Both inequallties can be satisfled simultaneously for all $m \geq 0$. After fixing γ, compute all quantities in the upper bound of Lemma 3.3. Since $C(x)=\left(C_{0}+o(1)\right)\left(|x|+\mu_{4}^{1 / 4}\right)^{\alpha}$ with $C_{0}=4 /(9 \pi)$, it is easy to see that

$$
\int C g=\left(C_{0}+o(1)\right) E\left(\left(|X|+\mu_{4}^{\frac{1}{4}}\right)^{\alpha}\right)
$$

where X is a random variable with density g, and $\alpha=4(m-1) /(m+4)$. We can choose g such that $E\left(|X|^{\alpha}\right)$ is close to $\mu_{4}^{\alpha / 4}$ (e.g., In Example 3.4, take $r=0$ or larger in the bound for unimodal densitles; taking $r=4$ lsn't good enough because for $\left.r=4, E\left(|X|^{4}\right)=\infty\right)$. Notlng next that $\mu_{4}{ }^{1 / 4} \sim \sqrt{m} / 3^{1 / 4}$ as $m \rightarrow \infty$, we note that $\int C g$ increases as a constant times $m^{\alpha / 2}$. Next, $\int C^{2-\frac{1}{\gamma}}$ Increases as a constant times

which in turn increases as $m^{\frac{9}{2}-\frac{2}{\gamma}}$. The upper bound in Lemma 3.3 Increases as

$$
m^{2-2 \gamma+\frac{9 \gamma}{2}-2}=m^{\frac{5 \gamma}{2}} .
$$

The smallest allowable value for γ is $1 / \alpha \sim 1 / 4$. Thus, the upper bound on the expected complexity is of the order of magnitude of $m^{5 / 8}$.

3.4. Exercises.

1. Show that when a characteristic function ϕ is absolutely integrable, then the distribution has a bounded continuous density f. Is the density also unlformly continuous?
2. Construct a symmetric real characteristic function for a distribution with a density, having the property that ϕ takes negative and positive values.
3. Consider symmetric nonnegative characteristic functions ϕ, and define $\nu_{2 n}=\int t^{2 n} \phi(t) d t$.
A. Show that $\nu_{2 n}^{1 /(2 n)}=o(n)$ implles that $\left(x^{2 n} \nu_{2 n}\right) /(2 n)$! is summable for all $x>0$.
B. Show that f is unimodal and has a unlque mode at 0 (Feller, 1971, p. 528).
C. In the alternating serles algorithm for this class of densitles given In the text, why can we take $b=\mu_{1}$ or $b=\sigma$ in the formula for the dominating
curve where μ_{1} is the first absolute moment for f and σ is the standard deviation for f ?
D. A continuation of part C. If all operations in the algorlthm take one unlt of time, glve a useful sufficient condition on ϕ for the expected time of the algorlthm to be finite.
4. The following is an important symmetric nonnegative characteristic function:

$$
\phi(t)=\sqrt{\left.\frac{\sqrt{2 t}}{\sinh (\sqrt{2 t}}\right)}=\frac{1}{\sqrt{1+2 \frac{\downarrow t}{3!}+2 \frac{d^{t} ل^{2}}{5!}+\cdots}}
$$

(see e.g. Anderson and Darling, 1952). Near $t=0$, ϕ varles as $1-|t| / 6$. This implles that the flrst absolute moment is infinite. Find a dominating curve for this particular characteristic function, verlfy that the denslty f is determined by its Taylor serles about 0 , and give all the detalls of the alternating serles method for this distribution.
5. The following characteristlc function appears as the limit of a sequence of characterlstlc functions in mathematical statistics (Anderson and Darling, 1852):

$$
\phi(t)=\left(\frac{-2 \pi i t}{\cos \left(\frac{\pi}{2} \sqrt{1+8 i t}\right)}\right)^{\frac{1}{2}}
$$

Give a finlte time random varlate generator for this distrlbution. Ignore efficiency issues (e.g., the expected time is allowed to be infinite).
6. Glve the full detalls of the proof that the expected number of evaluations of ϕ in the series method for generating the sum of m Ild unlform $[-1,1]$ random variables (Example 3.6) is $O\left(m^{(5+\epsilon) / 8}\right)$ for all $\epsilon>0$.
7. How can you Improve on the expected complexity in Example 3.6?

4. THE SIMULATION OF SUMS.

4.1. Problem statement.

Let X be a random varlable with density f on the real llne. In this section we consider the problem of the simulation of $S_{n}=X_{1}+\cdots+X_{n}$ where X_{1}, \ldots, X_{n} are lld random varlables distributed as X. The nalve method

```
Naive method
S\leftharpoondown0
FOR }i:=1`\textrm{TO}n\mathrm{ DO
    Generate }X\mathrm{ with density f.
    S\leftarrowS+X
RETURN S
```

takes worst-case or expected time proportlonal to n depending upon whether X can be generated in constant worst-case or constant expected time. We say that a generator is unformly fast when the expected time $E\left(T_{n}\right)$ needed to generate S_{n} satlsfles

$$
\sup _{n \geq 1} E\left(T_{n}\right)<\infty .
$$

This supremum is allowed to depend upon f. Note that the uniformity is with respect to n and not to f. This differs from our standard notion of unlformity over a class of distributions.

In trying to develop uniformly fast generators, we should get a lot of help from the central limit theorem, which states that under some conditions on the distribution of X, the sum S_{n}, properly normalized, tends in distribution to one of the stable laws. Ideally, a unlformly fast generator should return such a stable random varlate most of the time. What complicates matters is that the distribution of S_{n} is not easy to describe. For example, in a rejection based method, the computation of the value of the density of S_{n} at one point usually requires time increasing with n. Needless to say, it is this hurdle which makes the problem both challenging and interesting.

In a first approach, we will cheat a bit: recall that if ϕ is the characteristic function of X, then S_{n} has characteristlc function ϕ^{n}. If we have a unlformly fast generator for the famlly $\left\{\phi, \phi^{2}, \ldots, \phi^{n}, \ldots\right\}$, then we are done. In other words, we reduce the problem to that of the generation of random varlates with a glven characteristic function, discussed \ln section 3 . The reason why we call thls cheating is that ϕ is usually not avallable, only f.

In the second approach, the problem is tackled head on. We will first derive Inequallities which relate the density of S_{n} to the normal density. In proving the Inequalitles, we have to rederive a so-called local central limit theorem. The inequalitles allow us to design unlformly fast rejection algorithms which return a stable random varlate with high probabllity. The tlghtness of the bounds allows us to obtaln this result desplte the fact that the density of S_{n} can't usually be computed in constant time. When the density can be computed in constant time, the algorithm is extremely effcient. This is the case when the density of S_{n} has a relatively simple analytic form, as in the case of the exponential density when
S_{n} is gamma (n).
Other solutions are suggested in the exercises and in later sections, but the most promising generally applicable strategles are definitely the two mentioned above.

4.2. A detour via characteristic functions.

S_{n} has characteristic function ϕ^{n} when X has characteristic function ϕ. Thls fact can be used to generate S_{n} efficlently provided that all the ϕ_{n} 's belong to a famlly of characteristlc functions for which a good efficlent generator is avallable.

One such famlly is the family of Polya characterlstlc functions dealt with in section IV.8.7. In particular, if ϕ is Polya, so is ϕ^{n}. Based upon Theorems IV.8.8 and IV.b.g, we can conclude the following:

Theorem 4.1.

If ϕ is a Polya characteristic function, then $X \leftarrow \frac{Y}{Z}$ has characteristlc functlon ϕ^{n} when Y, Z are independent random varlables, Y has the FVP density (defined in Theorem N.6.9), and Z has distribution function

$$
F(s)=1-\phi^{n}+s n \phi^{\prime}(s) \phi^{n-1}(s) \quad(s>0) .
$$

Here ϕ^{\prime} is the right-hand derivative of ϕ. When F is absolutely continuous, then it has density

$$
s^{2} n(n-1) \phi^{\prime 2}(s) \phi^{n-2}(s)+s^{2} n \phi^{\prime \prime}(s) \phi^{n-1}(s) \quad(s>0)
$$

When ϕ is expllcitly given, and it often is, this method should prove to be a formidable competitor. For one thing, we have reduced the problem to one of generating a random varlate with an explicitly given distribution function or density, i.e. we have taken the problem out of the domaln of characteristic functions.

The princlple outlined here can be extended to a few other classes of characterlstlc functions, but we are stlll far away from a generally applicable technlque, let alone a universal black box method. The approach outlined in the next section is better sulted for thls purpose.

4.3. Rejection based upon a local central limit theorem.

We assume that f is a zero mean denslty with finlte variance σ^{2}. Summing n ild random variables with this density is known to glve a random varlable with approximately normal ($0, n \sigma^{2}$) distribution. The study of the closeness of thls approximation is the subject of the classical central llmit theory. The only things that can be of use to us are precise (i.e., not asymptotic) Inequalltles which clarlfy just how close the density of S_{n} is to the normal ($0, n \sigma^{2}$) density. For a smooth treatment, we put two further restrictions on f :
A. The density f has an absolutely integrable characteristic function ϕ. Recall that thls implles among other things that f is bounded and continuous.
B. The random varlable X has finite third absolute moment not exceeding β : $E\left(|X|{ }^{3}\right) \leq \beta<\infty$.
Condition A allows us to use the simple Inversion formula for characteristic functhons, while condition B guarantees us that the error term is $O(1 / \sqrt{n})$. Densittes f satlsfying all the conditions outllned above are called regular. Clearly, most zero mean densitles occurring in practice are regular. There is only one large class of exceptions, the distributlons in the domaln of attraction of stable laws. By forcing the varlance to be finite, we can only have convergence to the normal distribution. In exercise 4.1, which is more a research project than an exercise, the reader is challenged to repeat thls section for distributions whose sums converge to symmetric stable laws with parameter $\alpha<2$. For once we will do things backwards, by giving the results and their implications before the proofs, which are deferred to next section.

The fundamental result upon which this entire section rests is the following form of a local central limit theorem:

Theorem 4.2.

Let f be a regular density, and let f_{n} be the density of $S_{n} /(\sigma \sqrt{n})$. Let g be the standard normal density. There exist sequences a_{n} and b_{n} only depending upon f such that

$$
\left|f_{n}(x)-g(x)\right| \leq h_{n}(x)=\min \left(a_{n}, \frac{b_{n}}{x^{2}}\right),
$$

and

$$
\max \left(a_{n}, b_{n}\right)=O\left(\frac{1}{\sqrt{n}}\right)
$$

For a proof and references, see section 4.4. Explicit values for a_{n} and b_{n} follow. It is Important to note that

$$
g-h_{n} \leq f_{n} \leq g+h_{n},
$$

where $\int h_{n}=O(1 / \sqrt{n})$. In other words, the inequallty is eminently sulted for use in a rejection algorithm with squeezing. Both g and h_{n} can be considered as very easy densitles from a random variate generation polnt of vlew. Furthermore, the obvious rejection algorlthm, described in Example II.3.6, has rejection constant $1+\int h_{n}$ tending to 1 as $n \rightarrow \infty$. There is even more good news: if the lower bound is used for squeezing, then the expected number of evaluations of f is at most $2 \int h_{n}=O(1 / \sqrt{n})=O(1)$. The cumbersome part is the evaluation of f_{n}.

There are essentially two possibillties when it comes to evaluating f_{n} : first, f_{n} is expllcitly known. This is for example the case when f is an exponential density centered around its mean, and f_{n} is the density of a linearly transformed gamma (n) density. In the case of the gamma density, we can easlly compute the different constants in the bound of Theorem 4.2. as is done in exercise 4.2. Another example for the sums of uniform random varlables follows in a separate section.

To compute f_{n} via convolutions is all but impossible. The only other alternatlve is to write f_{n} as a serles based upon the inversion formula for ϕ^{n}, and to apply the serles method. Here too the hurdles are formidable.

4.4. A local limit theorem.

It is the purpose of this section to prove Theorem 4.2. The proof is quite long, and is given in full because we require explicit knowledge of the bounding sequence, and a careful derlvation of the bounds to keep the constants as small as possible. Local llmit theorems of the type needed by us have been derived in a number of papers, see e.g. Inzevitov (1977), Survila (1984) and Maejima (1980). An excellent general reference is Petrov (1975). For example, Survila (1984) has obtalned the exlstence of a constant C depending upon f only such that for regular f,

$$
\left|f_{n}(x)-g(x)\right| \leq \frac{C}{1+x^{2}}
$$

Ibraglmov and Linnik (1971) have obtalned an upper bound of the type $\frac{C}{\sqrt{n}}$.
Note that Survila's bound does not tend to zero with n. The Ibragimov-Linnik upper bound is called a unlform estimate in the local central llmit theorem. Such unlform estimates are useless to us because the upper bound when integrated with respect to x is not finite. The bound which we derive here uses well-known tricks of the trade, documented for example in Petrov (1975) and Maellma (1980).

Let us start slowly with a few key lemmas.

Lemma 4.1.

For any real t,

$$
\left|e^{i t}-\sum_{j=0}^{n-1} \frac{(i t)^{j}}{j!}\right| \leq \frac{t^{n}}{n!} \quad(n \geq 0)
$$

Lemma 4.2.

Let ϕ be the characteristic function for a regular density f. Then the following inequalltles are valld:

$$
\begin{aligned}
& \left|\phi(t)-1+\frac{\sigma^{2} t^{2}}{2}\right| \leq \frac{\beta|t|^{3}}{\theta}, \\
& \left|\phi^{\prime}(t)+t \sigma^{2}\right| \leq \frac{\beta}{2} t^{2}, \\
& \left|\phi^{\prime \prime}(t)+\sigma^{2}\right| \leq \beta|t|
\end{aligned}
$$

Proof of Lemma 4.2.

Since three absolute moments exist, we notlce that the first three derivatives of ϕ exlst and are continuous functions given by the formulas (Feller, 1971, p. 512)

$$
\phi^{(j)}(t)=\int e^{i t x}(i x)^{j} f(x) d x \quad(j=0,1,2,3) .
$$

Observe that

$$
\begin{aligned}
& \left|\phi(t)-1+\frac{\sigma^{2} t^{2}}{2}\right| \leq \int\left|e^{i t u}-1-i t u+\frac{t^{2} u^{2}}{2}\right| f(u) d u \\
& \leq \int\left|\frac{|t|^{3}|u|^{3}}{8}\right| f(u) d u=\frac{\beta}{6}|t|^{3} .
\end{aligned}
$$

Next,

$$
\phi^{\prime}(t)+\frac{\sigma^{2} t}{2}=\int\left(e^{i t u}-1-i t u\right) i u f(u) d u
$$

Thus,

$$
\left|\phi^{\prime}(t)+\frac{\sigma^{2} t}{2}\right| \leq \int\left|\frac{t^{2} u^{2}}{2}\right||u| f(u) d u \leq \frac{\beta}{2} t^{2} .
$$

Finally,

$$
\phi^{\prime \prime}(t)+\sigma^{2}=-\int\left(e^{i t u}-1\right) u^{2} f(u) d u
$$

Thus,

$$
\left|\phi^{\prime \prime}(t)+\sigma^{2}\right| \leq \int|t u| u^{2} f(u) d u \leq \beta|t|
$$

Lemma 4.3.

Consider the absolute differences

$$
A_{m}(t)=\left|\left(1-\frac{t^{2}}{2 n}\right)^{m}-e^{-\frac{t^{2}}{2}}\right| \quad(m=n-2, n-1, n)
$$

For $t^{2} \leq n$, we have

$$
\begin{aligned}
& A_{n}(t) \leq \frac{t^{4}}{4 n} e^{-\frac{t^{2}}{2}} \\
& A_{n-1}(t) \leq \frac{1}{2(n-1)} e^{\frac{1}{2(n-1)}} e^{-\frac{t^{2}}{2}}, \\
& A_{n-2}(t) \leq \frac{2}{n-2} e^{\frac{2}{n-2}} e^{-\frac{t^{2}}{2}}
\end{aligned}
$$

If all Integrals shown below are over $\{|t| \leq \sqrt{n}\}$, then we have

$$
\begin{aligned}
& \int A_{n}(t) d t \leq \frac{3}{4 n} \sqrt{2 \pi}, \int t^{2} A_{n}(t) d t \leq \frac{15}{4 n} \sqrt{2 \pi}, \\
& \int A_{n-1}(t) d t \leq \frac{3}{4 n} \sqrt{2 \pi}+\frac{\sqrt{2 \pi}}{2(n-1)} e^{\frac{1}{2(n-1)}}, \\
& \int t^{2} A_{n-1}(t) d t \leq \frac{15}{4 n} \sqrt{2 \pi}+\frac{\sqrt{2 \pi}}{2(n-1)} e^{\frac{1}{2(n-1)}}, \\
& \int A_{n-2}(t) d t \leq \frac{3}{4 n} \sqrt{2 \pi}+\frac{2 \sqrt{2 \pi}}{n-2} e^{\frac{2}{n-2}}, \\
& \int t^{2} A_{n-2}(t) d t \leq \frac{15}{4 n} \sqrt{2 \pi}+\frac{2 \sqrt{2 \pi}}{n-2} e^{\frac{2}{n-2}} .
\end{aligned}
$$

Proof of Lemma 4.3.

First,

$$
\begin{aligned}
& e^{-\frac{t^{2}}{2}}-\left(1-\frac{t^{2}}{2 n}\right)^{n-2} \leq e^{-\frac{t^{2}}{2}}-\left(1-\frac{t^{2}}{2 n}\right)^{n-1} \\
& \leq e^{-\frac{t^{2}}{2}}-\left(1-\frac{t^{2}}{2 n}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \leq e^{-\frac{t^{2}}{2}}\left(1-e^{-\frac{n t^{4}}{8 n^{2}\left(1-\frac{t^{2}}{2 n}\right)}}\right) \\
& \leq e^{-\frac{t^{2}}{2}}\left(1-e^{-\frac{n t^{4}}{4 n^{2}}}\right) \\
& \leq e^{-\frac{t^{2}}{2}} \frac{t^{4}}{4 n}
\end{aligned}
$$

Here we used the inequallity $\log (1-u) \geq-u-u^{2} /(2(1-u)) \geq-u-u^{2}$ valld for $0 \leq u \leq 1 / 2$. Since

$$
0 \leq e^{-\frac{t^{2}}{2}}-\left(1-\frac{t^{2}}{2 n}\right)^{n}
$$

the bound for A_{n} is proved. For the other bounds, consider A_{m} in general. Clearly,

$$
\left(1-\frac{t^{2}}{2 n}\right)^{m}-e^{-\frac{t^{2}}{2}} \leq e^{-\frac{t^{2}}{2}\left(e^{t^{2}\left(\frac{1}{2}-\frac{m}{2 n}\right)-t^{4} \frac{m}{8 n^{2}}}-1\right)}
$$

For $m=n-i$, the exponent is at most $t^{2} i /(2 n)-t^{4}(n-i) /\left(8 n^{2}\right)$. This function is at most $i^{2} /(2(n-i))$. By the Inequallty $e^{u}-1 \leq u e^{u}$ valld for $u \geq 0$, we finally conclude that the expression on the right hand side of the last inequallty is at most

$$
e^{-\frac{t^{2}}{2}} \frac{i^{2}}{2(n-i)} e^{\frac{i^{2}}{2(n-i)}} .
$$

This proves all the pointwise inequallites for A_{m}. The integral inequalities are obtalned by integrating the pointwise inequallites over the whole real line (this can only make the upper bounds larger). One needs the facts that for a normal random varlable $N, E\left(N^{2}\right)=1, E\left(N^{4}\right)=3$, and $E\left(N^{6}\right)=15$.

Lemma 4.4.

For regular f, and $|t| \leq \frac{3 \sigma^{3} \sqrt{n}}{4 \beta}$, we have

$$
\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \leq \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}} e^{-\frac{t^{2}}{4}}+\left|A_{n}(t)\right|
$$

Integrated over the given interval for t, we have

$$
\int\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| d t \leq \frac{16 \beta}{3 \sigma^{3} \sqrt{n}}+\frac{3}{4 n} \sqrt{2 \pi} .
$$

Proof of Lemma 4.4.

Note that

$$
\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \leq\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-\left(1-\frac{t^{2}}{2 n}\right)^{n}\right|+\left|A_{n}(t)\right|
$$

The last term is taken care of by applying Lemma 4.3. Here we need the fact that the glven interval for t is always included in $[-\sqrt{n}, \sqrt{n}]$, so that the bounds of Lemma 4.3 are Indeed applicable. By Lemma 4.2, the first term can be written as

$$
\left(1-\frac{t^{2}}{2 n}\right)^{n}\left|\left(1+\frac{\theta \beta|t|^{3}}{6 \sigma^{3} n^{\frac{3}{2}}\left(1-\frac{t^{2}}{2 n}\right)}\right)^{n}-1\right|
$$

where $|\theta| \leq 1$. Using the fact that $(1+u)^{n}-1 \leq n|u| e^{n|u|}$ for all $n>0$, and all $u \in R$, thls can be bounded from above by

$$
e^{-\frac{t^{2}}{2}} \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}} e^{\frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}}} \leq e^{-\frac{t^{2}}{4}} \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}}
$$

To obtaln the integral inequality, use Lemma 4.3 again, and note that $\int|t|^{3} e^{-t^{2} / 4} d t=18$.

Lemma 4.5.

For regular f,

$$
\sup _{x}\left|f_{n}(x)-g(x)\right| \leq a_{n}
$$

where

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi} \frac{18 \beta}{3 \sigma^{3} \sqrt{n}}\left(1+\frac{1}{2} e^{-\frac{9 \sigma^{0} n}{32 \beta^{2}}}\right) \\
& +\frac{1}{2 \pi} \frac{3}{4 n} \sqrt{2 \pi}+\frac{1}{2 \pi} \sup _{|t| \geq \frac{4 \sigma^{2}}{3 \beta}}|\phi(t)|^{n-1} \sigma \sqrt{n} \int|\phi|
\end{aligned}
$$

f_{n} is the density of $S_{n} /(\sigma \sqrt{n})$ and g is the normal density. Also,

$$
a_{n} \sim \frac{8 \beta}{3 \pi \sigma^{3} \sqrt{n}}
$$

as $n \rightarrow \infty$.

Proof of Lemma 4.5.

By the inversion formula for absolutely integrable characteristic functions, we see that

$$
\begin{aligned}
& 2 \pi\left|f_{n}(x)-g(x)\right| \leq \int\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \\
& \leq \int_{D}\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| d t+\int_{D^{\circ}}\left(\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)\right|+e^{-\frac{t^{2}}{2}}\right) d t
\end{aligned}
$$

where D is the interval defined by the condition $|t| \leq \frac{3 \sigma^{3} \sqrt{n}}{4 \beta}$, and D^{c} is the complement of D. The integral over D is bounded in Lemma 4.4 by

$$
\frac{16 \beta}{3 \sigma^{3} \sqrt{n}}+\frac{3}{4 n} \sqrt{2 \pi} .
$$

The integral over D^{c} does not exceed

$$
\sup _{|t| \geq \frac{4 \sigma^{2}}{3 \beta}}|\phi(t)|^{n-1} \sigma \sqrt{n} \int|\phi|+\frac{8 \beta}{3 \sigma^{3} \sqrt{n}} e^{-\frac{9 \sigma^{6} n}{32 \beta^{2}}},
$$

where we used a well-known inequallty for the tall of the normal distribution, i.e. ∞ $\int_{u} g \leq g(u) / u$. This concludes the proof of Lemma 4.5.

Lemma 4.6.

For regular f, and

$$
|t| \leq \frac{3 \sigma^{3} \sqrt{n}}{4 \beta}
$$

we have

$$
\left|\phi^{n-1}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \leq \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}} e^{-\frac{t^{2}}{4}}
$$

Integrated over the given interval for t, we have

$$
\int\left|\phi^{n-1}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| d t \leq \frac{18 \beta}{3 \sigma^{3} \sqrt{n}}+\frac{3}{4 n} \sqrt{2 \pi} .
$$

Proof of Lemma 4.6.

Note that

$$
\left|\phi^{n-1}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \leq\left|\phi^{n-1}\left(\frac{t}{\sigma \sqrt{n}}\right)-\left(1-\frac{t^{2}}{2 n}\right)^{n-1}\right|+\left|A_{n-1}(t)\right|
$$

The last term is taken care of by applying Lemma 4.3. Here we need the fact that the given interval for t is always included in $[-\sqrt{n}, \sqrt{n}]$, so that the bounds of Lemma 4.3 are Indeed applicable. By Lemma 4.2, the flrst term can be written as

$$
\left(1-\frac{t^{2}}{2 n}\right)^{n-1}\left|\left(1+\frac{\theta \beta|t|^{3}}{8 \sigma^{3} n^{\frac{3}{2}}\left(1-\frac{t^{2}}{2 n}\right)}\right)^{n-1}-1\right|
$$

where $|\theta| \leq 1$. Using the fact that $(1+u)^{n-1}-1 \leq n|u| e^{n|u|}$ for all $n>0$, and all $u \in R$, this can be bounded from above by

$$
\frac{e^{-(n-1) t^{2}}}{2 n} \frac{\left.\beta \backslash t\right|^{3}}{3 \sigma^{3} \sqrt{n}} e^{\frac{\left.\beta \backslash t\right|^{8}}{3 \sigma^{3} \sqrt{n}}} \leq e^{-\left(1-\frac{1}{2 n}\right) \frac{t^{2}}{4}} \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}}
$$

To obtain the integral inequallty, use Lemma 4.3 agaln, and note that $\int|t|^{3} e^{-t^{2} / 4} d t=16$.

Lemma 4.7.

Let g be the normal density and let f_{n} be the density of the normalized sum $S_{n} /(\sigma \sqrt{n})$ for ind random varlables with a regular density f. Let ϕ be the charactertstlc function for f. Then

$$
\left|f_{n}(x)-g(x)\right| \leq \frac{b_{n}}{x^{2}}
$$

where

$$
\begin{aligned}
& b_{n}=\frac{4 \beta}{3 \pi \sigma^{3} \sqrt{n}} e^{-\frac{9 \sigma^{0} n}{32 \beta^{2}}}+\frac{\sqrt{8}}{\pi} e^{-\frac{9 \sigma^{6} n}{64 \beta^{2}}} \\
& +\frac{1}{2 \pi} \rho^{n-2} \sigma \sqrt{n} \int|\phi|+\frac{1}{2 \pi} \rho^{n-3} \sigma^{3} n^{\frac{3}{2}} \int t^{2}|\phi| \\
& +\frac{1}{2 \pi}\left(\frac{208 \beta}{3 \sigma^{3} \sqrt{n}}+\frac{18 \sqrt{2 \pi}}{4 n}\right) \\
& +\frac{1}{\sqrt{4 \pi n(n-1)}}+\frac{3}{(n-2) \sqrt{2 \pi}} \\
& +\frac{1}{n \sigma^{2} \sqrt{2 \pi}}+\frac{\beta}{\sigma^{3} \sqrt{n}}\left(\frac{1}{\sigma^{2} \sqrt{8 \pi}}+2\right) .
\end{aligned}
$$

Here $\rho=\sup _{|t| \geq \frac{3 \sigma^{2}}{4 \beta}}|\phi(t)|$. Note that as $n \rightarrow \infty, \quad b_{n} \sim \frac{b}{\sqrt{n}}$ where $b=\frac{\beta}{\sigma^{3}}\left(\frac{1}{\sigma^{2} \sqrt{8 \pi}}+2+\frac{208}{6 \pi}\right)$.

Proof of Lemma 4.7.

As in Lemma 4.5, we define the interval D by the condition $|t| \leq \frac{3 \sigma^{3} \sqrt{n}}{4 \beta}$, and let D^{c} be the complement of D. Let I be the interval defined by $|t| \leq \frac{3 \sigma^{2}}{4 \beta}$, and let I^{c} be the complement of I. By Lemma 4.2, it is easy to see that for $t \in I,|O(t)| \leq 1-\sigma^{2} t^{2} / 4$. Thus,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{D}\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-\phi^{n-1}\left(\frac{t}{\sigma \sqrt{n}}\right)\right| d t \\
& \leq \frac{1}{2 \pi} \int_{D}\left|1-\phi\left(\frac{t}{\sigma \sqrt{n}}\right)\right|\left|\phi\left(\frac{t}{\sigma \sqrt{n}}\right)\right|^{n-1} d t \\
& \leq \frac{1}{2 \pi} \int \frac{t^{2}}{2 n} e^{-\frac{(n-1) t^{2}}{4 n}} d t \\
& =\frac{1}{4 \pi n} \sqrt{2 \pi} \sqrt{\frac{2 n}{n-1}}
\end{aligned}
$$

$$
=\frac{1}{\sqrt{4 \pi n(n-1)}} .
$$

Similarly,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{D} t^{2}\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-\phi^{n-2}\left(\frac{t}{\sigma \sqrt{n}}\right)\right| d t \\
& \leq \frac{1}{2 \pi} \int_{D} t^{2}\left|1-\phi^{2}\left(\frac{t}{\sigma \sqrt{n}}\right)\right|\left|\phi\left(\frac{t}{\sigma \sqrt{n}}\right)\right|^{n-2} d t \\
& \leq \frac{1}{2 \pi} \int \frac{t^{4}}{n} e^{-\frac{(n-2) t^{2}}{4 n}} d t \\
& =\frac{1}{2 \pi n} \sqrt{2 \pi} 3 \frac{2 n}{n-2} \\
& =\frac{3}{(n-2) \sqrt{2 \pi}} .
\end{aligned}
$$

So far for the prellminary computations. We begin with the observation that

$$
x^{2}\left(f_{n}(x)-g(x)\right)=\frac{1}{2 \pi} \int\left(\left(t^{2}-1\right) e^{-\frac{t^{2}}{2}}-\phi_{n}^{\prime \prime}(t)\right) e^{-i t x} d t
$$

where ϕ_{n} is the characteristic function corresponding to f_{n}. Obvlously,

$$
x^{2}\left|f_{n}(x)-g(x)\right| \leq \frac{1}{2 \pi} \int\left|\left(t^{2}-1\right) e^{-\frac{t^{2}}{2}}-\phi_{n}^{\prime \prime}(t)\right| d t
$$

The second derivative of the n-th power of $\phi(t /(\sigma \sqrt{n}))$ is

$$
\frac{n-1}{\sigma^{2}} \phi^{\prime 2} \phi^{n-2}+\frac{1}{\sigma^{2}} \phi^{\prime \prime} \phi^{n-1},
$$

where all the omitted arguments are $t /(\sigma \sqrt{n})$. By the triangle inequality, we obtaln

$$
\begin{aligned}
& x^{2}\left|f_{n}(x)-g(x)\right| \leq \frac{1}{2 \pi} \int\left|\left(t^{2}-1\right) e^{-\frac{t^{2}}{2}}-\phi_{n}^{\prime \prime}(t)\right| d t \\
& \begin{aligned}
& \leq \frac{1}{2 \pi}\left(\int\left|e^{-\frac{t^{2}}{2}}-\phi^{n-1}(t /(\sigma \sqrt{n}))\right| d t+\int t^{2}\left|e^{-\frac{t^{2}}{2}}-\phi^{n-2}(t /(\sigma \sqrt{n}))\right| d t\right. \\
&+\int e^{-\frac{t^{2}}{2}}\left|\frac{n-1}{\sigma^{2}} \phi^{\prime 2}(t /(\sigma \sqrt{n}))-t^{2}\right| d t \\
&\left.\quad+\int e^{-\frac{t^{2}}{2}}\left|\sigma^{-2} \phi^{\prime \prime}(t /(\sigma \sqrt{n}))+1\right| d t\right) \\
&=J_{1}+J_{2}+J_{3}+J_{4} .
\end{aligned}
\end{aligned}
$$

From Lemma 4.2, we recall

$$
\begin{aligned}
& \left|\frac{\sqrt{n} \phi^{\prime}}{\sigma}+t\right| \leq \frac{\beta t^{2}}{2 \sigma^{3} \sqrt{n}} \\
& \left|\frac{\phi^{\prime \prime}}{\sigma^{2}}+1\right| \leq \frac{\beta|t|}{\sigma^{3} \sqrt{n}}
\end{aligned}
$$

Using the fact that $\left|\phi^{\prime}(t /(\sigma \sqrt{n}))\right| \leq E(|X|) /(\sigma \sqrt{n}) \leq 1 / \sqrt{n}$, we have

$$
\begin{aligned}
& \left|\frac{n \phi^{\prime 2}}{\sigma^{2}}-t^{2}\right| \leq\left|\frac{\sqrt{n} \phi^{\prime}}{\sigma}-t\right|\left|\frac{\sqrt{n} \phi^{\prime}}{\sigma}+t\right| \\
& \leq\left(\frac{1}{\sigma^{2}}+|t|\right) \frac{\beta t^{2}}{2 \sigma^{3} \sqrt{n}} .
\end{aligned}
$$

Using the fact that $\int|t|^{i} e^{-t^{2} / 2} d t$ takes the values $\sqrt{2 \pi}, 2, \sqrt{2 \pi}$ and 4 for $i=0,1,2,3$ respectively, we see that

$$
\begin{aligned}
& J_{3}+J_{4} \leq \int\left|\sigma^{-2} \phi^{\prime 2} e^{-\frac{t^{2}}{2}}\right| d t+\frac{1}{\sqrt{2 \pi}} \frac{\beta}{2 \sigma^{5} \sqrt{n}}+\frac{2 \beta}{\pi \sigma^{3} \sqrt{n}} \\
& \leq \frac{1}{n \sigma^{2} \sqrt{2 \pi}}+\frac{\beta}{\sigma^{3} \sqrt{n}}\left(\frac{1}{\sigma^{2} \sqrt{8 \pi}}+2\right)
\end{aligned}
$$

This leaves us with J_{1} and J_{2}. Here we will spllt the integrals over D and D^{c}. First of all,

$$
\begin{aligned}
& \frac{1}{2 \pi}\left(\int_{D} \left\lvert\, e^{\left.\left.-\frac{t^{2}}{2}-\phi^{n-1}(t /(\sigma \sqrt{n}))\left|d t+\int_{D} t^{2}\right| e^{-\frac{t^{2}}{2}}-\phi^{n-2}(t /(\sigma \sqrt{n})) \right\rvert\, d t\right)} \begin{array}{l}
\leq \frac{1}{2 \pi}\left(\int_{D}\left|e^{-\frac{t^{2}}{2}}-\phi^{n}(t /(\sigma \sqrt{n}))\right| d t+\int_{D} t^{2}\left|e^{-\frac{t^{2}}{2}}-\phi^{n}(t /(\sigma \sqrt{n}))\right| d t\right) \\
+\frac{1}{2 \pi}\left(\int_{D}\left|\phi^{n-1}(t /(\sigma \sqrt{n}))-\phi^{n}(t /(\sigma \sqrt{n}))\right| d t\right. \\
\left.+\int_{D} t^{2}\left|\phi^{n-2}(t /(\sigma \sqrt{n}))-\phi^{n}(t /(\sigma \sqrt{n}))\right| d t\right) .
\end{array} . \quad \begin{array}{l}
\end{array}\right.\right) .
\end{aligned}
$$

The last two terms were bounded from above earller on in the proof by

$$
\frac{1}{\sqrt{4 \pi n(n-1)}}+\frac{3}{(n-2) \sqrt{2 \pi}} .
$$

By Lemma 4.4, we have for $t \in D$,

$$
\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| \leq \frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}} e^{-\frac{t^{2}}{4}}+\left|A_{n}(t)\right|
$$

Thus, by Lemma 4.3, and the following integrals:

$$
\int|t|^{3} e^{-\frac{t^{2}}{4}} d t=16
$$

$$
\begin{aligned}
& \int|t|^{5} e^{-\frac{t^{2}}{4}} d t=192 \\
& \int|t|^{4} e^{-\frac{t^{2}}{2}} d t=3 \sqrt{2 \pi} \\
& \int|t|^{6} e^{-\frac{t^{2}}{4}} d t=15 \sqrt{2 \pi}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{D}\left(1+t^{2}\right)\left|\phi^{n}\left(\frac{t}{\sigma \sqrt{n}}\right)-e^{-\frac{t^{2}}{2}}\right| d t \\
& \leq \frac{1}{2 \pi} \int\left(1+t^{2}\right)\left(\frac{\beta|t|^{3}}{3 \sigma^{3} \sqrt{n}} e^{-\frac{t^{2}}{4}}+\frac{t^{4}}{4 n} e^{-\frac{t^{2}}{2}}\right) d t \\
& =\frac{1}{2 \pi}\left(\frac{208 \beta}{3 \sigma^{3} \sqrt{n}}+\frac{18 \sqrt{2 \pi}}{4 n}\right) .
\end{aligned}
$$

Flnally, we have to evaluate the integrals $\ln J_{1}+J_{2}$ taken over D^{c}. These are estlmated from above by

$$
\frac{1}{2 \pi} \int_{D^{*}}\left(1+t^{2}\right) e^{-\frac{t^{2}}{2}} d t+\frac{1}{2 \pi} \rho^{n-2} \sigma \sqrt{n} \int|\phi|+\frac{1}{2 \pi} \rho^{n-3} \sigma^{3} n^{\frac{3}{2}} \int t^{2}|\phi|
$$

where $\rho=\sup _{I^{c}}|\phi|$. The reglon D^{c} is defined by the condition $|t|>c$ for some constant c. The first term in the last expression can thus be rewritten as

$$
\begin{aligned}
& \frac{1}{\pi} \int_{u>c^{2} / 2}\left((2 u)^{\frac{1}{2}}+\sqrt{2 u}\right) e^{-u} d u \\
& \leq \frac{1}{c \pi} e^{-\frac{c^{2}}{2}}+\frac{\sqrt{8}}{\pi} e^{-\frac{c^{2}}{4}} \\
& =\frac{4 \beta}{3 \pi \sigma^{3} \sqrt{n}} e^{-\frac{9 \sigma^{\circ} n}{32 \beta^{2}}}+\frac{\sqrt{8}}{\pi} e^{-\frac{9 \sigma^{\circ} n}{64 \beta^{2}}}
\end{aligned}
$$

Collecting bounds gives the desired result.

For the bound of Lemma 4.7 to be useful, it is necessary that f not only be regular, but also that its characteristic function satisfy

$$
\int t^{2}|\phi(t)| d t<\infty
$$

This implies that f has two bounded continuous derivatives tending to 0 as $|x| \rightarrow \infty$, and in fact

$$
f^{\prime \prime}(x)=-\frac{1}{2 \pi} \int e^{-i t x} t^{2} \phi(t) d t
$$

(see e.g. Kawata, 1972, pp. 438-439). This smoothness condition is rather restrictive and can be considerably weakened. The asymptotic bound $b /\left(x^{2} \sqrt{n}\right)$ remains valld if $\int t^{2}|\phi(t)|^{k}<\infty$ for some positive integer k (exercise 4.4). Lemmas 4.5 and 4.7 together are but special cases of more general local llmit theorems, such as those found In Maellma (1980) and Inzevitov (1977), except that here we explicitly compute the unlversal constants in the bounds.

4.5. The mixture method for simulating sums.

When a density f can be written as a mixture

$$
f(x)=\sum_{i=1}^{\infty} p_{i} f_{i}(x)
$$

where the f_{i} 's are simple densitles, then simulation of the sum S_{n} of n ild random varlables with density f can be carrled out as follows.

The mixture method for simulating sums

Generate a multinomial (n, p_{1}, p_{2}, \ldots) random sequence N_{1}, N_{2}, \ldots (note that the N_{i} 's sum to n). Let K be the index of the largest nonzero N_{i}.
$X \leftarrow 0$
FOR $i:=1$ TOK DO
Generate S, the sum of N_{i} iid random variables with common density f_{i}.
$X \leftarrow X+S$
RETURN X

The valldity of the algorithm is obvious. The algorithm is put in Its most general form, allowing for infintte mixtures. A multinomlal random sequence is of course defined in the standard way: Imagine that we have an Infinite number of urns, and that n balls are independently thrown in the urns. Each ball lands with probablilty p_{i} in the i-th urn. The sequence of cardinalitles of the urns is a multinomial (n, p_{1}, p_{2}, \ldots) random sequence. To slmulate such a sequence, note that N_{1} is binomial (n, p_{1}), and that given N_{1}, N_{2} is binomlal ($n-N_{1}, p_{2} /\left(1-p_{1}\right)$), etcetera. If K is the Index of the last occupled urn, then it ls easy to see that the multinomlal sequence can be generated in expected time $O(E(K))$.

The mixture method is efficlent if sums of ild random variables with densitles f_{i} are easy to generate. This would for example be the case if f were a
finte mixture of stable, gamma, exponentlal or normal random varlables. Perhaps the most intrlguing decomposition is that of a unimodal density: every unlmodal density can be written as a countable mixture of uniform densitles. Thls statement is intultively clear, because subtracting a function of the form $c I_{[a, b]}(x)$ from f leaves a unimodal plece on $[a, b]$ and two unimodal talls. This can be repeated for all pleces individually, and at the same time the integral of the leftover function can be made to tend to zero by the Judiclous cholce of rectangular functions (see exercise 4.5). If we can generate sums of 11 d unform random variables uniformly fast (with respect to n), then the expected tlme taken by the mlxture method is $O(E(K)$). A few remarks about generating unlform sums are glven in the next section.

4.6. Sums of independent uniform random variables.

In this section we consider the distribution of

$$
S_{n}=\sum_{i=1}^{n} U_{i}
$$

where U_{1}, \ldots, U_{n} are lld unlform $[-1,1]$ random varlables. The distrlbution can be described in a varlety of ways:

Theorem 4.3.

The characteristic function of S_{n} is

$$
\left(\frac{\sin (t)}{t}\right)^{n}
$$

For all $n \geq 2$, the density f_{n} can be obtalned by the inversion formula

$$
f_{n}(x)=\frac{1}{2 \pi} \int\left(\frac{\sin (t)}{t}\right)^{n} \cos (t x) d t
$$

Thls ylelds

$$
f_{n}(x)=\frac{1}{(i-1)!} \frac{1}{2} \sum_{k=0}^{i-1}(-1)^{k}\binom{i}{k}(x-(2 k-n))^{i-1}
$$

where $2 i-2-n<x<2 i-n ; i=1,2, \ldots, n$.

Proof of Theorem 4.3.

The characteristlc function is obtained by using the definition. Since the characteristic function of S_{n} for all $n \geq 2$ is absolutely integrable, f_{n} can be obtained by the given inversion integral. There is also a direct way of computing the distribution function F_{n} and density of S_{n}; its derivation goes back to the nineteenth century (see e.g. Cramer (1951, p. 245)). Different proofs include the geometric approach followed by us in Theorem I.4.4 (see also Hall (1927) and Roach (1983)), an induction argument (Olds, 1952), and an appllcation of the residue theorem (Lusk and Wright, 1982). Taking the derlvative of F_{n} given in Theorem I.4.4 glves the formula

$$
\frac{1}{(n-1)!}\left(x_{+}{ }^{n-1}-n(x-1)_{+}{ }^{n-1}+\binom{n}{2}(x-2)_{+}{ }^{n-1}-\cdots+(-1)^{n}\binom{n}{n}(x-n)_{+}{ }^{n-1}\right)
$$

for the density of the sum of n ild uniform $[0,1]$ random varlables. The the density of sums of symmetric uniform random varlables is easily obtained by the transformation formula for densities.

It is easy to see that the local llmit theorems developed in Lemmas 4.5 and 4.7 are applicable to this case. There is one small technical hurdle since the characteristic function of a unlform random varlable is not absolutely integrable. This is easily overcome by noting that the square of the characteristic function is absolutely Integrable. If we recall the rejection algorithm of section 4.3, we note that the expected number of iterations is $O(1 / \sqrt{n})$ and that the expected number of evaluations of f_{n} is $O(1 / \sqrt{n})$. Unfortunately, this is not good enough, slnce the evaluation of $f_{n}(x)$ by the last formula of Theorem 4.3 takes time roughly proportional to n for nearly all x of interest. This would yleld a global expected time roughly increasing as \sqrt{n}. The formula for f_{n} is thus of limited value. There are two solutions: elther one uses the serles method based upon a serles expansion for f_{n} which is tallored around the normal density, or one uses a local llmit theorem with $O(1 / n)$ error by using as maln component the normal density plus the first term in the asymptotic expansion which is a normal density multlplled with a Hermite polynomial (see e.g. Petrov, 1975). The latter approach seems the most promising at thls point (see exerclise 4.6).

4.7. Exercises.

1. Let f be a density, whose normallzed sums tend in distribution to the symmetric stable (α) density. Assume that the stable density can be evaluated exactly in one unlt of time at every polnt. Derlve first some Inequalltles for the difference between the density of the normalized sum and the stable density. These non-unlform inequalitles should be such that the integral of the error bound with respect to x tends to 0 as $n \rightarrow \infty$. Hint: look for error terms of the form $\min \left(a_{n}, b_{n}|x|^{-c}\right)$ where c is a positive constant, and a_{n}, b_{n} are positive number sequences tending to 0 with n. Mimic the derivatlon of the local limit theorem in the case of attraction to the normal law.
2. The gamma density. The zero mean exponential density has characteristic function $\phi=e^{-i t} /(1-i t)$. In the notation of thls chapter, derive for this distribution the following quantities:
A. $\sigma=1, \beta=\frac{12}{e}-2$.
B. $\int|\phi|=\infty, \int|\phi|^{2}=\pi$.
C. $\sup _{|t| \geq c}|\phi(t)|=1 / \sqrt{1+c^{2}} \quad(c>0)$.

Note that the bounds in the local lumlt theorems are not directly applicable since $\int|\phi|=\infty$. However, this can be overcome by bounding $\int|\phi|^{n}$ by $s \int|\phi|^{2}$ where s is the supremum of $|\phi|$ over the domaln of integration, to the power $n-2$. Using this device, derlve the rejection constant from the thus modifled local limit theorem as a function of n.
3. A continuation of exerclse 2. Let f_{a} be the normalized (zero mean, unit varlance) gamma (a) density, and let g be the normal density. By direct means, find sequences a_{n}, b_{n} such that for all $a \geq 1$,

$$
\left|f_{a}(x)-g(x)\right| \leq \min \left(a_{n}, \frac{b_{n}}{x^{2}}\right)
$$

and compare your constants with those obtalned in exerclse 2. (They should be dramatically smaller.)
4. Prove the clalm that in Lemma 4.7, $b_{n} \sim b /\left(x^{2} \sqrt{n}\right)$ when the condition $\int t^{2}|\phi(t)| d t<\infty$ is relaxed to

$$
\int t^{2}|\phi(t)|^{k} d t<\infty
$$

where $k>0$ is a fixed integer.
5. Conslder a monotone density f on $[0, \infty)$. Glve a constructive completely automatic rule for decomposing this density as a countable mlxture of unlform densitles, i.e. the decomposition should be obtalnable even if f is only given in black box format, and the countable mixture should give us the monotone denslty again in the sense that the L_{1} distance between the two densities is zero (this allows the functions to be different on possibly uncountable sets of zero measure). Can you make a statement about the rate of decrease of p_{i} for the following subclasses of monotone densities: the log-
concave densitles, the concave densitles, the convex densitles? Prove that when $p_{i} \leq c e^{-b i}$. for some $b, c>0$ and all i, then $E(K)=O(\log (n))$, where K is the largest integer in a sample of size n drawn from probabillty vector p_{1}, p_{2}, \ldots. Conclude that for important classes of densitles, we can generate sums of n ild random varlates in expected time $O(\log (n))$.
6. Gram-Charlier series. The standard approximation for the density f_{n} of $S_{n} /(\sigma \sqrt{n})$ where S_{n} is the sum of n lid zero mean random variables with second moment σ^{2} is g where g is the normal density. The closeness is covered by local central llmit theorems, and the errors are of the order of $1 / \sqrt{n}$. To obtaln errors of the order of $1 / n$ it is necessary to user a finer approximation. For example, one could use an extra term in the GramCharller serles (see e.g. Ord (1972, p. 28)). This leads to the approximation by

$$
\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}\left(1+\frac{\mu_{3}}{8 \sigma^{3} \sqrt{n}}\left(x^{3}-x\right)\right),
$$

where μ_{3} is the third moment for f. For symmetric distributions, the extra correction term is zero. This suggests that the local llmit theorems of section 4.3 can be improved. For the symmetric unlform density, find constants a, b such that $\left|f_{n}-g\right| \leq \frac{1}{n} \min \left(a, b x^{-2}\right)$. Use this to design a unlformly fast generator for sums of symmetric uniform random varlables.
7. A continuation of the previous exerclse. Let $a \in R$ be a constant. Give a random varlate generator for the following class of densitles related to the Gram-Charller serles approximation of the previous exerclse:

$$
g(x)=c\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}\left(1+a\left(x^{3}-x\right)\right)\right)_{+},
$$

where c is a normallzation constant.

5. DISCRETE EVENT SIMULATION.

5.1. Future event set algorithms.

Several complex systems evolving in tlme fall into the following category: they can be charactertzed by a state, and the state changes only at discrete times. Systems falling into this category include most queueing systems such as those appearing in banks, elevators, computer networks, computer operating systems and telephone networks. Systems not included in this category are those which change state continuously, such as systems driven by differentlal equations (physical or chemical processes, traffic control systems). In discrete event slmulation of such systems, one keeps a subset of all the future events in a future event set, where an event is deflned as a change of state, e.g. the arrival or departure of
a person in a bank. By taking the next event from the future event set, we can make time advance with blg Jumps. After having grabbed thls event, it is necessary to update the state and if necessary schedule new future events. In other words, the future event set can shrink and grow in its lifetime. What matters is that no event is mlssed. All future event set algorithms can be summarized as follows:

Future event set algorithm

Time $\leftarrow 0$.
Intialize State (the state of the system).
Initialize FES (future event set) by scheduling at least one event.
WHILE NOT EMPTY (FES) DO
Select the minimal time event in FES, and remove it from FES.
Time \leftarrow time of the selected event, i.e. make time progress.
Analyze the selected event, and update State and FES accordingly.

For worked out examples, we refer the readers to more speclallzed texts such as Bratley, Fox and Schrage (1983), Banks and Carson (1984) or Law and Kelton (1982). Our maln concern is with the complexity aspect of future event set algorithms. It is difficult to get a good general handle on the tlme complexity due to the state updates. On the other hand, the contribution to the time complexity of all operations involving FES, the future event set, is amenable to analysis. These operations include
A. INSERT a new event in FES.
B. DELETE the minlmal time event from FES.
C. CANCEL a particular event (remove it from FES).

There are two kinds of INSERT: INSERT based upon the time of the event, and INSERT based upon other information related to the event. The latter INSERT is required when a simulation demands information retrieval from the FES other than selection of the minimal time event. This is the case when cancelations can occur, l.e. deletlons of events other than the minimal time event. It can always be avoided by leaving the event to be canceled in FES but marking it "canceled", so that when it is selected at some polnt as the minimal time event, it can Immediately be discarded. In most cases we have to use a dual data structure which allows us to implement the operations INSERT, DELETE and elther CANCEL or MARK efflclently. Typically, one part of the data structure consists of a dictionary (ordered according to keys used for cancellng or marking), and another part is a priority queue (see Aho, Hopcroft and Ullman (1983) for our terminolgy). Since the number of elements in FES grows and shrinks with time, it is difficult to unlformize the analysis. For thls reason, sometimes the following assumptlons are made:
A. The future event set has n events at all times. This Implles that when the minlmum time event is deleted, the empty slot is immediately filled by a new event, l.e. the DELETE and INSERT operations always go together.
B. Intlally, the future event set has n events, with random times, all lld with common distribution function F on $[0, \infty)$.
C. When an event with event time t is deleted from FES, the new event replacing it in FES has time $t+T$, where T also has distribution function F.
These three assumptions taken together form the basls of the so-called hold model, colned after the SIMULA HOLD operation, which combines our DELETE and INSERT operatlons. Assumptions B and C are of a stochastlc nature to facllItate the expected time analysis. They are motivated by the fact that in homogeneous Polsson processes, the inter-event times are independent exponentlally distributed. Therefore, the distribution function F is typlcally the exponential distribution. The quantity of interest to us is the expected time needed to execute a HOLD operation. Unfortunately, thls quantlity depends not only upon n, but also on F and the tlme instant at which the expected time analysis is needed. Thls is due to the fact that the times of the events in the FES have distributions that vary. It is true that relative to the minimum time in the FES, the distributlon of the $n-1$ non-minlmal times approaches a llmit distrlbution, which depends upon F and n. Analysls based upon this llmit distribution is at times risky because it is difflcult to pinpolnt in complex systems when the steady state is almost reached. What complicates matters even more is the dependence of the limlt distribution upon n. The limlt of the llmit distribution with respect to n, a double llmit of sorts, has density ($1-F(x)$)/ $\mu(x>0)$ where μ is the mean for F (Vaucher, 1977). The analyses are greatly facllitated if this limit distribution is used as the distribution of the relative event times in FES. The results of these analyses should be handled with great care. Two extensive reports based upon this model were carrled out by Kingston (1985) and McCormack and Sargent (1981). An alternative model was proposed by Reeves (1984). He also works with this limiting distribution, but departs from the HOLD model, In that events are inserted, or scheduled, in the FES according to a homogeneous Polsson process. This implies that the slze of the FES is no longer flxed at a glven level n, but hovers around a mean value n. It seems thus safer to perform a worst-case time analysis, and to include an expected time analysis only where exact calculations can be carried out. Luckily, for the important exponentlal distribution, this can be done.

Theorem 5.1.

If assumptions A-C hold, and F is the exponential (λ) distribution, if k HOLD operations have been carried out for any integer k, if X^{*} is the minimal event time in the FES, and $X_{1}, X_{2}, \ldots, X_{n-1}$ are the $n-1$ non-minimal event times in the FES (unordered, but in order of their insertion in the FES), then $X_{1}-X *, \ldots, X_{n-1}-X *$ are lld exponentlal (λ) random varlables.

Proof of Theorem 5.1.

This is best proved inductively. Initlally, we have n exponentially distributed tlmes. The assertion is certainly true, by the memoryless property of the exponentlal distribution. Now, take the minimum time, say M, remove it, and Insert the time $M+E$ in the FES, where E is exponential (λ). Clearly, all n times in the FES are now Ild with an exponential (λ) distribution on $[M, \infty)$. We are thus back where we started from, and can apply the memoryless property again.

Reeves's model allows for a simple direct analysis for all distribution functlons F. Because of its importance, we will brlefly study his model in a separate section, before moving on to the description of a few possible data structures for the FES.

5.2. Reeves's model.

In Reeves's model, the FES is Inttlally empty. Insertions occur at random times, which correspond to a homogeneous Polsson process with rate λ. The time of an inserted event is the insertion time plus a delay time which has distribution function F. A few propertles will be needed further on, and these are collected in Theorem 5.2:

Theorem 5.2.

Let $0<T_{1}<T_{2}<\cdots$ be a homogeneous Polsson process with rate $\lambda>0$ (the T_{i} 's are the insertion times), and let X_{1}, X_{2}, \ldots be ild random variables with common distribution function F on $[0, \infty)$. Then
A. The random varlables $T_{i}+X_{i}, 1 \leq i$, form a nonhomogeneous Polsson process with rate function $\lambda F(t)$.
B. If N_{t} is the number of events in FES at time t, then N_{t} is Polsson $\left(\lambda \int_{0}(1-F)\right) . N_{t}$ is thus stochastically smaller than a Polsson $(\lambda \mu)$ random varlable where $\mu=\int_{0}^{\infty}(1-F)$ is the mean for F.
C. Let $V_{i}, i \leq N_{t}$, be the event times for the events in FES at time t. Then the random varlables $V_{i}-t$ form a nonhomogeneous Polsson process with rate function $\lambda(F(t+u)-F(u)), u \geq 0$.

Proof of Theorem 5.2.

Most of the theorem is left as an exerclse on Polsson processes. The maln task is to verify the Polsson nature of the defined processes by checking the Independence property for nonoverlapping intervals. We wlll malnly point out how the varlous rate functlons are obtalned.

For part A, let L be the number of insertions up to time t, a Polsson (λt) random varlable, and let M be the number of $T_{i}+X_{i}$'s not exceeding t. Clearly, by the uniform distribution property of homogeneous Polsson processes, M is distributed as

$$
\sum_{i=0}^{L} I_{\left\{t U_{i}+X_{i} \leq t\right]}
$$

where the U_{i} 's are lid unlform [0,1] random variables. Note that this is a Polsson sum of lld Bernoull random varlables. As we have seen elsewhere, such sums are agaln Polsson distributed. The parameter is $\lambda t p$ where $p=P\left(t U_{1}+X_{1} \leq t\right)$. The parameter can be rewritten as

$$
\begin{aligned}
& \lambda t P\left(X_{1} \leq t U_{1}\right)=\lambda t \int_{0}^{1} F(t u) d u \\
& =\lambda \int_{0}^{t} F(u) d u
\end{aligned}
$$

For part B, the rate function can be obtained similarly by writing N_{t} as a Polsson (λt) sum of ild Bernoulli random varlables with success probabllity $p=P\left(t U_{1}+X_{1}>t\right)$. This is easily seen to be Polsson $\left(\lambda \int_{0}(1-F)\right)$. For the second statement of part B, recall that the mean for distribution function F is $\int_{0}^{\infty}(1-F)$.

Finally, consider part C. Here agaln, we argue analogously. Let M be the number of events in FES at time t with event times not exceeding $t+u$. Then M is a Polsson (λt) sum of lld Bernoull random variables with success parameter p glven by

$$
\begin{aligned}
& P\left(t \leq t U_{1}+X_{1}<t+u\right)=\int_{0}^{1}(F(t z+u)-F(t z)) d z \\
& =\frac{1}{t} \int_{0}^{t}(F(z+u)-F(z)) d z
\end{aligned}
$$

The statement about the rate function follows directly from this.

The asymptotics in Reeves's model should not be with respect to N_{t}, the slize of the FES, because this oscllates randomly. Rather, it should be with
respect to t, the time. The first important observation is that the expected slize of the FES at tlme t is $\lambda \int_{0}(1-F) \rightarrow \lambda \mu$ as $t \rightarrow \infty$, where μ is the mean for F. If μ Is small, the FES is small because events spend only a short time in FES. On the other hand, If $\mu=\infty$, then the expected size of the FES tends to ∞ as $t \rightarrow \infty$, i.e. we would need infinite space in order to be able to carry out an unllmited time slmulation. The situation is also bad when $\mu<\infty$, although not as bad as in the case $\mu=\infty$: It can be shown (see exerclses) that lim $\sup _{t \rightarrow \infty} N_{t}=\infty$ almost surely. Thus, in all cases, an unllmited memory would be required. This should be vlewed as a serlous drawback of Reeves's model. But the insight we galn from his model is invaluable, as we wlll find out in the next section on linear lists.

5.3. Linear lists.

The oldest and simplest structure for an FES is a llnear llst in which the elements are kept according to increasing event times. For what follows, it is all but irrelevant whether a linked list implementation or an array implementation is chosen. Deletion is obvlously a constant time operation. Insertion of an element In the i-th position takes time proportional to i if we start searching from the front (small event tlmes) of the llst, and to $n-i+1$ if we start from the back and n is the cardinality of the FES. We can't say that the time is $\min (i, n-i+1)$ because the value of i is unknown beforehand. Thus, one of the questions to be studied is whether we should start the search from the front or the back.

By Theorem 5.2, part C, we observe that at tlme t_{0}, the expected value of the number of events exceeding the currently inserted element (called $M_{t_{0}}$) is

$$
\begin{aligned}
& E\left(M_{t_{0}}\right)=\lambda \int_{0}^{\infty} \int_{t}^{\infty}\left(F\left(t_{0}+u\right)-F(u)\right) d u d F(t) \\
& =\lambda \int_{0}^{\infty}\left(F\left(t_{0}+u\right)-F(u)\right) \int_{0}^{u} d F(t) d u \\
& =\lambda \int_{0}^{\infty} F(u)\left(F\left(t_{0}+u\right)-F(u)\right) d u
\end{aligned}
$$

Here we used a standard interchange of integrals. Since the expected number of elements in the FES is $\lambda \int_{0}^{\infty}\left(F\left(t_{0}+u\right)-F(u)\right) d u$, the expected value of the number of event times at most equal to the event time of the currently inserted element (called $L_{t_{0}}$) Is

$$
E\left(L_{t_{0}}\right)=\lambda \int_{0}^{\infty}(1-F(u))\left(F\left(t_{0}+u\right)-F(u)\right) d u
$$

We should search from the back when $E\left(M_{t_{0}}\right)<E\left(L_{t_{0}}\right)$, and from the front otherwise. In an array Implementation, the search can always be done by binary search In logarithmic time, but the updating of the array calls for the shift by one positlon of the entlre lower or upper portion of the array. If one imagines a circular array implementation with free wrap-around, of the sort used to implement queues (Standish, 1980), then it is always possible to move only the smaller portion. The same is true for a linked list Implementation if we keep pointers to the front, rear and middle elements in the llnked list and use double linking to allow for the two types of search. The middle element is first compared with the inserted element. The outcome determines in which half we should insert, where the search should start from, and how the middle element should be updated. The last operation would also require us to keep a count of the number of elements in the llnked list. We can thus conclude that for a llnear list insertion, we can find an implementation taking time bounded by $\operatorname{mln}\left(M_{t_{0}}, L_{t_{0}}\right)$. By Jensen's Inequallty, the expected time for insertion does not exceed

$$
\min \left(E\left(M_{t_{0}}\right), E\left(L_{t_{0}}\right)\right) .
$$

The fact that all the formulas for expected values encountered so far depend upon the current time t_{0} could deprive us from some badly needed insight. Lucklly, as $t_{0} \rightarrow \infty$, a steady state is reached. In fact, thls is the only case studled by Reeves (1984). We summarize:

Theorem 5.3.

In Reeves's model, we have

$$
\begin{aligned}
& E\left(M_{t_{0}}\right) \uparrow \lambda \int_{0}^{\infty} F(1-F) \text { as } t_{0} \rightarrow \infty \\
& E\left(L_{t_{0}}\right) \uparrow \lambda \int_{0}^{\infty}(1-F)^{2} \text { as } t_{0} \rightarrow \infty
\end{aligned}
$$

Proof of Theorem 5.3.

We will only consider the first statement. Note that $E\left(M_{t_{0}}\right)$ is monotone \uparrow in t_{0}, and that for every t_{0}, the value does not exceed $\lambda \int_{0}^{\infty} F(1-F)$. Also, by Fatou's lemma,

$$
\operatorname{lm} \operatorname{lnf}_{t_{0} \rightarrow \infty} E\left(M_{t_{0}}\right) \geq \lambda \int_{0}^{\infty} \ln \operatorname{lnf}_{t_{0} \rightarrow \infty} F(u)\left(F\left(t_{0}+u\right)-F(u)\right) d u=\lambda \int_{0}^{\infty} F(1-F)
$$

Remark 5.1. Front or back search.

From Theorem 5.3, we deduce that a front search is indicated when $\int(1-F)^{2}<\int F(1-F)$. It is perhaps interesting to note that equallty is reached for the exponential distribution. Barlow and Proschan (1875) deflne the NBUE (NWUE) distributions as those distributions for which for all $t>0$,

$$
\int_{t}^{\infty}(1-F) \leq(\geq) \mu(1-F(t)),
$$

where μ is the mean for F. Examples of NBUE (new better than used in expectation) distributions include the unlform, normal and gamma distributions for parameter at least one. NWUE distributions include mixtures of exponentials and gamma distributions with parameter at most one. By our orlginal change of Integral we note that for NBUE distributions,

$$
\begin{aligned}
& \lambda \int_{0}^{\infty} F(1-F)=\lambda \int_{0}^{\infty}\left(\int_{t}^{\infty}(1-F)\right) d F(t) \\
& \leq \lambda \mu \int_{0}^{\infty}(1-F(t)) d F(t)=\frac{\lambda \mu}{2}
\end{aligned}
$$

Since the asymptotic expected size of the FES is $\lambda \mu$, we observe that for NBUE distributions, a back search is to be preferred. For NWUE distributions, a front search is better. In all cases, the trick with the median polnter (for linked lists) or the medlan comparison (for clrcular arrays) automatically selects the best search mode.

Remark 5.2. The HOLD model.

In the HOLD model, the worst-case Insertion time can be as poor as n. For the expected insertion time, the computations are simple for the exponential distribution function. In vlew of Theorem 5.1, it is easy to see that the expected number of comparisons in a forward scan is $\frac{n+2}{2}-\frac{1}{n+1}=\frac{n}{2}+\frac{n}{n+1}$. The expected number of backward scans is equal to this, by symmetry. For all distributions F having a density, the expected insertion time grows linearly with n (see exerclses).

A brief historical remark is in order. Linear lists have been used extenslvely in the past. They are simple to implement, easy to analyze and use minimal
storage. Among the possible physical implementations, the doubly linked 1 ist is perhaps the most popular (Knuth, 1969). The asymptotic expected insertion time for front and back search under the HOLD model was obtalned by Vaucher (1977) and Englebrecht-Wiggans and Maxwell (1978). Reeves (1984) dlscusses the same thing for his model. Interestingly, if the slze n in the HOLD model is replaced by the asymptotic value of the expected slze of the FES, $\lambda \mu$, the two results colnclde. In partlcular, Remark 5.1 applles to both models. The polnt about NBUE distributions in that remark is due to McCormack and Sargent (1981). The idea of using a median pointer or a median comparison goes back to Prltsker (1978) and Davey and Vaucher (1980). For more analysis involving linear llsts, see e.g. Jonassen and Dahl (1975).

The simple linear list has been generallzed and improved upon in many ways. For example, a number of algorlthms have been proposed which keep an additional set of pointers to selected events in the FES. These are known as multlple pointer methods, and the implementations are sometimes called indexed llnear list implementations. The polnters partition the FES into smaller sets contalning a few events each. Thls greatly facllitates insertlon. For example, Vaucher and Duval (1875) space polnter events (events polnted to by these polnters) equal amounts of time (Δ) apart. In view of thls, we can locate a partlcular subset of the FES very quickly by making use of the truncation operation. The subset is then searched in the standard sequential manner. Ideally, one would llke to have a constant number of events per interval, but this is difficult to enforce. In Reeves's model, the analysis of the Vaucher-Duval bucket structure is easy. We need only concern ourselves with insertions. Furthermore, the time needed to locate the subset (or bucket) In which we should insert is constant. The buckets should be thought of as small linked lists. They actually need not be globally concatenated, but within each list, the events are ordered. The global time interval is divided into intervals $[0, \Delta),[\Delta, 2 \Delta), \ldots$. Let A_{j} be the j-th interval, and let $F\left(A_{j}\right)$ denote the probabllity of the j-th interval. For the sake of slmplicity, let us assume that the tlme spent on an insertion is equal to the number of events already present in the interval into which we need to Insert. In any case, Ignoring a constant access time, this will be an upper bound on the actual insertion time. The expected number of events \ln bucket $A_{j}=[(j-1) \Delta, j \Delta)$ under Reeves model at time t is given by

$$
\int_{A_{j}-t} \lambda(F(t+u)-F(u)) d u
$$

where $A_{j}-t$ means the obvlous thing. Let J be the collection of all Indices for which A_{j} overlaps with $[t, \infty)$, and let B_{j} be $A_{j} \cup[t, \infty)$. Then the expected time Is

$$
\sum_{j \in J} \int_{B_{j}-t} \lambda(F(t+u)-F(u)) d u F\left(B_{j}-t\right)
$$

In Theorem 5.4, we derive useful upper bounds for the expected time.

Theorem 5.4.

Consider the bucket based linear list structure of Vaucher and Duval with bucket width Δ. Then the expected time for inserting (scheduling) an event at tlme t in the FES under Reeves's model is bounded from above by
A. $\lambda \mu$.
B. $\lambda \Delta$.
C. $\lambda C \mu \Delta$, where C is an upper bound for the density f for F (thls point is only applicable when a density exists).
In particular, for any t and F, taking $\Delta \leq \frac{c}{\lambda}$ for some constant c guarantees that the expected time spent on insertions is bounded by c.

Proof of Theorem 5.4.

Bound A is obtained by noting that each $F\left(B_{j}-t\right)$ in the sum is at most equal to 1 , and that $F(t+u) \leq 1$. Bound B is obtalned by bounding

$$
\int_{B_{j}-t} \lambda(F(t+u)-F(u)) d u
$$

by $\lambda \Delta$, and observing that the terms $F\left(B_{j}-t\right)$ summed over $j \in J$ yleld the value 1. Finally inequallty C uses the fact that $F\left(B_{j}-t\right) \leq C \Delta$ for all j.

Theorem 5.4 is extremely Important. We see that it is possible to have constant expected time deletlons and insertions, unlformly over all F, t and λ, provided that Δ is taken small enough. The bound on Δ depends upon λ. If λ is known, there is no problem. Unfortunately, λ has to be estlmated most of the time. Recall also that we are in Reeves's idealized model. The present analysls does not extend beyond thls model. As a rule of thumb, one can take Δ equal to $1 / \lambda$ where λ is the expected number of points inserted per unlt of time. This should insure that every bucket has at most one polnt on the average. Taking Δ too small is harmful from a space polnt of vlew because the number of intervals into which the FES is cut up is

$$
\left\lceil\left(\max \left(Y_{i}\right)-t\right) / \Delta\right\rceil
$$

where the Y_{i} 's are the scheduled event times at time t. Taking the expected value, we see that thls is bounded from above by

$$
1+\frac{E\left(\max \left(Y_{1}, \ldots, Y_{N}\right)\right)}{\Delta}
$$

where N is Polsson $(\lambda \mu)$. Recall that for an upper bound the Y_{i} 's can be considered as ild random variables with density ($1-F) / \mu$ on $[0, \infty)$. This allows us to get a good Idea of the expected number of buckets needed as a function of the
expected FES slze, or λ. We offer two quantitative results.

Theorem 5.5.

The expected number of buckets needed in Reeves's model does not exceed

$$
1+\frac{\sqrt{\frac{\lambda}{3} E\left(X^{3}\right)}}{\Delta},
$$

where X has distribution function F. If $\Delta \sim \frac{c}{\lambda}$ as $\lambda \rightarrow \infty$ for some constant c, then thls upper bound \sim

$$
\frac{1}{c \sqrt{3}} \sqrt{E\left((\lambda X)^{3}\right)} .
$$

Furthermore, if $E\left(e^{u X}\right)<\infty$ for some $u>0$, and Δ is as shown above, then the expected number of buckets is $O(\lambda \log (\lambda))$.

Proof of Theorem 5.5.

For the flrst part of the Theorem, we can assume without loss of generallty that X has finlte third moment. We argue as follows:

$$
\begin{aligned}
& E\left(\max \left(Y_{1}, \ldots, Y_{N}\right)\right) \leq E\left(\sqrt{\sum_{i \leq N} Y_{i}^{2}}\right) \\
& \leq \sqrt{E(N) E\left(Y_{1}^{2}\right)} \quad(\text { Jensen' } \text { s inequality }) \\
& =\sqrt{\lambda \mu E\left(X^{3}\right) /(3 \mu)}=\sqrt{\lambda E\left(X^{3}\right) / 3}
\end{aligned}
$$

The last step follows from the simple observation that

$$
\begin{aligned}
& \int_{0}^{\infty} x^{2} \frac{1-F(x)}{\mu} d x=\int_{0}^{\infty} x^{2} \int_{x}^{\infty} \frac{1}{\mu} d F(t) d x \\
& =\int_{0}^{\infty} \frac{1}{\mu} \int_{0}^{t} x^{2} d x d F(t) \\
& =\frac{1}{3 \mu} E\left(X^{3}\right)
\end{aligned}
$$

The second statement of the Theorem follows in three llnes. Let u be a fixed constant for which $E\left(e^{u X}\right)=a<\infty$. Then, using X_{1}, \ldots, X_{n} to denote an IId sample with distribution function F,

$$
\begin{aligned}
& E\left(\max \left(Y_{1}, \ldots, Y_{n}\right)\right) \leq E\left(\max \left(X_{1}, \ldots, X_{n}\right)\right) \\
& \leq E\left(\frac{1}{t} \log \left(\sum_{i \leq N} e^{u X_{1}}\right)\right) \\
& \leq \frac{1}{t} \log \left(E(N) E\left(e^{u X_{1}}\right)\right)=\frac{1}{t} \log (\lambda \mu a) .
\end{aligned}
$$

This concludes the proof of Theorem 5.5.

Except when F has compact support, the expected number of buckets needed grows superlinearly with λ, when Δ is plcked as a constant over λ. The sltuation is worse when Δ is plcked even smaller. Thls is a good example of the tlme-space trade-off, because taking Δ larger than $1 / \lambda$ effectively decreases the space requirements but slows down the algorlthm. However, large Δ 's are uninterestlng since we will see that there are nonlinear data structures which will run in expected or even worst-case tlme $O(\log (\lambda))$. Thus, there is no need to study cases in which the Vaucher-Duval structure performs worse than thls. Vaucher and Duval (1975) and Davey and Vaucher (1980) clrcumvent the superlinear (in λ) storage need by collapsing many buckets in one blg bucket, called an overflow bucket, or overflow list. Denardo and Fox (1978) consider a hlerarchy of bucket structures where bucket width decreases with the level.

Varlous other multiple pointer structures have been proposed, such as the structures of Franta and Maly $(1977,1978)$ and Wyman (1978). They are largely simllar to the Vaucher-Duval bucket structure. One nice new idea surfacing in these methods is the following. Assume that one wants to keep the cardinality of all sublists about equal and close to a number m, and assume that the FES has about n elements. Therefore, about n / m polnters are needed, which in turn can be kept in a llnear list, to be scanned sequentlally from left to right or right to left. The time needed for an insertion cannot exceed a constant times $\frac{n}{m}+m$ where the last term accounts for the sequentlal search into the selected sublist. The optimal choice for m is thus about \sqrt{n}, and the resulting complexity of an insertion grows also as \sqrt{n}. The difficulty with theses structures is the dynamic balancing of the sublist cardinallties so that all sublists have about m elements. Henrlksen (1977) proposes to keep about m events per sublist, but the polnter records are now kept in a balanced blnary search tree, which is dynamically adjusted. The complexity of an insertion is not immediately clear since the updating of the polnter tree requires some complicated work. Without the updating, we would need time about equal to $\log \left(\frac{n}{m}\right)+m$ just to locate the polnt of insertion of one event. This expression is minimal for constant m ($m=4$ is the usual recommendation for Henrlksen's algorithm (Kingston, 1984)). The complexity of insertion without updating is $\Theta(\log (n))$. For a more detalled expected time analysis, see Kingston (1984). In the next section, we discuss $O(\log (n))$ worstcase structures which are much simpler to Implement than Henriksen's structure, and perform about equally well in practice.

5.4. Tree structures.

If the event tlmes are kept in a binary search tree, then one would suspect that after a while the tree would be skewed to the rlght, because elements are deleted from the left and added mostly to the right. Interestingly, this is not always the case, and the explanatlon parallels that for the forward and backward scanning methods in linear llsts. Consider for example an exponential F in the HOLD model. As we have seen in Theorem 5.1, all the relative event times in the FES are lld exponentlally distrlbuted. Thus, the binary search tree at every point in time is distributed as for any binary search tree constructed from a random permutation of $1, \ldots, n$. The propertles of these trees are well-known. For example, the expected number of comparisons needed for an insertion of a new element, distributed as the n other elements, and independent of it, Is $\sim 2 \log (n)$ (see e.g. Knuth (1973) or Standish (1980)). The expected tlme needed to delete the smallest element is $O(\log (n))$. First, we need to locate the element at the bottom left, and then we need to restore the binary tree in case the deleted element had right descendants, by putting the bottom left descendant of these right descendants in its place. Unfortunately, one cannot count on F belng exponential, and some distributions could lead to dangerous unbalancing, elther to the left or the right. Thls was for example polnted out by Kingston (1985).

For robust performance, it is necessary to look at worst-case insertion and deletion times. They are $O(\log (n))$ for such structures as the $2-3$ tree, the AVL tree and the heap. Of these, the heap is the easlest to implement and understand. The overhead with the other trees is excessive. Suggested for the FES by Floyd In a letter to Fox In the late stxtles, and formallzed by Gonnet (1978), the heap compares favorably in the extensive tlming studies of McCormack and Sargent (1981), Ulrich (1978) and Reeves (1984). However, in Isolated applications, It is clearly inferlor to the bucket structures (Franta and Maly, 1978). This should come as no surprise slnce properly designed bucket structures have constant expected time insertions and deletlons. If robustness is needed such as in a general purpose software package, the heap structure is warmly recommended (see also Ulrich (1978) and Kingston (1985)).

It is possible to streamline the heap for use in discrete event simulation. The first modification (Franta and Maly, 1978) conslsts of combining the DELETE and INSERT operations into one operation, the HOLD operation. Since a deletion calls for a replacement of the root of the heap, it would be a waste of effort to replace It by the last element in the heap, flx the heap, then insert a new element In the last positlon, and flnally fix the heap agaln. In the HOLD operation, the root position can be filled by the new element directly. After this, the heap needs only be fixed once. This improvement is most marked when the number of HOLD operations is relatively large compared to the number of bare DELETE or INSERT operations. A second improvement, suggested by Kingston (1985), conslsts of using an m-ary heap Instead of a binary heap. Good experimental results were obtalned by him for the ternary heap. This Improvement is based on the fact that insertions are more efflclent for large values of m, whlle deletions become only slightly more time-consuming.

5.5. Exercises.

1. Prove Theorem 5.2.
2. Consider Reeves's model. Show that when $\mu<\infty, \lim \sup _{t \rightarrow \infty} N_{t}=\infty$ almost surely.
3. Show that the gamma ($a)(a \geq 1)$ and unlform $[0,1]$ distributions are NBUE. Show that the gamma $(a)(a \leq 1)$ distribution is NWUE.
4. Generalize Theorem 5.5 as follows. For $r \geq 1$, the expected number of buckets needed in Reeves's model does not exceed

$$
1+\frac{\left(\frac{\lambda}{r+1} E\left(X^{r+1}\right)\right)^{\frac{1}{r}}}{\Delta}
$$

where X has distribution function F. If $\Delta \sim \frac{c}{\lambda}$ as $\lambda \rightarrow \infty$ for some constant c, then this upper bound \sim

$$
\left.\frac{1}{c}\left(\frac{E\left((\lambda X)^{r+1}\right.}{r+1}\right)\right)^{\frac{1}{r}}
$$

5. Assume that F is the absolute normal distribution function. Prove that if Δ is $1 / \lambda$ in the Vaucher-Duval bucket structure, then the expected number of buckets needed is $O(\lambda \sqrt{\log (\lambda)})$ and $\Omega(\lambda \sqrt{\log (\lambda)})$ as $\lambda \rightarrow \infty$.
6. In the HOLD model, show that whenever F has a density, the expected time needed for insertion of a new element in an ordered doubly linked list is $\Omega(n)$ and $O(n)$.
7. Consider the binary heap under the HOLD model with an exponential distribution F. Show that the expected time needed for inserting an element at time t in the FES is $O(1)$.
8. Glve a heap-based data structure for implementing the operations DELETE, INSERT and CANCEL in $O(\log (n))$ worst-case tlme.
9. Consider the HOLD model with an ordinary binary search tree implementation. Find a distribution F for which the expected insertion time of a new element at time $t>0$ is $\Omega(\psi(n)$) for some function ψ increasing faster than a logarithm: $\lim _{n \rightarrow \infty} \psi(n) / \log (n)=\infty$.

6. REGENERATIVE PHENOMENA.

6.1. The principle.

Many processes in slmulation are repetitive, i.e. one can identify a null state, or origin, to which a system evolving in time returns, and glven that the system is in the null state at a certaln time, the future evolution does not depend upon what has happened up to that point. Consider for example a slmple random walk in which at each tlme unit, one step to the right or left is taken with equal probabllity $1 / 2$. When the random walk returns to the orlgin, we start from scratch. The future of the random walk is independent of the history up to the point of return to the orlgin. In some slmulations of such processes, we can efficlently sklp ahead In time by generating the waiting time untll a return occurs, at least when thls walting time is a proper random variable. Systems in which the probabllity of a return is less than one should be treated differently.

The galn in efficiency is due to the fact that the walting time untll the flrst return to the orlgin is sometimes easy to generate. We will work through the example of the stmple random walk in the next section. Regenerative phenomena are ublquitous: they occur in queuelng systems (see section b.3), in Markov chalns, and renewal processes in general. Heyman and Sobel (1982) provide a solld study of many stochastic processes of practical Importance and pay particular attention to regenerative phenomena.

6.2. Random walks.

The one-dimensional random walk is defined as follows. Let U_{1}, U_{2}, \ldots be ild $\{-1,1\}$-valued random varlables where $P\left(U_{1}=1\right)=P\left(U_{1}=-1\right)=\frac{1}{2}$. Form the partlal sums

$$
S_{n}=\sum_{i=1}^{n} U_{i}
$$

Here S_{n} can be considered as a gambler's gain of coln tossing after n tosses provided that the stake is one dollar; n is the time. Let T be the time untll a first return to the origin. If we need to generate S_{n}, then it is not necessary to generate the individual U_{i} 's. Rather, it suffices to proceed as follows:
$X \leftarrow 0$
WHILE $X \leq n$ DO
Generate a random variate T (distributed as the waiting time for the first return to the origin).
$X \leftarrow X+T$
$V \leftarrow X-T, Y \leftarrow 0$
WHLE $V<n$ DO
Generate a random $\{1,-1\}$-valued step U.
$Y \leftarrow Y+U, V \leftarrow V+1$
IF $Y=0$ THEN $V \leftarrow X-T$ (reset V by rejecting partial random walk)
RETURN Y

The principle is clear: we generate all returns to the orlgin up to tlme n, and slmulate the random walk explicitly from the last return onwards, keeping in mind that from the last return onwards, the random walk is conditional: no further returns to the origin are allowed. If another return occurs, the partial random walk is rejected. The example of the simple random walk is rather unfortunate in two respects: first, we know that S_{n} is binomlal ($n, \frac{1}{2}$). Thus, there is no need for an algorlthm such as the one described above, which cannot possibly run in unfformly bounded time. But more importantly, the method described above is intrinsically Inefficlent because random walks spend most of their time on one of the two sldes of the orlgin. Thus, the last return to the orlgin is likely to be $\Omega(n)$ away from n, so that the probabllity of acceptance of the explicltly generated random walk, which is equal to the probabllity of not returning to the origin, is $O\left(\frac{1}{n}\right)$. Even if we could generate T in zero time, we would be looking at an overall expected time complexity of $\theta\left(n^{2}\right)$. Nevertheless, the example has great didactical value.

The distribution of the time of the first return to the origin is given in the following Theorem.

Theorem 6.1.

In a symmetric random walk, the time T of the first return to the origin satisfles

$$
\begin{aligned}
& P(T=2 n)=p_{2 n}=\frac{1}{n 2^{2 n-1}}\binom{2 n-2}{n-1} \quad(n \geq 1), \\
& P(T=2 n+1)=0 \quad(n \geq 0)
\end{aligned}
$$

If $q_{2 n}$ is the probabllity that the random walk returns to the origin at time $2 n$, then we have
A. $\quad p_{2 n}=q_{2 n} /(2 n-1)$;
B. $p_{2 n} \sim 1 /\left(2 \sqrt{\pi} n^{3 / 2}\right)$;
C. $E(T)=\infty$;
D. $p_{2 n}=q_{2 n-2}-q_{2 n}$;
E. $\quad p_{2}=\frac{1}{2}, p_{2 n+2}=p_{2 n}\left(1-\frac{1}{2 n}\right)\left(1+\frac{1}{n}\right)$.

Proof of Theorem 6.1.

This proof will be given in full, because it is a beautlful illustration of how one can compute certaln renewal time distributlons via generating functions. We begin with the generating function $G(s)$ for the probablilites $q_{2 i}=P\left(S_{2 i}=0\right)$ where $S_{2 i}$ is the value of the random walk at tlme $2 i$. We have

$$
\begin{aligned}
& G(s)=\sum_{i} q_{2 i} s^{i}=\sum_{i=1}^{\infty} 2^{-2 i}\binom{2 i}{i} s^{i} \\
& =\sum_{i=1}^{\infty}\binom{-\frac{1}{2}}{i}(-s)^{i}=\frac{1}{\sqrt{1-s}}-1
\end{aligned}
$$

Let us now relate $p_{2 n}$ to $q_{2 i}$. It is clear that

$$
q_{2 n}=p_{2 n}+\sum_{i=1}^{n-1} p_{2 n-2 i} q_{2 i}
$$

If $H(s)$ is the generating function for $p_{2 n}$, then we have

$$
\begin{aligned}
& H(s)=\sum_{n=1}^{\infty} q_{2 n} s^{n} \\
& =\sum_{n=1}^{\infty}\left(p_{2 n} s^{n}+\sum_{i=1}^{n-1} p_{2 n-2 i} s^{n-i} q_{2 i} s^{i}\right) \\
& =H(s)+\sum_{i=1 n}^{\infty} \sum_{n=i+1}^{\infty} p_{2 n-2 i} s^{n-i} q_{2 i} s^{i}
\end{aligned}
$$

$$
=H(s)+\sum_{i=1}^{\infty} q_{2 i} s^{i} \sum_{n=1}^{\infty} p_{2 n} s^{n}=H(s)+G(s) H(s)
$$

Therefore,

$$
H(s)=\frac{G(s)}{1+G(s)}=1-\sqrt{1-s}=\sum_{i=1}^{\infty}\binom{\frac{1}{2}}{i}(-1)^{i-1} s^{i}
$$

Equating the coefficlent of s^{i} with $p_{2 i}$ gives the distribution of T. Statement A is easlly verlfled. Statement B follows by using Stirling's formula. Statement C follows directly from B. Finally, D and E are obtalned py simple computations.

Even though T has a unlmodal distribution on the even integers with peak at 2, generation by sequential inversion started at 2 is not recommended because $E(T)=\infty$. We can proceed by rejection based upon the following inequalities:

Lemma 6.1.

The probabllitles $p_{2 n}$ satlsfy for $n \geq 1$,

$$
1-\frac{1}{2 n} \leq \frac{p_{2 n}}{\frac{1}{2 \sqrt{\pi}\left(n-\frac{1}{2}\right)^{\frac{3}{2}}}} \leq e^{\frac{1}{12(2 n-1)}} \leq e^{\frac{1}{12}}
$$

Proof of Lemma 6.1.

We rewrite $p_{2 n}$ as follows:

$$
\begin{aligned}
& p_{2 n}=\frac{\Gamma(2 n-1)}{2 n 2^{2 n-2} \Gamma^{2}(n)} \\
& =\frac{e^{-(2 n-1)}(2 n-1)^{2 n-1} \sqrt{2 \pi / 2 n-1} e^{\frac{\theta}{12(2 n-1)}}}{2 n 2^{2 n-2} e^{-2 n} n^{2 n} \frac{2 \pi}{n}} \\
& =\frac{e\left(1-\frac{1}{2 n}\right)^{2 n-1} e^{\frac{\theta}{12(2 n-1)}}}{n \sqrt{2 \pi(2 n-1)}}
\end{aligned}
$$

for some $0<\theta<1$. An upper bound is provided by

$$
=\frac{e^{\frac{1}{12(2 n-1)}}}{\left(n-\frac{1}{2}\right)^{\frac{3}{2}} \sqrt{4 \pi}}
$$

A lower bound is provided by

$$
\begin{aligned}
& =\frac{e\left(1-\frac{1}{2 n}\right)^{2 n}}{\left(n-\frac{1}{2}\right)^{\frac{3}{2}} \sqrt{4 \pi}} \\
& \geq \frac{\left(1+\frac{1}{2 n}\right)^{2 n}\left(1-\frac{1}{2 n}\right)^{2 n}}{\left(n-\frac{1}{2}\right)^{\frac{3}{2}} \sqrt{4 \pi}} \\
& \geq \frac{\left(1-\frac{1}{4 n^{2}}\right)^{2 n}}{\left(n-\frac{1}{2}\right)^{\frac{3}{2}} \sqrt{4 \pi}} \\
& \geq \frac{\left(1-\frac{1}{2 n}\right)}{\left(n-\frac{1}{2}\right)^{\frac{3}{2}} \sqrt{4 \pi}} .
\end{aligned}
$$

Generation can now be dealt with by truncation of a contlnuous random varlate. Note that $p_{2 n} \leq c g(x)$ where

$$
\operatorname{cg}(x)=\left\{\begin{array}{l}
\frac{1}{2} \quad(n=1, n-1<x<n) \\
\frac{e^{\frac{1}{12}}}{\sqrt{4 \pi}\left(x-\frac{1}{2}\right)^{\frac{3}{2}}} \quad(n>1, n-1<x<n)
\end{array}\right.
$$

where

$$
c=\frac{1}{2}+\frac{2 e^{\frac{1}{12}}}{\sqrt{\pi}} .
$$

Random variates with density g can quite easlly be generated by Inversion. The algorithm can be summarized as follows:

Generator for first return to origin in simple random walk
UNTIL False

The rejection constant c is a good indicator of the expected time spent before halting provided that $p_{2 X}$ can be evaluated in constant time uniformly over all X. However, if $p_{2 X}$ is computed directly from its definition, i.e. as a ratlo of factorlals, then the computation takes time roughly proportional to X. Assume that it is exactly X. Without squeeze steps, the expected time spent computing $p_{2 X}$ would be c times $E(X)$ where X has density g. This is ∞ (exercise 6.1). However, with the squeeze steps, the probabllity of evaluating $p_{2 X}$ expllcltly for flxed value of X decreases as $\frac{1}{X}$ as $X \rightarrow \infty$. This implles that the overall expected time of the algorithm is finite (exercise 6.2).

6.3. Birth and death processes.

A blrth and death process is a process with states $0,1,2,3, \ldots$, In which the time spent \ln state i is distributed as an exponentlal random varlate divided by $\lambda_{i}+\mu_{i}$, at which time the system Jumps to state $i+1$ (a birth) with probabillty $\lambda_{i} /\left(\lambda_{i}+\mu_{i}\right)$, and to state $i-1$ (a death) otherwlse. Simple examples include
A. The Polsson process: $\lambda_{i} \equiv \lambda>0, \mu_{i} \equiv 0$. Blrths correspond essentlally to events such as arrivals in a bank.
B. The Yule process: $\lambda_{i} \equiv \lambda i>0, \mu_{i} \equiv 0$. Here we also require that at time 0 , the state be 1 . This is a particular case of a pure blrth process. The state can be identlfled with the size of a glven population in which no deaths can occur.
C. The $\mathrm{M} / \mathrm{M} / 1$ queue: $\lambda_{i} \equiv \lambda>0, \mu_{i} \equiv \mu>0, \mu_{0}=0$. Here the state can be identlfled with the slize of a queue, a blrth with an arrival, and a death with a departure. The condition $\mu_{0}=0$ is natural since nobody can leave the queue when the queue is empty.
In all these examples, simulation can often be accelerated by making use of first-passage-time random variables. Formally, we define the first passage time from i to $j(j>i), T_{i j}$, by

$$
T_{i j}=\operatorname{lnf}\left\{t: X_{t}=j \mid X_{0}=i\right\}
$$

Here X_{t} is the state of the system (an integer) at time t, and X_{0} is the initial state. Let us consider the $\mathrm{M} / \mathrm{M} / 1$ queue. The busy perlod of such a queue is T_{10}. If the system starts in state 0 (empty queue), and we deflne a system cycle as the minimal time untll for the first time another empty queue state is reached after some busy period, i.e. after at least one person has been \ln the queue, then the system cycle is distributed as $E / \lambda+T_{10}$, where E is an exponential random variate, Independent of T_{10}. The only $\mathrm{M} / \mathrm{M} / 1$ queues of interest to us are those which have with probabllity one a finte value for T_{10}, i.e. those for which $\mu \geq \lambda$ (Heyman and Sobel, 1982, p. 91). The actual derlvation of the distribution of T_{10} would lead us astray. What matters is that we can generate random varlates distributed as T_{10} quite easily. This should of course not be done by generating all the arrivals and departures untll an empty queue is reached, because the expected time of this method is not uniformly bounded over all values of $\lambda<\mu$. This is best seen by noting that $E\left(T_{10}\right)=1 /(\mu-\lambda)$.

The $\mathrm{M} / \mathrm{M} / 1$ queue provides one of the few instances in which the distribution of the first passage times is analytically manageable. For example, $2 \sqrt{\lambda \mu} T_{10}$ has density

$$
f(x)=e^{-\frac{x}{2}\left(\xi+\frac{1}{\xi}\right)} I_{1}(x) \frac{\xi}{x} \quad(x>0)
$$

where $\xi=\sqrt{\frac{\mu}{\lambda}}$ and I_{1} is the Bessel function of the first kind with Imaginary argument (see section LX.7.1 for a definition). Direct generation can be carried out based upon the following result.

Theorem 6.2.

When E is exponentially distributed, Y is a random varlable with density

$$
g(y)=c \frac{\sqrt{y(1-y)}}{\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)-1+2 y} \quad(0<y<1)
$$

where $\quad c=\frac{4 \xi}{\pi} \quad$ and $\quad \xi=\sqrt{\frac{\mu}{\lambda}}$, and E, Y are independent, then $E /\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 Y-1\right)$ has density f, and $E /(\mu+\lambda+2 \sqrt{\mu \lambda}(2 Y-1))$ is distributed as T_{10}.

Proof of Theorem 6.2.

Thls theorem Illustrates once agaln the power of integral representations for densities. By an integral representation of I_{1} (Magnus et al, 1986, p. 84),

$$
\begin{aligned}
& f(x)=e^{-\frac{x}{2}\left(\xi+\frac{1}{\xi}\right)} I_{1}(x) \frac{\xi}{x} \\
& =e^{-\frac{x}{2}\left(\xi+\frac{1}{\xi}\right)} \frac{\xi}{x} \frac{x}{\pi} \int_{-1}^{1} e^{-z x} \sqrt{1-z^{2}} d z \\
& =\int_{0}^{1}\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 y-1\right) e^{-x\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 y-1\right)} \frac{4 \xi}{\pi} \frac{\sqrt{y(1-y)}}{\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 y-1} d y \\
& =E\left(\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 Y-1\right) e^{-x\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 Y-1\right)}\right)
\end{aligned}
$$

where Y has density g. Given Y, this is the density of $E /\left(\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)+2 Y-1\right)$.

Generation of Y can be taken care of very simply by rejection. Note that

$$
g(y) \leq\left\{\begin{array}{l}
c \frac{\sqrt{y(1-y)}}{2 y} \\
c \frac{\sqrt{y(1-y)}}{\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)-1}
\end{array}\right.
$$

where $c=\frac{4 \xi}{\pi}$. The top upper bound, proportional to a beta $\left(\frac{1}{2}, \frac{3}{2}\right)$ density integrates to ξ. The bottom upper bound, proportional to a beta $\left(\frac{3}{2}, \frac{3}{2}\right)$ density, integrates to $(\xi /(\xi-1))^{2}$. One should always pick the bound which has the
smallest integral. The cross-over point is at $\xi=\frac{1}{2}(3+\sqrt{5}) \approx 2.6$.

$$
\begin{aligned}
& \text { Generator for } \mathrm{g} \\
& \text { CASE } \\
& \xi \leq \frac{3+\sqrt{5}}{2}: \\
& \text { REPEAT } \\
& \text { Generate a uniform }[0,1] \text { random variate } U \text {. } \\
& \text { Generate a beta }\left(\frac{1}{2}, \frac{3}{2}\right) \text { random variate } Y \text {. } \\
& \text { UNTIL } \frac{U}{1-U} \leq \frac{2 Y}{\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)-1} \\
& \xi>\frac{3+\sqrt{5}}{2} \text { : } \\
& \text { REPEAT } \\
& \text { Generate a uniform }[0,1] \text { random variate } U \text {. } \\
& \text { Generate a beta }\left(\frac{3}{2}, \frac{3}{2}\right) \text { random variate } Y \text {. } \\
& \operatorname{UNTIL} \frac{U}{1-U} \leq \frac{\frac{1}{2}\left(\xi+\frac{1}{\xi}\right)-1}{2 Y} \\
& \text { RETURN } Y
\end{aligned}
$$

The expected number of iterations is $\min \left(\xi,\left(\frac{\xi}{\xi-1}\right)^{2}\right)$. This is a unimodal function In ξ, taking the value 1 as $\xi \downarrow 1$ and $\xi \uparrow \infty$. The peak 1 s at $\xi=(3+\sqrt{5}) / 2$. The algorithm is uniformly fast with respect to $\xi \geq 1$. In the case $\xi=1$ the acceptance condition is automatically satisfled, and the combination of the g generator with the property of Theorem 6.2 is reduced to a generator already dealt with in Theorem IX.7.1.

6.4. Phase type distributions.

Phase type distributions (or simply PH-distributions) are the distributions of absorption times in absorbing Markov chalns, which are useful in studyIng queues and rellabllity problems. We consider only discrete (or: discrete-time) Markov chalns with a finite number of states. An absorption state is one which, when reached, does not allow escape. Even if there is at least one absorption state, it is not at all certaln that it will ever be reached. Thus, phase type distributions can be degenerate.

Any state can also be "promoted" to absorption state to study the tlme needed untll thls state is reached. If we promote the starting state to absorption state immedlately after we leave it, then this promotion mechanism can be used to simulate Markov chalns by the shortcuts discussed in this section, at least if we can get a good handle on the tlmes untll absorption.

Discrete Markov chains can always be slmulated by using a simple discrete random varlate generator for every state transltion (Neuts and Pagano, 1981). This generator is not unlformly fast over all Markov chains with m states and nondegenerate phase type distribution. In the search for unlformly fast generators, simple shortcuts are of little help.

For example, when we are in state i, we could generate the (geometrically distributed) tlme untll we first leave i in constant expected time. The corresponding state can also be generated unlformly fast by a method such as Walker's, because we have a slmple conditional discrete distribution with $m-1$ outcomes. This method can be used to ellminate the times spent idling in Individual states. It cannot ellminate the times spent in cycles, such as in a Markov chain in which with high probability we stay in a cycle visiting states $i_{1}, i_{2}, \ldots, i_{k} \ln$ turn. Thus, it cannot posslbly be unfformly fast over all Markov chains with m states.

It seems that in this problem, unlform speed does not come cheaply. Some preprocessing involving the transition matrlx seems necessary.

6.5. Exercises.

1. Consider the rejection algorithm for the time $2 X$ untll the flrst return to the orlgin in a symmetric random walk given in the text. Show that when the time needed to compute $p_{2 X}$ is equal to X, then the expected time taken by the algorithm without squeeze steps is ∞.
2. A contlnuation of exercise 1. Show that when squeeze steps are added as in the text, then the algorithm halts in finite expected time.
3. Discrete Markov chains. Conslder a discrete Markov chaln with m states and Initial state 1 . You are allowed to preprocess at any cost, but just once. What sort of preprocessing would you do on the transition matrix so that you can design an algorithm for generating the state S_{n} at time n in expected time unlformly bounded over n. The expected time is however allowed to increase with m. Hint: can you decompose the transition matrix using a spectral representation so that the $n-$ th power of it can be computed unlformly quickly over all n ?
4. The lost-games distribution. Let X be the number of games lost before a player is ruined in the classical gambler's ruin problem, l.e. a gambler adds one to hls fortune with probabllity p and loses one unit with probabllity $1-p$. He starts out with r unlts (dollars). The purpose of this exerclse is to design an algorithm for generating X in expected time uniformly bounded in
r when $p<1-p$ is fixed. Unlform speed in both r and p would be even better. Notice first that the restriction $p<1-p$ is needed to insure that X is a proper random varlable, l.e. to Insure that the player is rulned with probabllity one.
A. Show that when $p<1-p$, the player will eventually be rulned with probabllity one.
B. Show that X has discrete distribution given by

$$
P(X=n)=\binom{2 n-r}{n} p^{n-r}(1-p)^{n} \frac{r}{2 n-r} \quad(n=r, r+1, \ldots)
$$

(Kemp and Kemp, 1988).
C. Suppose that customers arrive at a queue according to a homogeneous Poisson process with parameter λ, that the service time is exponential with parameter $\mu<\lambda$, and that the queue has inltially r customers. Show that the number of customers served untll the queue first vanishes has the lost-games distribution with parameters r and $p=\lambda /(\lambda+\mu)$.
D. Using Stlrling's approximation, determine the general dependence of $P(X=n)$ upon n, and use it to deslgn a unlformly fast rejection algorlthm.
For a survey of these and other walting time mechanlsms, see e.g. Patil and Boswell (1975).

7. THE GENERALIZATION OF A SAMPLE.

7.1. Problem statement.

As in section XIV.2, we will discuss an incompletely specifled random varlate generation problem. Assume that we are given a sample X_{1}, \ldots, X_{n} of ind R^{d}-valued random vectors with common unknown density f, and that we are asked to generate a new independent sample Y_{1}, \ldots, Y_{m} of independent random vectors with the same density f. Stated in thls manner, the problem is obviously unsolvable, unless we are incredibly lucky.

What one can do is construct a density estimate $f_{n}(x)=f_{n}\left(x, X_{1}, \ldots, X_{n}\right)$ of $f(x)$, and then generate a sample of size m from f_{n}. Thls procedure has several drawbacks: first of all, f_{n} is typlcally not equal to f. Also, the new sample depends upon the original sample. Yet, we have very few options avallable to us. Ideally, we would llke the new sample to appear to be distributed as the orlginal sample. This will be called sample indistinguishabillty. Thls and other issues will be discussed in this section. The materlal appeared originally in Devroye and Gyorf (1985, chapter 8).

7.2. Sample independence.

There is little that can be done about the dependence between X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} except to hope that for n large enough, some sort of asymptotic independence is obtained. In some applications, sample independence is not an issue at all.

Since the Y_{i} 's are conditionally independent given X_{1}, \ldots, X_{n}, we need only conslder the dependence between Y_{1} and X_{1}, \ldots, X_{n}. A measure of the dependence is

$$
D_{n}=\sup _{A, B}|P(Y \in A, X \in B)-P(Y \in A) P(X \in B)|
$$

where the supremum is with respect to all Borel sets A of R^{d} and all Borel sets B of $R^{n d}$, and where $Y=Y_{1}$ and X is our shorthand notation for $\left(X_{1}, \ldots, X_{n}\right)$. We say that the samples are asymptotically independent when

$$
\lim _{n \rightarrow \infty} D_{n}=0
$$

In situations in which X_{1}, \ldots, X_{n} is used to design or bulld a system, and Y_{1}, \ldots, Y_{m} is used to test it, the sample dependence often causes optimistlc evaluations. Without the asymptotic independence, we can't even hope to diminIsh thls optlmistic blas by increasing n.

The Inequallty in Theorem 7.1 below provides us with a sufficient condition for asymptotic independence. First, we need the following Lemma.

Lemma 7.1. (Scheffe, 1947).
For all densitles f and g on R^{d},

$$
\int|f-g|=2 \sup _{B}\left|\int_{B} f-\int_{B} g\right|
$$

where the supremum is with respect to all Borel sets B of R^{d}.

Proof of Lemma 7.1.

Let us take $B=\{f>g\}$, and let A be another Borel set of R^{d}. Because $\int(f-g)=0$, we see that

$$
\int|f-g|=2 \int_{B}(f-g)
$$

Thus, we have shown that $\int|f-g|$ is at most twice the supremum over all Borel sets of $\left|\int_{B}(f-g)\right|$. To show the other half of the Lemma, note that if B^{\prime} denotes the complement of B, then

$$
\begin{aligned}
& \left|\int_{A}(f-g)\right|=\left|\int_{A \cap B}(f-g)+\int_{A \cap B^{\prime}}(f-g)\right| \\
& \leq \max \left(\int_{A \cap B}(f-g), \int_{A \cap B^{\prime}}(f-g)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \max \left(\int_{B}(f-g), \int_{B^{\prime}}(g-f)\right) \\
& =\frac{1}{2} f|f-g| \quad(\text { all } A) .
\end{aligned}
$$

Scheffe's lemma tells us that if we assign probabllitles to sets (events) using two different densitles, then the maximal difference between the probabillties over all sets is equal to one half of the L_{1} distance between the densitles. From Lemma 7.1, we obtain

Theorem 7.1.

Let f_{n} be a density estimate, which itself is density. Then

$$
D_{n} \leq E\left(\int\left|f_{n}-f\right|\right)
$$

Proof of Theorem 7.1.

Let X_{1}, \ldots, X_{n+1} be 11d. Then

$$
\begin{aligned}
& D_{n} \leq \sup _{A, B}\left|P(Y \in A, X \in B)-P\left(X_{n+1} \in A, X \in B\right)\right| \\
& +\sup _{A, B}\left|P\left(X_{n+1} \in A, X \in B\right)-P\left(X_{n+1} \in A\right) P(X \in B)\right| \\
& +\sup _{A, B}\left|P\left(X_{n+1} \in A\right) P(X \in B)-P(Y \in A) P(X \in B)\right| \\
& \leq \sup _{A, B} E\left(I_{X \in B}\left|\int_{A} f_{n}-\int_{A} f\right|\right)+0+\sup _{A}\left|P\left(X_{n+1} \in A\right)-P(Y \in A)\right| \\
& \leq \sup _{A} E\left(\left|\int_{A} f_{n}-\int_{A} f\right|\right)+\sup _{A}\left|\int_{A} E\left(f_{n}\right)-\int_{A} f\right| \\
& \leq E\left(\sup _{A}\left|\int_{A} f_{n}-\int_{A} f\right|\right)+\frac{1}{2} \int\left|E\left(f_{n}\right)-f\right| \\
& =E\left(\frac{1}{2} \int\left|f_{n}-f\right|\right)+\frac{1}{2} \int\left|E\left(f_{n}\right)-f\right| .
\end{aligned}
$$

We see that for the sake of asymptotic sample Independence, it suffices that the expected L_{1} distance between f_{n} and f tends to zero with n. This is also called consistency. Conslstency does not imply asymptotic Independence: Just let f_{n} be the unlform density \ln all cases, and observe that $D_{n} \equiv 0$, yet
$\int\left|f_{n}-f\right|$ is a positive constant for all n and all nonuniform f.

7.3. Consistency of density estimates.

A density estimate f_{n} is consistent if for all densities f,

$$
\lim _{n \rightarrow \infty} E\left(\int\left|f_{n}-f\right|\right)=0
$$

Consistency guarantees that the expected value of the maximal error committed by replacing probabilitles deflned with f with probabilitles defined with f_{n} tends to 0. Many estimates are consistent, see e.g. Devroye and Gyorf (1985). Parametric estimates, l.e. estimates in which the form of f_{n} is fixed up to a finlte number of parameters, which are estlmated from the sample, cannot be conslstent because f_{n} is required to converge to f for all f, not a small subclass. Perhaps the best known and most wldely used conslstent denslty estimate is the kernel estimate

$$
f_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right),
$$

where K is a glven density (or kernel), chosen by the user, and $h>0$ is a smoothing parameter, which typlcally depends upon n or the data (Rosenblatt, 1958; Parzen, 1962). For conslstency it Is necessary and sufficlent that $h \rightarrow 0$ and $n h^{d} \rightarrow \infty$ in probablity as $n \rightarrow \infty$ (Devroye and Gyorf, 1985). How one should choose h as a function of n or the data is the subject of a lot of controversy. Usually, the cholce is made based upon the approximate minimization of an error criterion. Sample independence (Theorem 7.1) and sample indistingulshability (next section) suggest that we try to minimize

$$
E\left(\int\left|f_{n}-f\right|\right)
$$

But even after narrowing down the error criterion, there are several strategles. One could minlmize the supremum of the criterion where the supremum is taken over a class of densities. This is called a minimax strategy. If f has compact support on the real llne and a bounded continuous second derlvative, then the best cholces for individual f (i.e., not in the minimax sense) are

$$
\begin{aligned}
& h=C n^{-\frac{1}{5}} \\
& K(x)=\frac{3}{4}\left(1-x^{2}\right) \quad(|x| \leq 1)
\end{aligned}
$$

where C is a constant depending upon f only:

$$
C=\left(\sqrt{\frac{15}{2 \pi}} \frac{\int \sqrt{f}}{\int\left|f^{\prime \prime}\right|}\right)^{\frac{2}{5}}
$$

The optimal kernel colncldes with the optimal kernel for L_{2} criterla (Bartlett, 1983). The optlmal formula for h, which depends upon the unknown density f, can be estimated from the data. Alternatively, one could compute the formula for a given parametric density, a rough guess of sorts, and then estimate the parameters from the data. For example, if this is done with the normal density as initlal guess, we obtaln the recommendation to take

$$
h=\left(\frac{15 e \sqrt{2 \pi}}{8 n}\right)^{\frac{1}{5}} \hat{\sigma},
$$

where $\hat{\sigma}$ is a robust estimate of the standard deviation of the normal density (Devroye and Gyorfl, 1985). A typlcal robust estimate is the so-called quick-anddirty estimate

$$
\hat{\sigma}=\frac{X_{(n p)}-X_{(n q)}}{x_{p}-x_{q}},
$$

where x_{p}, x_{q} are the p-th and q-th quantlles of the standard normal density, and $X_{(n p)}$ and $X_{(n q)}$ are the p-th and q-th quantlles \ln the data, l.e. the ($n p$)-th and ($n q$) -th order statlistics.

The construction given here with the kernel estimate is slmple, and yields fast generators. Other constructions have been suggested in the literature with random varlate generation in mind. Often, the expllcit form of f_{n} is not given or needed. Constructions often start from an emplitical distrlbution function based upon X_{1}, \ldots, X_{n}, and a smooth approximation of thls distribution function (obtalned by interpolation), which is directly useful in the inversion method. Guerra, Tapla and Thompson (1978) use Aklma's (Aklma, 1970) quasl-Hermite plecewise cublc Interpolation to obtain a smooth monotone function colnclding with the emplrical distribution function at the points X_{i}. Recall that the emplrical distribution is the distribution which puts mass $\frac{1}{n}$ at polnt X_{i}. Hora (1983) gives another method for the same problem. Butler (1970) on the other hand uses Lagrange's quadratic interpolation on the inverse emplitcal distribution function to speed random varlate generation up even further.

7.4. Sample indistinguishability.

In simulations, one important qualitative measure of the goodness of a method is the indistingulshability of X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{m} for the given sample size m. Note that we have forced both sample sizes to be the same, although for the construction of f_{n} we keep on using n points. The indistingulshabllity could be measured quantltatively by

$$
\begin{aligned}
& S_{n, m}=\sup _{A}\left|E(N(A))-E\left(M(A) \mid X_{1}, \ldots, X_{n}\right)\right| \\
& =m \sup _{A}\left|\int_{A} f-\int_{A} f_{n}\right|
\end{aligned}
$$

$$
=\frac{m}{2} \int\left|f_{n}-f\right|
$$

Here, A is a Borel set of $R^{d}, N(A)$ is the cardinallty of A for the original sample (the data, artiflclally inflated to size m), and $M(A)$ is the cardinality of A for the artificlal Y_{i} sample. By cardinality of a set, we mean the number of data polnts falling in the set.

When $S_{n, m}$ is smaller than one, then the expected cardinallty of a set A with a perfect sample of size m differs by at most one from the conditional expected cardinality of the generated sample of size m. We say that f_{n} is k excellent for samples of size m when

$$
E\left(S_{n, m}\right) \leq k
$$

This is equivalent to asking that the expected L_{1} distance between f and f_{n} is at most $2 k / m$. The notion of 1-excellence is very strong. For example, for most nonparametrlc estlmates such as the kernel estlmate 1-excellence forces us to use phenomenally large values of n for even moderate values of m. Devroye and Gyorfl (1985) have shown that for all kernel estlmates (regardless of cholce of K and h), and for all densitles f, 1-excellence is not achievable for samples of size $m=1000$ unless $n \geq 4,000,000$. For $m=10,000$, we need $n \geq 1,300,000,000$. For the histogram estimate, the situation is even worse.

But even 1-excellence may not be good enough for one's appllcation. For one thing, no assurances are given as to the discrepancy in moments between the generated sample and the original sample.

7.5. Moment matching.

Some statisticlans attach a great deal of importance to the moments of the densitles f_{n} and f. For $d=1$, the i-th moment mismatch is deflned as

$$
M_{n, i}=\int x^{i} f_{n}-\int x^{i} f \quad(i=1,2,3, \ldots)
$$

Clearly, $M_{n, i}$ is a random varlable. Assume that we employ the kernel estimate with a zero mean finlte varlance (σ^{2}) kernel K. Then, we have

$$
\begin{aligned}
& M_{n, 1}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-E\left(X_{i}\right)\right), \\
& M_{n, 2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{2}-E\left(X_{i}^{2}\right)\right)+h^{2} \sigma^{2} .
\end{aligned}
$$

This follows from the fact that f_{n} is an equiprobable mixture of densities K shifted to the X_{i} 's, each having varlance $h^{2} \sigma^{2}$ and zero mean. It is interesting to note that the distribution of $M_{n, 1}$ is not influenced by h or K. By the weak law of large numbers, $M_{n, 1}$ tends to 0 in probabllity as $n \rightarrow \infty$ when f has a finite first moment. The story is different for the second moment mismatch.

Whereas $E\left(M_{n, 1}\right)=0$, we now have $E\left(M_{n, 2}\right)=h^{2} \sigma^{2}$, a positlve blas. Fortunately, h is usually small enough so that this is not too big a blas. Note further that the varlances of $M_{n, 1}, M_{n, 2}$ are equal to

$$
\frac{\operatorname{Var}\left(X_{1}\right)}{n}, \frac{\operatorname{Var}\left(X_{1}{ }^{2}\right)}{n}
$$

respectlvely. Thus, h and K only affect the blas of the second order mismatch. Making the blas very small is not recommended as it Increases the expected L_{1} error, and thus the sample dependence and distingulshabllity.

7.6. Generators for f_{n}.

For the kernel estlmate, generators can be based upon the property that a random varlate is distributed as an equlprobable mixture, as is seen from the following trivial algorithm.

Mixture method for kernel estimate

Generate Z, a random integer uniformly distributed on $\{1,2, \ldots, n\}$.
Generate a random variate W with density K.
RETURN $X_{Z}+h W$

For Bartlett's kernel $K(x)=\frac{3}{4}\left(1-x^{2}\right)_{+}$, we suggest elther rejection or a method based upon properties of order statistics:

Generator based upon rejection for Bartlett's kernel

REPEAT
Generate a uniform $[-1,1]$ random variate X and an independent uniform [0,1] random variate U.
UNTIL $U \leq 1-X^{2}$
RETURN X

```
The order statistics method for Bartlett's kernel
Generate three iid uniform [-1,1] random variates }\mp@subsup{V}{1}{},\mp@subsup{V}{2}{},\mp@subsup{V}{3}{}\mathrm{ .
IF | V | | >max(| V | |,| 涪|)
    THEN RETURN }X\leftarrow\mp@subsup{V}{2}{
    ELSE RETURN }X\leftarrow\mp@subsup{V}{3}{
```

In the rejection method, X is accepted with probabllity $2 / 3$, so that the algorithm requires on average three independent unlform random varlates. However, we also need some multiplications. The order statlstics method always uses preclsely three independent unlform random varlables, but the multipllcations are replaced by a few absolute value operations.

7.7. Exercises.

1. Monte Carlo integration. To estimate $\int H(x) f(x) d x$, where H is a glven function, and f is a density, the Monte Carlo method uses a sample of size n drawn from f (say, X_{1}, \ldots, X_{n}). The nalve estimate is

$$
\frac{1}{n} \sum_{i=1}^{n} H\left(X_{i}\right)
$$

When n is small, this estimate has a lot of bullt-In varlance. Compute the varlance and assume that it is finite. Then construct the bootstrap estimate

$$
\frac{1}{m} \sum_{i=1}^{m} H\left(Y_{i}\right)
$$

where the Y_{i} 's are lid random variables with density f_{n}, the kernel estlmate of f based upon X_{1}, \ldots, X_{n}. The sample slze m can be taken as large as the user can afford. Thus, in the limit, one can expect the bootstrap estimate to provide a good estimate of $\int H(x) f_{n}(x) d x$.
A. Show that $\left|\int H f-\int H f_{n}\right| \leq 2(\sup H) \int\left|f-f_{n}\right| \quad$ (Devroye and Gyorfi, 1985).
B. Compare the mean square errors of the nalve Monte Carlo estimate and the estimate $\int H f_{n}$ (the latter is a llmit as $m \rightarrow \infty$ of the bootstrap estimate).
C. Compute the mean square error of the bootstrap estlmate as a function of n and m, and compare with the nalve Monte Carlo estimate. Also
consider what happens when you let $m \rightarrow \infty$ in the expression for the mean square error.
2. The generators for the kernel estlmate based upon Bartlett's kernel in the text use the mlxture method. Stlll for Bartlett's kernel, derlve the Inversion method with all the detalls. Hint: note that the distribution function can be written as the sum of polynomials of degree three with compact support, and can therefore be considered as a cublc spllne with at most $2 n$ breakpolnts when there are n data polnts (Devroye and Gyorf, 1985).
3. Bratley, Fox and Schrage (1983) consider a density estlmate f_{n} which provides fast generation by inversion. The X_{i} 's are ordered, and f_{n} is constant on the intervals determined by the order statistics. In addition, in the intervals to the left of the minimum and to the right of the maximum exponentlal talls are added. The constant pleces and exponentall talls integrate to $1 /(n+1)$ over their supports, i.e. all pleces are equally llkely to be plcked. Rederive their fast Inversion algorithm for f_{n}. Is their estimate asymptotically independent? Show that it is not consistent for any density f. To cure the latter problem, Bratley, Fox and Schrage suggest coalescing breakpoints. Consider coalescing breakpoints by letting f_{n} be constant on the intervals determined by the $k-$ th, $2 k-\mathrm{th}, 3 k-\mathrm{th}, \cdots$ order statistics. How should one define the helghts of f_{n} on these intervals, and how should k vary with n for consistency?
4. For the kernel estlmate, show that for any denslty K, any f, and any sequence of numbers $h>0$ with $h \rightarrow 0, n h^{d} \rightarrow \infty$, we have $E\left(\int\left|f-f_{n}\right|\right) \rightarrow 0$ as $n \rightarrow \infty$. Proceed as follows: first prove the statement for continuous f with compact support. Then, using the fact that any measurable function in L_{1} can be approximated arbltrarlly closely by continuous functions with compact support, wrap up the proof. In the first half of the proof, it is useful to spllt the integral by considering $\left|f-E\left(f_{n}\right)\right|$ separately. In the second half of the proof, you will need an embedding argument, in which you create a sample which with a few deletions can be considered as a sample drawn from f, and with a few different deletions can be considered as a sample drawn from the L_{1} approximation of f.

