$ that map to a given polnt in S_{n} when we order them. This can be formallzed as follows. Let A be an arbitrary Borel set contalned $\ln S_{n}$. Writing $x_{(1)}<\cdots<x_{(n)}$ for the ordered permutation of x_{1}, \ldots, x_{n}, we have

$$
\begin{aligned}
& \int_{A} d x_{1} \cdots d x_{n} \\
& =\sum_{\sigma A\left(x_{1}=x_{\sigma(1)}, \cdots, x_{n}=x_{\sigma(n)}\right)} d x_{1} \cdots d x_{n} \\
& (\sigma=\sigma(1), \cdots, \sigma(n) \text { is a permutation of } 1, \cdots, n) \\
& =\sum_{\sigma} \int_{A} d x_{(1)} \cdots d x_{(n)} \\
& =\int_{A} n!d x_{(1)} \cdots d x_{(n)}
\end{aligned}
$$

The first part of the Theorem follows by the arbltrariness of A. For the second part, we choose x in $[0,1]$, and compute the marginal density of $U_{(i)}$ at x by Integrating the density with respect to all varlables $x_{j}, j \neq i$. This ylelds

$$
n!\int_{0}^{x_{2}} \cdots \int_{0}^{x} \int_{x}^{1} \cdots \int_{x_{n-1}}^{1} d x_{n} \cdots d x_{i+1} d x_{i-1} \cdots d x_{1}
$$

Thls glves the beta density with parameters i and $n-i+1$.

Of particular importance will be the distribution of $\max \left(U_{1}, \ldots, U_{n}\right)$: the distribution function is easily obtalned by a direct argument because

$$
\begin{aligned}
& P\left(\max \left(U_{1}, \ldots, U_{n}\right) \leq x\right) \quad(x \in[0,1]) \\
& =P\left(U_{1} \leq x\right) \cdots P\left(U_{n} \leq x\right) \\
& =x^{n} \\
& =P\left(U_{1} \leq x^{n}\right) \\
& =P\left(U_{1}{ }^{\frac{1}{n}} \leq x\right)
\end{aligned}
$$

Thus, the distribution function is x^{n} on $[0,1]$, and the density is $n x^{n-1}$ on $[0,1]$. We have also shown that $\max \left(U_{1}, \ldots, U_{n}\right)$ is distributed as $U_{1}{ }^{1 / n}$.

Another important order statistic is the median. The median of $U_{1}, \ldots, U_{2 n+1}$ is $U_{(n)}$. We have seen in Theorem 4.3 that the density is

$$
\frac{(2 n+1)!}{n!^{2}}(x(1-x))^{n} \quad(x \in[0,1])
$$

Example 4.7.

If $U_{(1)}, U_{(2)}, U_{(3)}$ are the order statistics of three Independent unlform $[0,1]$ random varlables, then their densitles on $[0,1]$ are respectively,

$$
\begin{aligned}
& 3(1-x)^{2}, \\
& 8 x(1-x)
\end{aligned}
$$

and

$$
3 x^{2} .
$$

The generalizations of the previous results to other distributions are stralghtforward. If X_{1}, \ldots, X_{n} are ild random varlables with density f and distributlon function F, then the maximum has distribution function F^{n}. From Theorem 4.3, we can also conclude that the i-th order statistlc $X_{(i)}$ has density

$$
\frac{n!}{(i-1)!(n-i)!} F(x)^{i-1}(1-F(x))^{n-i} f(x)
$$

4.4. Convolutions. Sums of independent random variables.

The distrlbution of the sum S_{n} of n random varlables X_{1}, \ldots, X_{n} is usually derlved by one of two tools, convolution integrals or characteristic functions. In this section, we will write f_{i}, F_{i}, ϕ_{i} for the density, distrlbution function and characterlstlc function of X_{i}, and we will use the notation f, F, ϕ for the corresponding functions for the sum S_{n}. In the convolution method, we argue as follows:

$$
\begin{aligned}
& F(x)=P\left(X_{1}+\cdots+X_{n} \leq x\right) \\
& =\int \prod_{i<n} f_{i}\left(y_{i}\right) F_{n}\left(x-y_{1}-\cdots-y_{n-1}\right) \prod_{i<n} d y_{i}
\end{aligned}
$$

Also,

$$
f(x)=\int \prod_{i<n} f_{i}\left(y_{i}\right) f_{n}\left(x-y_{1}-\cdots-y_{n-1}\right) \prod_{i<n} d y_{i}
$$

Except in the simplest cases, these convolution Integrals are difficult to compute. In many instances, it is more convenlent to derive the distribution of S_{n} by finding its characteristic function. By the Independence of the X_{i} 's, we have

$$
\begin{aligned}
& \phi(t)=E\left(e^{i t\left(X_{1}+\cdots+X_{n}\right)}\right) \\
& =\prod_{j=1}^{n} E\left(e^{i t X_{j}}\right) \\
& =\prod_{j=1}^{n} \phi_{j}(t)
\end{aligned}
$$

If the X_{i} 's are 11d, then $\phi=\phi_{1}{ }^{n}$.

Example 4.8. Sums of normal random variables.

First, we show that the characteristlc function of a normal (0,1) random varlable is $e^{-t^{2} / 2}$. To see this, note that it can be computed as follows for $t \in R$:

$$
\int \frac{1}{\sqrt{2 \pi}} e^{i t y-y^{2} / 2} d y
$$

$$
\begin{aligned}
& =e^{-t^{2} / 2} \int \frac{1}{\sqrt{2 \pi}} e^{-(y-i t)^{2} / 2} d y \\
& =e^{-t^{2} / 2}
\end{aligned}
$$

From the definition of the characterlstic function we see that if X has characteristlc function $\phi(t)$, then $a X+b$ has characterlstic function $e^{i b t} \phi(a t)$. Thus, a normal (μ, σ^{2}) random varlable has characteristlc function

$$
e^{i t \mu} \phi(\sigma t)
$$

If X_{i} is normal ($\mu_{i}, \sigma_{i}{ }^{2}$), then S_{n} has characteristlc function

$$
\begin{aligned}
& \prod_{j=1}^{n} e^{i t \mu_{j}} e^{-\sigma_{j}^{2} t^{2} / 2} \\
& =e^{i t \sum_{j=1}^{n} \mu_{j}} e^{-\sum_{j=1}^{n} \sigma_{j}^{2} t^{2} / 2}
\end{aligned}
$$

which is the characteristic function of a normal random varlable with parameters $\sum \mu_{j}$ and $\sum \sigma_{j}{ }^{2}$.

Example 4.9. Sums of gamma random variables.

In this example too, it is convenlent to first obtain the characteristic functlon of a gamma (a, b) random varlable. It can be computed as follows:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{y^{a-1} e^{-y / b}}{\Gamma(a) b^{a}} e^{i t y} d y \quad \text { (by definition) } \\
& =\int_{0}^{\infty} \frac{y^{a-1} e^{-y(1-i t b) / b}}{\Gamma(a) b^{a}} d y \\
& \left.=\int_{0}^{\infty} \frac{z^{a-1} e^{-z / b}}{(1-i t b)^{a} \Gamma(a) b^{a}} d z \quad \text { (use } z=y(1-i t b)\right) \\
& =\frac{1}{(1-i t b)^{a}} .
\end{aligned}
$$

Thus, if X_{1}, \ldots, X_{n} are independent gamma random varlables with parameters a_{i} and b, then the sum S_{n} is gamma with parameters $\sum a_{i}$ and b.

It is perhaps worth to mention that when the X_{i} 's are ind random variables, then S_{n}, properly normalized, is nearly normally distributed when n grows large.

If the distribution of X_{1} has mean μ and varlance $\sigma^{2}>0$, then $\left(S_{n}-n \mu\right) /(\sigma \sqrt{n})$ tends in distribution to a normal $(0,1)$ random variable, i.e,

$$
\lim _{n \rightarrow \infty} P\left(\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \leq x\right)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \text { all } x
$$

This is called the central llmit theorem (Chow and Telcher, 1978). This wlll be explolted further on in the design of algorithms for familles of distributions that are closed under additions, such as the gamma or Polsson familles. If the varlance is not finite, then the limlt law is no longer normal. See for example exerclse 4.17, where an example is found of such non-normal attraction.

4.5. Sums of independent uniform random variables.

In this section we consider the distribution of

$$
\sum_{i=1}^{n} a_{i} U_{i}
$$

where the a_{i} 's are positive constants and the U_{i} 's are Independent uniform [0,1] random varlables. We start with the maln result of thls section.

Theorem 4.4.

The distribution function of $\sum_{i=1}^{n} a_{i} U_{i}$ (where $a_{i}>0$, all i, and the U_{i} 's are Independent unform $[0,1]$ random varlables) is given by

$$
F(x)=\frac{1}{a_{1} a_{2} \cdots a_{n} n!}\left(x_{+}^{n}-\sum_{i}\left(x-a_{i}\right)_{+}^{n}+\sum_{i \neq j}\left(x-a_{i}-a_{j}\right)_{+}^{n}-\cdots\right)
$$

Here (. $)_{+}$is the positive part of (.). The density is obtained by taking the derivatlve with respect to x.

Proof of Theorem 4.4.

Conslder the simplex S formed by the origin and the vertices on the n coordinate axes at distances $x / a_{1}, \ldots, x / a_{n}$, where $x>0$ is the polnt at which we want to calculate $F(x)$. Let us define the sets B_{i} as

$$
B_{i}=[0, \infty)^{i-1} \times(1, \infty) \times[0, \infty)^{n-i}
$$

where $1 \leq i \leq n$. Note now that the first quadrant minus the unit cube $[0,1]^{n}$ can be decomposed by the inclusion/exclusion principle as follows:

$$
\begin{aligned}
& {[0, \infty)^{n}-[0,1]^{n}} \\
& =\sum_{i} B_{i}-\sum_{i \neq j} B_{i} \cap B_{j}+\cdots
\end{aligned}
$$

Now, slnce $F(x)=$ area $\left(S \cap[0,1]^{n}\right)=$ area (S)-area $\left(S \cap\left([0, \infty)^{n}-[0,1]^{n}\right)\right)$, we obtain

$$
F(x)=\operatorname{area}(S)-\sum_{i} \operatorname{area}\left(S \cap B_{i}\right)+\sum_{i \neq j} \operatorname{area}\left(S \cap B_{i} \cap B_{j}\right)-\cdots
$$

Thls is all we need, because for any subset J of $1, \ldots, n$, we have

$$
\operatorname{area}\left(S \bigcap_{i \in J} B_{i}\right)=\frac{\left(x-\sum_{i \in J} a_{i}\right)_{+}^{n}}{a_{1} \cdots a_{n} n!}
$$

Thls concludes the proof of Theorem 4.4.

It is Instructive to do the proof of Theorem 4.4 for the special case $n=2$, and to draw the simplex and the varlous sets used in the geometric proof. For the important case $a_{1}=a_{2}=\cdots=a_{n}=1$, the distribution function is

$$
F(x)=\frac{1}{n!}\left(x_{+}^{n}-\binom{n}{1}(x-1)_{+}^{n}+\binom{n}{2}(x-2)_{+}^{n}-\cdots\right) .
$$

In particular, for $n=2$, obtaining the density by taking the derivative of the distribution function, we have

$$
\begin{aligned}
& f(x)=x_{+}-2(x-1)_{+}+(x-2)_{+} \\
& = \begin{cases}0 & \text { if } x<0 \\
x & \text { if } 0 \leq x \leq 1 \\
2-x & \text { if } 1 \leq x \leq 2 \\
0 & \text { if } 2<x\end{cases}
\end{aligned}
$$

In other words, the density has the shape of an isosceles triangle. In general, the density of $U_{1}+U_{2}+\cdots+U_{n}$ consists of pleces of polynomlals of degree $n-1$ with breakpoints at the integers. The form approaches that of the normal density as $n \rightarrow \infty$.

4.6. Exercises.

1. If h is strictly monotone, h^{\prime} exists and is continuous, g is a given density, and X is a random variable with density $h^{\prime}(x) g(h(x))$, then $h(X)$ has density g. (This is the inverse of Theorem 4.1.)
2. If X has density $1 /\left(x^{2} \sqrt{\pi \log x}\right)(x \geq 1)$, then $\sqrt{2 \log X}$ is distributed as the absolute value of a normal random varlable. (Use exercise 1.)
3. If X is a gamma $\left(\frac{1}{2}, 1\right)$ random variable, i.e. X has density $e^{-x} / \sqrt{\pi x} \quad(x>0)$, then $\sqrt{2 X}$ is distributed as the absolute value of a normal random variable. (Use exerclse 1.)
4. Let A be a $d \times d$ matrix with nonzero determinant. Let $Y=A X$ where both X and Y are R^{d}-valued random vectors. If X has density f, then Y has density

$$
f\left(A^{-1} y\right)\left|\operatorname{det} A^{-1}\right| \quad\left(y \in R^{d}\right) .
$$

Thus, if X has a unlform denslty on a set B of R^{d}, then Y is uniformly distributed on a set C of R^{d}. Also, determine C from B and A.
5. If Y is gamma $(a, 1)$ and X is exponential (Y), then the density of X is

$$
f(x)=\frac{a}{(x+1)^{a+1}} \quad(x \geq 0)
$$

8. A random variable is sald to have the F distribution with a and b degrees of freedom when its density is

$$
f(x)=\frac{c x^{\frac{a}{2}-1}}{\left(1+\frac{a x}{b}\right)^{\frac{a+b}{2}}}, \quad(x>0)
$$

Here, c is the constant $\Gamma\left(\frac{a+b}{2}\right)\left(\frac{a}{b}\right)^{\frac{a}{2}} / \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{b}{2}\right)$. Show that when X and Y are Independent chl-square random variables with parameters a and b respectively, then $\left(\frac{X}{a}\right) /\left(\frac{Y}{b}\right)$ is $F(a, b)$. Show also that when X is $F(a, b)$, then $\frac{1}{X}$ is $F(b, a)$. Show finally that when X is t-distributed with a degrees of freedom, X^{2} is $F(1, a)$. Draw the curves of the densitles of $F(2,2)$ and $F(3,1)$ random varlables.
7. When N_{1} and N_{2} are independent normal random varlables, the random variables $N_{1}{ }^{2}+N_{2}{ }^{2}$ and N_{1} / N_{2} are independent.
8. Let f be the trlangular denslty defned by

$$
f(x)= \begin{cases}1-\frac{x}{2} & \text { if } 0 \leq x \leq 2 \\ 0 & \text { elsewhere }\end{cases}
$$

When U_{1} and U_{2} are independent unlform $[0,1]$ random variables, then the following random varlables all have density f :

$$
\begin{aligned}
& 2 \mathrm{~min}\left(U_{1}, U_{2}\right) ; \\
& 2\left|U_{1}+U_{2}-1\right| ; \\
& 2\left(1-\sqrt{U_{1}}\right)
\end{aligned}
$$

9. Show that the density of the product $\prod_{i=1}^{n} U_{i}$ of n 11d unlform [0,1] random variables is

$$
f(x)= \begin{cases}\frac{1}{(n-1)!} \log \left(\frac{1}{x}\right)^{n-1} & 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

10. When X is gamma ($a, 1$), then $1 / X$ has density

$$
f(x)=\left(\frac{1}{x}\right)^{a+1} \frac{e^{-\frac{1}{x}}}{\Gamma(a)} \quad(x \geq 0)
$$

11. Let $Y=\prod_{i=1}^{k} X_{i}$ where X_{1}, \ldots, X_{k} are ild random variables each distributed as the maximum of n ild unlform $[0,1]$ random varlables. Then Y has density

$$
f(x)=\frac{n^{k}}{\Gamma(k)} x^{n-1}(-\log (x))^{k-1} \quad(0 \leq x \leq 1)
$$

(Rider, 1955; Rahman, 1984).
12. Let X_{1}, \ldots, X_{n} be lld unlform $[-1,1]$ random variables, and let Y be equal to $\left(\min \left(X_{1}, \ldots, X_{n}\right)+\max \left(X_{1}, \ldots, X_{n}\right)\right) / 2$. Show that Y has density

$$
f(x)=\frac{n}{2}(1-|x|)^{n-1} \quad(|x| \leq 1)
$$

and varlance $\frac{2}{(n+1)(n+2)}$ (Neyman and Pearson, 1928; Carlton, 1946).
13. We say that the power distribution with parameter $a>-1$ is the distribution corresponding to the density

$$
f(x)=(a+1) x^{a} \quad(0<x<1) .
$$

If X_{1}, \ldots are ild random varlables having the power distribution with parameter a, then show that
A. X_{1} / X_{2} has density

$$
\begin{cases}\frac{a+1}{2} x^{a} & 0<x<1 \\ \frac{a+1}{2} x^{-(a+2)} & 1 \leq x\end{cases}
$$

B. $\prod_{i=1}^{n} X_{i}$ has denslty

$$
\frac{(a+1)^{n}}{\Gamma(n)} x^{a}\left(\log \frac{1}{x}\right)^{n-1} \quad(0<x<1)
$$

(Springer, 1979, p. 181).
14. The ratio G_{a} / G_{b} of two independent gamma random varlables with parameters $(a, 1)$ and $(b, 1)$ respectively has denslty

$$
\frac{1}{B(a, b)} \frac{x^{a-1}}{(1+x)^{a+b}} \quad(x>0)
$$

Here $B(a, b)$ is the standard abbreviation for the constant in the beta Integral, l.e. $B(a, b)=\Gamma(a) \Gamma(b) / \Gamma(a+b)$. This is called the beta density op the second kind. Furthermore, $G_{a} /\left(G_{a}+G_{b}\right)$ has the beta density with parameters a and b.
15. Let U_{1}, \ldots, U_{4} be lid uniform $[0,1]$ random varlables. Show that $\left(U_{1}+U_{2}\right) /\left(U_{3}+U_{4}\right)$ has density

$$
\begin{cases}\frac{7 x}{6} & 0<x<\frac{1}{2} \\ \frac{8}{3}-\frac{3 x}{2}-\frac{2}{3 x^{2}}+\frac{1}{6 x^{3}} & \frac{1}{2} \leq x<1 \\ -\frac{2}{3}+\frac{x}{6}+\frac{8}{3 x^{2}}-\frac{3}{2 x^{3}} & 1 \leq x<2 \\ \frac{7}{6 x^{3}} & 2 \leq x\end{cases}
$$

18. Show that $N_{1} N_{2}+N_{3} N_{4}$ has the Laplace denslty (1.e., $\frac{1}{2} e^{-|x|}$), whenever the N_{i} 's are lld normal random varlables (Mantel, 1973).
19. Show that the characterlstic function of a Cauchy random variable is $e^{-|t|}$. Using thls, prove that when X_{1}, \ldots, X_{n} are IId Cauchy random varlables, then $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is again Cauchy distributed, l.e. the average is distributed as X_{1}.
20. Use the convolution method to obtain the denslties of $U_{1}+U_{2}$ and $U_{1}+U_{2}+U_{3}$ where the U_{i} 's are lld unlform $[-1,1]$ random varlables.
21. In the oldest FORTRAN subroutine llbrarles, normal random varlates were generated as

$$
X_{n}=\frac{1}{\sqrt{n / 3}} \sum_{j=1}^{n}\left(U_{j}-\frac{1}{2}\right)
$$

where the U_{j} 's are lld unlform [0,1] random varlates. Usually n was equal to 12. This generator is of course inaccurate. Verlfy however that the mean and variance of such random varlables are correct. Bolshev (1959) later
proposed the corrected random varlate

$$
Y=X_{5}-\frac{3 X_{5}-X_{5}^{3}}{100}
$$

Deflne a notion of closeness between densities, and verlfy that Y is closer to a normal random varlable than X_{5}.
20. Let $U_{1}, \ldots, U_{n}, V_{1}, \ldots, V_{m}$ be Ild unlform [0,1] random varlables. Define $X=\max \left(U_{1}, \ldots, U_{n}\right), Y=\max \left(V_{1}, \ldots, V_{m}\right)$. Then X / Y has density

$$
f(x)= \begin{cases}c x^{n-1} & , 0 \leq x \leq 1 \\ \frac{c}{x^{m+1}} & , x \geq 1\end{cases}
$$

where $c=\frac{n m}{n+m}$ (Murty, 1955).
21. Show that if $X \leq Y \leq Z$ are the order statistics for three lid normal random varlables, then

$$
\frac{\min (Z-Y, Y-X)}{Z-X}
$$

has density

$$
f(x)=\frac{3 \sqrt{3}}{\pi\left(1-x+x^{2}\right)}, \quad\left(0 \leq x \leq \frac{1}{2}\right)
$$

See e.g. Lleblein (1952).

