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Both lnequalltles can be satlsfled slmultaneously for all m Bo. N t e r  flxlng 7, 
compute all quantltles In the upper bound of Lemma 3.3. Slnce 
C (x)=(co+o (1))( I x I +P, ' /~ ) *  wlth C0=4/(9T), I t  1s easy to see that 

- 

1 

where X 1s a random varlable wlth denslty g , and a=4(m -l) /(m +4). We can 
choose g such that E ( I X I *) 1s close to p4"l4 (e.g., In Example 3.4, take r =6 
or larger In the bound for unlmodal densltles; taklng r = 4  Isn't good enough 
because for r =4, E (  I X I 4)=00). Notlng next that p4'j4 - 6 /3ll4 as 

m 400, we note that SCg lncreases as a constant tlmes ma/2. Next, I C  
lncreases as a constant tlmes 

1 2-- 

1 
7 

l+*(2--) 

4 
P4 

9 2  --- 
which In turn lncreases as m 

57 
2 

7 .  The upper bound In Lemma 3.3 lncreases as 
- 2-27+ --2 97 

m = m  . 

The smallest allowable value for 7 1s l/cr-1/4. Thus, the upper bound on the 
expected complexlty 1s of the order of magnltude of m5/'. 

3.4. Exercises. 
1. Show that when a characterlstlc functlon I$ 1s absolutely Integrable, then the 

dlstrlbutlon has a bounded contlnuous denslty f . Is the denslty also unl- 
formly contlnuous? 

2. Construct a symmetrlc real characterlstlc functlon for a dlstrlbutlon wlth a 
denslty, havlng the property that 4 takes negatlve and posltlve values. 

3. Conslder symmetrlc nonnegatlve characterlstlc functlons 4, and deflne 
vPn = J t P n  4(t ) dt . 
A. Show that vzn )=o ( n  ) lmplles that (x2n u2n ) / ( 2 n  )! 1s summable 

for all x >O. 

B. Show that f 1s unlmodal and has a unlque mode at 0 (Feller, 1971, p. 
528).  

C. In the alternatlng serles algorlthm for thls class of densltles glven In the 
text, why can we take b =pl or b =o In the formula for the doinlnatlng 
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curve where p 1  1s the flrst absolute moment for f and a 1s the standard 
devlatlon for f ? 
A contlnuatlon of part C. If all operatlons in the algorlthm take one 
unlt of tlme, glve a useful sufflclent condltlon on for the expected 
tlme of the algorlthm to be flnlte. 

4. The followlng 1s an lmportant symmetrlc nonnegatlve characterlstlc func- 

D. 

tlon: 

1 - - d 2  t 

u + 2 u + .  . . 
'(' 

= d s l n h ( a  ) 
1+2 3! 5! 

(see e.g. Anderson and Darllng, 1952). Near t =0, 4 varles as 1- I t I / 6 .  
Thls lmplles that the flrst absolute moment 1s lnfinlte. Flnd a domlnatlng 
curve for thls partlcular characterlstlc functlon, verlfy that the denslty f 1s 
determlned by Its Taylor serles about 0, and glve all the detalls of the alter- 
natlng serles method for thls dlstrlbutlon. 
The followlng characterlstlc functlon appears as the llmlt of a sequence of 
characterlstlc functlons In mathematical statlstlcs (Anderson and Darllng, 
1952): 

5 .  

-2nit ji. 
Glve a finlte tlme random varlate generator for thls dlstrlbutlon. Ignore 
efflclency lssues (e.g., the expected tlme 1s allowed t o  be lnfinlte). 
Glve the full detalls of the proof that the expected number of evaluatlons of 
4 In the serles method for generating the sum of m lld unlform [-l,l] ran- 
dom varlables (Example 3.6) 1s 0 (m(5$-')/8) for all E > O .  

How can you lmprove on the expected cornplexlty In Example 3.6? 

6. 

7. 

4. THE SIMULATION OF SUMS. 

4.1. Problem statement. 
Let x be a random varlable wlth denslty f on the real llne. In thls sectlon 

we conslder the problem of the slmulatlon of Sn=X,+ . +Xn where 
X,, . . . , X ,  are lld random varlables dlstrlbuted as X. The nalve method 
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I 

7 17 

Naive method 

s t o  
FOR i:=l 'TO DO 

Generate X with density f . 
s +-s +x 

RETURN s 

takes worst-case or expected tlme proportional to n depending upon whether X 
can be generated In constant worst-case or constant expected tlme. We say that a 
generator Is unlformly fast when the expected time E ( Tn ) needed to generate S, 
sat lsfles 

SUP E ( T , )  < 0 0 .  
n 21 

Thls supremum Is allowed to  depend upon f . Note that the unlformity 1s wlth 
respect to n and not t o  f . Thls dlffers from our standard notlon of unlformlty 
over a class of dlstrlbutlons. 

In trylng to develop unlformly fast generators, we should get a lot of help 
from the central llmlt theorem, which states that under some condltlons on the 
distrlbutlon of X ,  the sum S,, , properly normallzed, tends In dlstrlbution to one 
of the stable laws. Ideally, a unlformly fa s t  generator should return such a stable 
random varlate most of the time. What complicates matters Is that the dlstrlbu- 
tlon of s,, 1s not easy to describe. For example, In a reJectlon based method, the 
computation of the value of the density of S,, at one polnt usually requires time 
lncreaslng wlth n .  Needless to say, I t  1s thls hurdle whlch makes the problem 
both challenging and Interestlng. 

In a flrst approach, we wlll cheat a blt: recall that If 4 1s the characterlstlc 
functlon of X ,  then S,, has characterlstlc function 9".  If we have a unlformly 
fast generator for the famlly {$,d2, . . . , (6" ,... }, then we are done. In other 
words, we reduce the problem to that of the generation of random variates wlth a 
glven characterlstlc function, dlscussed In section 3. The reason why we call thls 
cheatlng Is that 9 Is usually not available, only f . 

In the second approach, the problem Is tackled head on. We wlll flrst derlve 
lnequalltles which relate the denslty of S,, to the normal density. In proving the 
Inequalltles, we have to rederlve a so-called local central llmlt theorem. The ine- 
qualltles allow us to design unlformly fas t  rejection algorithms which return a 
stable random varlate wlth high probablllty. The tlghtness of the bounds allows 
us to obtaln thls result desplte the fact  that  the density of s,, can't usually be 
computed In constant time. When the density can be computed In constant tlme, 
the algorlthm 1s extremely emclent. Thls 1s the case when the density of s, has 
a relatlvely simple analytlc form, as In the case of the exponential density when 
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s,, is gamma (n 1. 
Other solutlons are suggested In the exerclses and In later sectlons, but the 

m m t  promlslng generally appllcable strategles are deflnltely the two mentloned 
above. 

4.2. A detour via characteristic functions. 
S, has characterlstlc functlon 4n when x has characterlstlc functlon 4. 

Thls fact can be used to generate sn emclently provlded that al l  the b,, 's belong 
to a famlly of characterlstlc functlons for whlch a good emclent generator 1s 
avallable. 

One such famlly 1s the famlly of Polya characterlstlc functlons dealt wlth In 
sectlon W.6.7.  In partlcular, If 4 1s Polya, so 1s 4" .  Based upon Theorems N.6.8 
and W.6.9, we can conclude the followlng: 

Theorem 4.1. 
Y 
2 

If 4 1s a Polya characterlstlc functlon, then X+- has characterlstlc func- 

tlon 4" when Y,z  are lndependent random varlables, Y has the FVP denslty 
(defined In Theorem rV.6.9), and 2' has dlstrlbutlon functlon 

Here 4' 1s the rlght-hand derlvatlve of 4. When F 1s absolutely contlnuous, then 
I t  has denslty 

6 2n (n  - I ) ~ ' ~ ( s  )c$" -~ (s  )+s 2n $"(s )$n-'(s ) (s >o) . 

When $ 1s expllcltly glven, and I t  often is, thls method should prove to  be a 
Iormldable competitor. For one thlng, we have reduced the problem to  one of 
generatlng a random varlate wlth an expllcltly glven dlstrlbutlon functlon or den- 
sity, 1.e. we have taken the problem out of the domaln of characterlstlc functlons. 

The prlnclple outllned here can be extended to  a few other classes of charac- 
terlstlc functlons, but we are stlll far away from a generally appllcable technlque, 
let alone a universal black box method. The approach outllned ln the next sectlon 
1s better sulted for thls purpose. 
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4.3. Rejection based upon a local central limit theorem. 
We assume that f is a zero mean denslty wlth flnlte variance u2. Summlng 

n ild random varlables wlth this denslty 1s known to glve a random varlable wlth 
approximately normal (0,n a2) distributlon. The study of the closeness of this 
approxlmatlon is the subJect of the classlcal central llmlt theory. The only thlngs 
that can be of use to us are preclse (Le., not asymptotic) lnequalltles whlch clarlfy 
Just how close the density of s, 1s to the normal (0,na2) denslty. For a smooth 
treatment, we put two further restrlctlons on f : 
A. The denslty has an absolutely lntegrable characterlstlc functlon 4. Recall 

that thls lmplles among other thlngs that f 1s bounded and contlnuous. 
B. The random variable X has flnlte thlrd absolute moment not exceedlng p: 

Conditlon A allows us to use the simple lnverslon formula for characterlstlc func- 
tions, whlle condltlon B guarantees us that the error term 1s 0 (1/& ). Densltles 
f satlsfying all the condltlons outlined above are called regular. Clearly, most 
zero mean densltles occurrlng In practice are regular. There 1s only one large class 
of exceptlons, the dlstrlbutlons In the domaln of attractlon of stable laws. By 
forclng the varlance to be flnlte, we can only have convergence to the normal dls- 
trlbution. In exerclse 4.1, which 1s more a research project than an exerclse, the 
reader 1s challenged to repeat thls section for dlstrlbutlons whose sums converge 
to symmetric stable laws wlth parameter a<2.  For once we wlll do thlngs back- 
wards, by glvlng the results and thelr lmpllcatlons before the proofs, whlch are 
deferred to next sectlon. 

The fundamental result upon whlch thls entire sectlon rests 1s the following 
form of a local central llmlt theorem: 

E ( I x I ~ ) L ~ < ~ .  

Let f be a regular density, and let f, be the denslty of S, /(06). Let g 
be the standard normal denslty. There exlst sequences an and b,  only depend- 

Theorem 4.2. 

lng upon f such that 

For a proof and references, see sectlon 4.4. Expllclt values for a, and 6, 
follow. It is lmportant to  note that 

g - h n  L f n  L g + h n  9 
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where J h ,  = 0 ( 1 / 6 )  . In other words, the lnequallty 1s emlnently sulted for 
use In a reJectlon algorlthm wlth squeezlng. Both g and h, can be considered as 
very easy densltles from a random varlate generatlon polnt of vlew. Furthermore, 
the obvlous rejectlon algorlthm, descrlbed In Example 11.3.6, has rejectlon con- 
stant l+Jh, tendlng to  1 as n -+m. There Is even more good news: If the lower 
bound 1s used for squeezlng, then the expected number of evaluatlons of f 1s at 
most 2Jh, =O ( 1 / 6 ) = 0  (1). The cumbersome part 1s the evaluation of f , . 

There are essentlally two posslbllltles when I t  comes to  evaluatlng f , : first, 
f, Is expllcltly known. Thls 1s for example the case when f 1s an exponentlal 
denslty centered around Its mean, and f , 1s the density of a llnearly transformed 
gamma ( n  ) denslty. In the case of the gamma denslty, we can easlly compute the 
dlfferent constants In the bound of Theorem 4.2. as 1s done In exerclse 4.2. 

' Another example for the sums of unlform random varlables follows In a separate 
sectlon. 

T o  compute f , vla convolutlons 1s all but lmposslble. The oqly other alter- 
natlve 1s to wrlte f , as a serles based upon the lnverslon formula for I$", and to  
apply the serles method. Here too the hurdles are formldable. 

4.4. A local limit theorem. 
It 1s the purpose of thls sectlon to prove Theorem 4.2. The proof 1s qulte 

long, and 1s glven In full because we requlre expllclt knowledge of the boundlng 
sequence, and a careful derlvatlon of the bounds to  keep the constants as small as 
posslble. Local llmlt theorems of the type needed by us have been derlved In a 
number of papers, see e.g. Inzevltov (1977), Survlla (1964) and MaeJlma (1980). 
An excellent general reference 1s Petrov (1975). For example, Survlla (1964) has 
obtalned the existence of a constant C dependlng upon f only such that for reg- 
ular f , 

C Ibraglmov and Llnnlk (1971) have obtalned an upper bound of the type -. 
Note that Survlla's bound does not tend to  zero wlth n .  The Ibraglmov-Llnnlk 
upper bound 1s called a unlform estlmate In the local central llmlt theorem. Such 
unlform estlmates are useless t o  us because the upper bound when Integrated 
wlth respect t o  a: 1s not flnite. The bound whlch we derlve here uses well-known 
trlcks of the trade, documented for example In Petrov (1975) and MaeJlma 

6 

(1980). 
Let us s tar t  slowly wlth a few key lemmas. 
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Lemma 4.1. 
For any real t , 

Proof of Lemma 4.2. 

Lemma 4.2. 
Let q5 be the characteristic function for a regular denslty f . Then the fol- 

lowlng lnequalities are valld: 

Slnce three absolute moments exlst, we notlce that  the flrst three derlvatlves 
of q5 exlst and are continuous functions glven by the formulas (Feller, 1971, p. 
512) 

q5( j ) ( t )  = J e i t z ( i z ) i f  (x) dx (j=0,1,2,3) . 
Observe that 

t 2 U 2  
-1-itu f- 1 f (u  ) du 

a2t2 I $(t  > - 1 + y  I 5 J 1 e 
2 

Next, 
a2 t 

qY(t )+T = J(e  itti -1-itu )iuf (u ) du . 

Thus, 

Flnally, 
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Thus, 
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Lemma 4.3. 
Consider the absolute dlfferences 

t 2  -- 
A, ( t  ) = I (l--)m-e t 2  2 I ( m  =n-z ,n- l ,n )  . 2n 

For t 2 < n ,  we have 

1 t 2  

2 t 2  

2 e n - 2 ,  2 
- -- 

4 - 2 U  1 L - n -2 

If all lntegrals shown below are over { I t I 5 6 }, then we have 

Proof of Lemma 4.3. 
Flrst, 

r 2  r 2  

t 2  
t 2  -- 

< e -(I--)~ 
2n - 
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- < e  1-e 
t 2  

< e  2 - .  
-- t 4  

4n - 

Here we used the Inequality log(1-u )>-u -u 2/(2(1-u ))>-u -u valld for 
0 5 u  <1/2. Slnce 

t 2  12 -- c -  o 5 e -(I--)% , 
2n 

the bound for A ,  Is proved. For the other bounds, conslder A ,  In general. 
Clearly, 

-$ [ e t 2 ( $ - z ) - t  gni-l , 

', 1 t 2  -- t 2  ( ~ - - ) ~ - e  5 e 
2n 

For m =n -i , the exponent 1s at most t 2 i  /(2n ) - t 4 ( n  -i ) / ( 8 n  2). Thls function 1s 
at most i2/ (2(n 4)). By the Inequality e ' - 1 s u e  ' valld for u 20, we finally 
conclude that the expression on the right hand side of the last lnequallty 1s at 
most 

t*  i2 

i 2  e 2 ( n - i )  
-- 

e 2  
2(n -i ) 

Thls proves all the polntwlse lnequalltles for A , .  The lntegral lnequalltles are 
obtained by lntegratlng the pointwise lnequalltles over the whole real Ilne (thls 
can only make the upper bounds larger). One needs the facts that for a normal 
random variable N ,  E (N2)=1,E (N4)=3, and E (N6)=15. 
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I Lemma 4.4. 

, we have 3 0 3 6  For regular I , and I t I < 
- 4P 

t' 

w e - :  + / A & )  I 
-- t 2 

3 0 3 G  
I dY-&-e I 5 

I Integrated over the glven lnterval for t , we have 

Proof of Lemma 4.4. 
Note that 

The last term 1s taken care of by applylng Lemma 4.3 .  Here we need the fact 
that the glven lnterval for t 1s always lncluded In [-6 ,GI, so that the 
bounds of Lemma 4.3 are Indeed appllcable. By Lemma 4.2,  the flrst term can be 
written as 

where 1 6  I 51. Uslng the fact that ( l + ~ ) ~ - l S n  I u I e n  1 '  I for all n >0, and 
all u ER , thls can be bounded from above by 

To obtaln the lntegral lnequallty, use Lemma 4.3 agaln, and note that s I t I 3 e - t a / 4  dt = I S .  
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f, 1s the density of S, /(o&) and g 1s the normal density. Also, 

S P  

3na3Jn 
an - 

asn--tm. 

Proof of Lemma 4.5. 

we see that 
By the lnverslon formula for absolutely integrable characteristic functlons, 

t 2  -- 
2x1 f n  W - 9 ( 4  I L J I V(->-e t I a&- 

, and D c  1s the 3 a 3 6  where D 1s the lnterval deflned by the condltlon I t 1 5 
complement of D . The lntegral over 1s bounded in Lemma 4P 4.4 by 

ISP 3 
+-I&. 

3 0 3 6  4 n  

The lntegral over D does not exceed 

where we used a well-known lnequallty for the tall of the normal dlstrlbutlon, 1.e. 

s g  5 g ( u  )/u . This concludes the proof of Lemma 4.5. I 
00 

U 
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- t 2  
6 a 3 n  (1--) 

2 n  , 

2 n  

Lemma 4.6. 
For regular f , and 

-1 I 

we have 

3 a 3 6  

4P 
t l  I 9 

Integrated over the glven lnterval for t , we have 
t 2  

2 +-QG 
3 a 3 G  4 n  

Proof of Lemma 4.6. 
Note that 

The last term 1s taken care of by applylng Lemma 4.3 .  Here we need the fact 
that the glven lnterval for t 1s always lncluded In [-A,&], so that the 
bounds of Lemma 4.3 are lndeed appllcable. By Lemma 4 .2 ,  the first term can be 
wrltten as 

where I 8 I <l. Uslng the fact that ( l+u  )"-'-1<n 1 u I e 
and all u EA!! thls can be bounded from above by 

1 ' I for all n >0, 

To obtaln the lntegral lnequallty, use Lemma 4.3 agaln, and note that 
J 1 t I dt  = i 6 .  



r 

Lemma 4.7. 
Let g be the normal density and let f, be the density of the normallzed 

sum sn / (a&)  for lld random variables wlth a regular denslty f . Let 4 be the 
characteristic function for f . Then 

I where 

3 

Proof of Lemma 4.7. 
As In Lemma 4.5, we define the lnterval D by the condltlon 

be the complement of D . Let I be the Interval 3u3Jn,  and let D 
4 8  I t 1  L 

3a2 
4 a  

defined by I t I 5 -, and let 1' be the complement of 1. By Lemma 4.2, I t  Is 

easy to  see that for t €1, I o ( t )  1 <1-a2t2/4. Thus, 
1 --s I (Pn 

2n D 

J t - 
0 6 -  



728 XIV.4.SIMULATION OF SUMS 

Similarly, 
1 t ) - $ n - 2 ( - )  t 1 dt 

< - J t 2  1 I 1-d2(-) t I I $(-) t I n - 2  dt  
a&- 

- J t 2  I 4n (- 
2n D a&- 

a&- a 6  
- 

2n D 
( n  -2)t2 

1 t 4 - -  G.iT e 4 n  dt 

- 1 2 n  
2 n n  n -2 

- - 6 3 -  

3 - - 
( n  - 2 1 6  ’ 

So far for the prellmlnary computations. We begln with the observation that 

where 4, is the characteristic function corresponding to f . Obviously, 
t 2  -- 

x 2  I f n ( x ) - g ( x )  I L -J 1 I ( t2- l>e 2 - Q l n r r ( t )  I dt  * 
2 n  

The second derivative of the n -th power of $(t /(a6 )) 1s 

n -1 4 1 2 4 n  -2 1 $11 4 n  -1 

a2 a2 

where all the omitted arguments are t / ( a G ) .  By the triangle inequallty, we 
obtaln 

= J,+ J,+ J,+ J4 I 
From Lemma 4.2, we recall 
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Uslng the fact that  I @(t  /(a&- )) I <E ( I X I )/(a&- )<1/&, we have 

Uslng the fact that  ! I t 1 
i =0,1,2,3 respectlvely, we see that  

dt takes the values 6 , 2 , &  and 4 for 

t 2  

1 P +  2P 
-- 

J 3 + J 4  5 I I u-2&2e 

< 

I dt+- 

1 
d Z  2 0 5 6  n 8 , 6  

+- P (  +2) * 

1 
- no2& 8 6  a2& 

Thls leaves us wlth J, and J,. Here we wlll spllt the lntegrals over D and D ' .  
Flrst of all, 

I t 2  -- 
dt + I t 2  I e 

D 
-d"-2(t/(a&-)) I dt 

+ J t 2  I dn-,(t /(a& ))-d" ( t  /(a& )) I dt 
D 

The last two terms were bounded from above earller on In the proof by 

1 3 
d4nn(n-1)  + ( n - 2 ) 6  ' 

By Lemma 4.4, we have for t ED,  

Thus, by Lemma 4.3, and the following Integrals: 
t 2  

! I t  I 3 e  dt = 1 6 ,  
-- 
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t 2  -- 
! I t  Is! d t  = 1 9 2 ,  

! I t  I 4 e  d t  = 3 & ,  

J l t  I 6 e  d t  =is&, 

t 2  -- 

t 2  -- 

we have 

4n t 4  4 1 dt 
p1-t 13 -: 

< ‘ J ( 1 t - P )  j e + - e  - 27r 3 0 3 G  

4n  

Flnally, we have to evaluate the lntegrals In J , + J 2  taken over D ‘. These are 
estlmated from above by 

where p=sup 14 I . The reglon D c  1s deflned by the condltlon I t I > c  for 

some constant c . The flrst term In the last expresslon can thus be rewrltten as 
IC 

1 - 1 ( (2u ) ’+G)e - ’  du 

7r u > c 2 / 2  
C 2  C *  

- < -  e +-e 7r 4 
1 -1 &j -- 

C 7 r  

Collectlng bounds glves the deslred result. 

For the bound of Lemma 4.7 t o  be useful, I t  1s necessary that f not only be 
regular, but also that Its characterlstlc functlon satlsfy 

! t 2 1 $ ( t ) l  d t  < 0 0 .  

Thls lmplles that f has two bounded contlnuous derlvatlves tendlng to 0 as 
12 I +00, and In fact 
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(see e.g. Kawata, 1972, pp. 438-439). Thls smoothness condltlon 1s rather restrlc- 
tlve and can be conslderably weakened. The asymptotlc bound b / ( z 2 6 )  
remalns valld If S t 2  I $ ( t )  I <oo for some positive lnteger IC (exerclse 4.4). Lem- 
mas 4.5 and 4.7 together are but speclal cases of more general local llmlt 
theorems, such as those found In Maejlma (1980) and Inzevltov (1977), except 
that here we expllcltly compute the unlversal constants In the bounds. 

4.5. The mixture method for simulating sums. 
When a denslty f can be wrltten as a mlxture 

co 
f ( a : > =  x P i f i ( Z )  

i =1 

where the f i ’s are slmple densltles, then simulation of the sum S, of n lld ran- 
dom varlables wlth denslty f can be carrled out as follows. 

The mixture method for simulating sums 

Generate a multinomial (n , p  l,p2,...) random sequence N1,N2,... (note that the Ni ’S sum to 
n). Let K be the index of the largest nonzero Ni . 
x+o 
FOR i:=1 TO K DO 

Generate S , the sum of Ni iid random variables with common density f i  . 
x+x+s 

RETURN x 

The valldlty of the algorithm is obvlous. The algorlthm 1s put In Its most general 
form, allowlng for lnflnlte mlxtures. A multlnomlal random sequence 1s of course 
deflned In the standard way: lmaglne that we have an lnflnlte number of urns, 
and that n balls are lndependently thrown In the urns. Each ball lands wlth pro- 
bablllty p i  In the i - th  urn. The sequence of cardlnalltles of the urns 1s a multlno- 
mlal (n  , p  , , p  2,...) random sequence. To slmulate such a sequence, note that N ,  1s 
blnomlal ( n  , p  ,), and that glven N , ,  N ,  1s blnomlal ( n  -N,,p,/( l-p ,)), etcetera. 
If I< 1s the lndex of the last occupled urn, then I t  1s easy to see that the multlno- 
mlal sequence can be generated In expected tlme 0 ( E  ( K  )). 

The mlxture method 1s emclent If sums of lld random varlables wlth densl- 
tles f i  are easy to generate. Thls would for example be the case If f were a 
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flnlte mlxture of stable, gamma, exponentlal or normal random varlables. Perhaps 
the most lntrigulng decomposition 1s that of a unimodal denslty: every unlmodal 
denslty can be wrltten as a countable mlxture of uniform densltles. Thls state- 
ment Is lntultlvely clear, because subtractlng a functlon of the form c I ~ , , ~ ~ ( ~ )  
from f leaves a unlmodal plece on [a  ,b  ] and two unlmodal talls. Thls can be 
repeated for all pieces indlvldually, and at the same time the lntegral of the left- 
over function can be made to tend to zero by the Judlclous choice of rectangular 
functlons (see exerclse 4.5). If we can generate sums of ffd uniform random varl- 
ables unlformly f a s t  (wlth respect to n ) ,  then the expected tlme taken by the 
mlxture method 1s 0 ( E  ( K ) ) .  A few remarks about generatlng unlform sums are 
glven in the next section. 

4.6. Sums of independent uniform random variables. 
In thls section we conslder the dlstributlon of 

n 

i = 1  
Sn 9 

where U,,  . . . , Vn are lld unlform [-1,1] random varlables. The dlstribution can 
be descrlbed In a varlety of ways: 

Theorem 4.3. 
The characterlstlc functlon of sn 1s 

I For all n 2 2 ,  the density f, can be obtained by the lnverslon formula 
n 

f, (5) = 'J [ -1 cos(t5) dt . 
27r 

I This ylelds 

where 2i-2-n < x  <2i-n ; i=1,2, . . . , n 
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Proof of Theorem 4.3. 
The characterlstlc functlon Is obtained by using the deflnltlon. Since the 

characterlstlc function of s, for all n 2 2  1s absolutely Integrable, /, can be 
obtalned by the glven lnverslon Integral. There Is also a direct way of computing 
the dlstrlbutlon functlon F ,  and denslty of S,; Its derivation goes back to the 
nlneteenth century (see e.g. Cramer (1951, p. 245)). Dlfferent proofs include the 
geometrlc approach followed by us In Theorem 1.4.4 (see also Hall (1927) and 
Roach (1903)), an induction argument (Olds, 1952), and an application of the 
resldue theorem (Lusk and Wrlght, 1982). Taklng the derlvatlve of F ,  glven in 
Theorem 1.4.4 gives the formula 

for the denslty of the sum of n ild unlform [O,l) random varlables. The the den- 
slty of sums of symmetric uniform random varlables Is easlly obtained by the 
transformatlon formula for densities. 

It 1s easy t o  see that the local llmlt theorems developed in Lemmas 4.5 and 
4.7 are applicable to this case. There 1s one small technlcal hurdle since the 
characterlstlc function of a unlform random variable Is not absolutely Integrable. 
Thls Is easily overcome by noting that the square of the characterlstlc function is 
absolutely Integrable. If we recall the rejection algorithm of section 4.3, we note 
that the expected number of iteratlons 1s 0 (l/&-) and that the expected 
number of evaluatlons of f, 1s 0(1/&) . Unfortunately, thls Is not good 
enough, since the evaluation of f, (5) by the last formula of Theorem 4.3 takes 
tlme roughly proportlonal to n for nearly all x of Interest. Thls would yleld a 
global expected tlme roughly increasing as 6. The formula for f , Is thus of 
llmited value. There are two solutions: elther one uses the series method based 
upon a series expansion for f, whlch 1s tallored around the normal denslty, or 
one uses a local limit theorem wlth 0 ( l / n  ) error by using as maln component 
the normal denslty plus the flrst term In the asymptotic expanslon which Is a nor- 
mal denslty multlplled wlth a Hermlte polynomial (see e.g. Petrov, 1975). The 
latter approach seems the most promising at  this point (see exerclse 4.0). 
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4.7. Exercises. 
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1. 

2. 

3. 

4. 

5. 

Let f be a denslty, whose normallzed sums tend In dlstrlbutlon to the sym- 
metric stable (a) denslty. Assume that the stable denslty can be evaluated 
exactly In one unlt of tlme at every polnt. Derlve first some lnequalltles for 
the dlfference between the denslty of the normallzed sum and the stable den- 
slty. These non-unlform lnequalltles should be such that the lntegral of the 
error bound wlth respect to x tends to  0 as n-+m. Hlnt: look for error 
terms of the form mln(a, ,b ,  1 x 1 -' ) where c 1s a posltlve constant, and 
a, ,b, are posltlve number sequences tendlng to 0 wlth n . Mlmlc the derlva- 
tlon of the local llmlt theorem In the case of attractlon to  the normal law. 
The gamma density. The zero mean exponentlal denslty has characterls- 
t lc functlon q5 = e-it / ( l -d) .  In the notatlon of thls chapter, derlve for thls 
dlstrlbutlon the followlng quantltles: 

2 .  A. 0 = 1 , p = - -  12 
e 

B. S I 4 1  = m , [ 1 4 I 2 = ~ .  
c. sup I q5( t ) l  = l/d? (c >o) .  

I t I 2 c  
Note that the bounds In the local llmlt theorems are not dlrectly appllcable 
slnce J I q5 I =m. However, thls can be overcome by boundlng by 

s [ I 4 I where s 1s the supremum of I 4 I over the domain of lntegratlon, 
to  the power n-2. Uslng thls device, derlve the reJectlon constant from the 
thus modlfled local llmlt theorem as a function of n . 
A contlnuatlon of exerclse 2. Let f, be the normallzed (zero mean, unlt 
varlance) gamma ( a  ) denslty, and let g be the normal denslty. By dlrect 
means, find sequences a, ,b, such that for all a 21, 

14 I 

and compare your constants wlth those obtalned In exerclse 2. (They should 
be dramatlcally smaller.) 

J t 2  I 4 ( t )  I dt <m 1s relaxed t o  

J t 2  I $ ( t )  I dt  <m 

where 
Conslder a monotone denslty f 
automatlc rule for decomposlng 

> O  1s a fixed Integer. 

Prove the clalm that In Lemma 4.7, b,  4 b / ( x 2 G )  when the condltlon 

on [O,m). Glve a constructive completely 
thls denslty as a countable mlxture of unl- 

form densltles, 1.e. the decomposltlon should be obtalnable even If f 1s only 
glven In black box format, and the countable mlxture should glve us the 
monotone denslty agaln In the sense that the L ,  dlstance between the two 
densltles 1s zero (thls allows the functlons to be .different on posslbly 
uncountable sets of zero measure). Can you make a statement about the rate 
of decrease of p i  for the followlng subclasses of monotone densltles: the log- 
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concave densltles, the concave densltles, the convex densltles? Prove that 
when p i  for some b ,c > O  and all i ,  then E ( K ) = O  (log(n)), where 
I< 1s the largest lnteger In a sample of slze n drawn from probablllty vector 
p l,p 2,.... Conclude that for lmportant classes of densltles, we can generate 
sums of n lld random variates In expected tlme 0 (log(n )). 
Gram-Charlier series. The standard approxlmatlon for the denslty f, of 
S, /(a& ) where S, 1s the sum of n lid zero mean random varlables wlth 
second moment a2 1s g where g 1s the normal denslty. The closeness 1s 
covered by local central llmlt theorems, and the errors are of the order of 
1/&. To obtaln errors of the order of l / n  I t  1s necessary to user a flner 
approxlmatlon. For example, one could use an extra term In the Gram- 
Charller serles (see e.g. Ord (1972, p. 26)). Thls leads to the approxlmatlon 
by 

6. 

where p 3  1s the thlrd moment for f . For symmetrlc dlstrlbutlons, the extra 
correctlon term 1s zero. Thls suggests that the local llmlt theorems of sectlon 
4.3 can be Improved. For the symmetrlc unlform denslty, And constants a ,b 

1 such that I f a - g  I s -mln(a  , b ~ - ~ ) .  Use thls to deslgn a unlformly f a s t  
n 

generator for sums of symmetrlc uniform random varlables. 
A contlnuatlon of the prevlous exerclse. Let a ER be a constant. Glve a ran- 
dom varlate generator for the followlng class of densltles related to the 
Gram-Charller serles approxlmatlon of the prevlous exerclse: 

7. 

where c 1s a normallzatlon constant. 

5. DISCRETE EVENT SIMULATION. 

5.1. Future event set algorithms. 
Several complex systems evolvlng In tlme fall lnto the followlng category: 

they can be characterlzed by a state, and the state changes only at dlscrete 
tlmes. Systems falllng lnto this category lnclude most queuelng systems such as 
those appearlng In banks, elevators, computer networks, computer operatlng sys- 
tems and telephone networks. Systems not lncluded In thls category are those 
which change state continuously, such as systems drlven by dlfferentlal equatlons 
(physlcal or chemical processes, trafflc control systems). In dlscrete event slmula- 
tlon of such systems, one keeps a subset of all the future events In a future event 
set, where an event 1s deflned as a change of state, e.g. the arrlval or departure Of 
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a person In a bank. By taklng the next event from the future event set, we can 
make tlme advance wlth blg Jumps. After havlng grabbed thls event, I t  1s neces- 
sary to update the state and If necessary schedule new future events. In other 
words, the future event set can shrlnk and grow In Its llfetlme. What matters Is 
that no event is mlssed. All future event set algorlthms can be summarlzed as fol- 
lows: 

Future event set algorithm 

Time t o .  
Initialize State (the state of the system). 
Initialize FES (future event set) by scheduling at least one event. 
WHILE NOT EMPTY (FES) DO 

Select the minimal time event in FES, and remove it  from FES. 
Time - time of the selected event, Le. make time progress. 
Analyze the selected event, and update State and FES accordingly. 

For worked out examples, we refer the readers to  more speclallzed texts such as 
Bratley, Fox and Schrage (1983), Banks and Carson (1984) or Law and Kelton 
(1982). Our maln concern 1s wlth the complexlty aspect of future event set algo- 
rlthms. I t  1s dlmcult to  get a good general handle on the tlme complexlty due to 
the state updates. On the other hand, the contrlbutlon to  the tlme complexlty of 
all operatlons lnvolvlng FES, the future event set, 1s amenable to  analysls. These 
operatlons lnclude 
A. 
B. 
C. 
There are two klnds of INSERT: INSERT based upon the tlme of the event, and 
INSERT based upon other lnformatlon related to the event. The latter INSERT 
is requlred when a slmulatlon demands lnformatlon retrleval from the FES other 
than selectlon of the mlnlmal tlme event. Thls 1s the case when cancelatlons can 
occur, 1.e. deletlons of events other than the mlnlmal tlme event. It can always be 
avolded by leavlng the event to be canceled In FES but marklng I t  "canceled", so 
that when I t  1s selected at some polnt as the mlnlmal tlme event, I t  can lmmedl- 
ately be dlscarded. In most cases we have to  use a dual data structure whlcb 
allows us to lmpiement the operatlons INSERT, DELETE and elther CANCEL or 
W K  emclently. Typlcally, one part of the data structure conslsts of a dlctlon- 
ary (ordered accordlng to keys used for cancellng or marklng), and another part 
1s a prlorlty queue (see Aho, Hopcroft and Ullman (1983) for our termlnolgy). 
Slnce the number of elements In FES grows and shrlnks wlth tlme, I t  1s dlfflcult 
t o  unlformlze the analysls. For thls reason, sometlmes the followlng assumptlons 
are made: 

INSERT a new event In FES. 

DELETE the mlnlmal tlme event from FES. 
CANCEL a partlcular event (remove I t  from FES). 
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A. The future event set has n events at  all tlmes. Thls lmplles that when the 
mlnlmum tlme event 1s deleted, the empty slot 1s lmmedlately filled by a 
new event, 1.e. the DELETE and INSERT operatlons always go together. 

B. Inltlally, the future event set has n events, wlth random tlmes, all lld wlth 
common dlstrlbutlon functlon F on [O,oo). 

C. When an event wlth event tlme t 1s deleted from FES, the new event replac- 
lng I t  In FES has tlme t + T I  where T also has dlstrlbutlon functlon F . 

These three assumptlons taken together form the bash of the so-called hold 
model, colned after the SIMULA HOLD operatlon, which comblnes our DELETE 
and INSERT operatlons. Assumptlons B and C are of a stochastlc nature to facll- 
ltate the expected tlme analysls. They are motlvated by the fact that In homo- 
geneous Polsson processes, the Inter-event tlmes are lndependent exponentlally 
dlstrlbuted. Therefore, the dlstrlbutlon functlon F 1s typlcally the exponentlal 
dlstrlbutlon. The quantlty of lnterest to us 1s the expected tlme needed to execute 
a HOLD operatlon. Unfortunately, thls quantlty depends not only upon n , but 
also on F and the tlme lnstant at  whlch the expected tlme analysls 1s needed. 
Thls is due to the fact that the tlmes of the events In the FES have dlstrlbutlons 
that vary. It 1s true that relatlve to the mlnlmum tlme In the FES, the dlstrlbu- 
tlon of the n-1 non-mlnlmal tlmes approaches a llmlt dlstrlbutlon, whlch 
depends upon F and n ,  Analysls based upon thls llmlt dlstrlbutlon 1s at tlmes 
risky because I t  1s dlfflcult to plnpolnt In complex systems when the steady state 
1s almost reached. What compllcates matters even more 1s the dependence of the 
llmlt dlstrlbutlon upon n . The llmlt of the llmlt dlstrlbutlon wlth respect to n , a 
double llmlt of sorts, has denslty (1-F ( z ) ) / p  (a: >0) where p 1s the mean for F 
(Vaucher, 1977). The analyses are greatly facllltated If thls llmlt dlstrlbutlon 1s 
used as the dlstrlbutlon of the relatlve event tlmes In FES. The results of these 
analyses should be handled wlth great care. Two extenslve reports based upon 
thls model were carrled out by Klngston (1985) and McCormack and Sargent 
(1981). An alternatlve model was proposed by Reeves (1Q84). He also works wlth 
thls llmltlng dlstrlbutlon, but departs from the HOLD model, In that events are 
inserted, or scheduled, In the FES accordlng to a homogeneous Polsson process. 
Thls lmplles that  the slze of the FES 1s no longer Axed at a glven level n ,  but 
hovers around a mean value n . It  seems thus safer to perform a worst-case tlme 
analysls, and to lnclude an expected tlme analysls only where exact calculatlons 
can be carrled out. Lucklly, for the important exponentlal dlstrlbutlon, thls can 
be done. 

Theorem 5.1. 
If assumptlons A-C hold, and F Is the exponentlal (1) dlstrlbutlon, If k 

HOLD operatlons have been carrled out for any lnteger k ,  If X* 1s the mlnlmal 
event time in the FES, and X,,X, ,  . . . , xn-, are the n-1 non-mlnlmal event 
tlmes In the FES (unordered, but In order of thelr lnsertlon In the FES), then 
X, -X* ,  . . . , X ,  -,-X* are lld exponentlal (1) random varlables. 
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Proof of Theorem 5.1. 
This is best proved lnductlvely. Inltlally, we have n exponentlally dlstrl- 

buted tlmes. The assertion 1s CertalnlY true, by the memoryless property of the 
exponentlal dlstrlbutlon. Now, take the mlnlmum tlme, say M ,  remove I t ,  and 
Insert the time M+E in the FES, where E 1s exponentlal (A). Clearly, all n 
times In the FES are now lld wlth an exponential (A) dlstrlbutlon on [M,oo). We 
are thus back where we started from, and can apply the memoryless property 
agaln. 

Reeves's model allows for a slmple dlrect analysls for all dlstrlbutlon func- 
tlons F . Because of Its Importance, we wlll brlefly study hls model In a separate 
section, before movlng on to  the descrlptlon of a few posslble data structures for 
the FES. 

5.2. Reeves's model. 
In Reeves's model, the FES 1s lnltlally empty. Insertlons occur at random 

tlmes, whlch correspond t o  a homogeneous Polsson process with rate A. The tlme 
of an lnserted event 1s the lnsertlon tlme Plus a delay tlme whlch has dlstrlbutlon 
functlon F . A few propertles wlll be needed further on, and these are collected In 
Theorem 5.2: 

Theorem 5.2. 
Let 0< T I <  T 2 <  . . 1 be a homogeneous Polsson process with rate A > O  

(the Ti's are the lnsertlon tlmes), and let x1,x2, ... be lld random varlables wlth 
common dlstrlbutlon functlon F on [O,oo). Then 
A. The random varlables Ti +xi ,I si, form a nonhomogeneous Polsson pro- 

cess wlth rate functlon XF ( t  ). 
B. If Nt Is the number of events In FES at tlme t ,  then Nt 1s Polsson 

(XJ(1-F)). Nt 1s thus stochastlcally smaller than a Polsson ( x p )  random 

varlable where I.L = J(1-F ) 1s the mean for F . 
Let Vi ,i L N t ,  be the event tlmes for the events In FES at tlme t . Then the 
random varlables vi -t form a nonhomogeneous Polsson process wlth rate 
functlon X(F ( t  +u )-F (u  )) , u 20. 

t 

0 
03 

0 

c. 
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Proof of Theorem 5.2. 
Most of the theorem Is left as an exercise on Poisson processes. The maln 

task Is to verify the Polsson nature of the defined processes by checklng the 
lndependence property for nonoverlapplng Intervals. We wlll malnly polnt out 
how the various rate functions are obtained. 

For part A, let L be the number of Insertlons up to tlme t , a Polsson ( A t  ) 
random varlable, and let M be the number of Ti +Xi’s not exceedlng t . Clearly, 
by the unlform dlstrlbutlon property of homogeneous Polsson processes, M 1s dls- 
trlbuted as 

L 

where the Vi’s are Ild unlform [0,1] random varlables. Note that thls 1s a Polsson 
sum of lid Bernoulli random varlables. As we have seen elsewhere, such sums are 
agaln Poisson dlstrlbuted. The parameter 1s X t p  where p =P ( tU,+X,S t ). The 
parameter can be rewritten as 

1 

AtF (XI< t u , )  = A t J F  ( tu  ) du 
0 

t 

= X J F ( u )  du . 
0 

For part B, the rate functlon can be obtained slmllarly by wrltlng Nt as a Pols- 
son ( A t )  sum of Ild Bernoulli random varlables wlth success probablllty 

p =P (tUl+X,> t ). Thls 1s easlly seen to be Poisson (AJ(1-F)). For the second 

statement of part B, recall that the mean for dlstrlbutlon function F is J(1-F ). 

Flnally, conslder part C. Here agaln, we argue analogously. Let M be the 
number of events In FES at tlme t wlth event tlmes not exceedlng t +u . Then 
M 1s a Polsson ( A t  ) sum of lld Bernoulll random varlables wlth success parame- 
ter p glven by 

t 

0 
00 

0 

1 

P ( t  ~ t U 1 + X 1 < t + u )  = J ( F ( t a + u ) - F ( t z ) )  dz 
0 

t 
1 = - J ( F  ( Z  +U )-F (2)) dz . 
t 0  

The statement about the rate function follows dlrectly from thls. 

The asymptotlcs In Reeves’s model should not be wlth respect to N, ,  the 
slze of the FES, because thls osclllates randomly. Rather, I t  should be wlth 
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respect t o  t ,  the time. The flrst important observatlon is that the expected slze 

of the FES at time t 1s XI(1-F ) --.f Xp as t 300, where p Is the mean for F .  If p 

IS small, the  FES 1s small because events spend only a short tlme In FES. On t h e  
other hand, If p=m, then the expected slze of the FES tends to 00 as t+w, 1.e. 
we would need lnAnlte space in order to be able to  carry out an unllmlted tlme 
slmulatlon. The sltuation is also bad when p < w ,  although not as bad as in the 
case p=m: I t  can be shown (see exercises) that llm sup ATt = 00 almost surely, 

Thus, in all cases, an unlimlted memory would be required. Thls should be 
vlewed as a serious drawback of Reeves’s model. But the inslght we gain from hls 
model 1s Invaluable, as we wlll And out In the next section on llnear lists. 

t 

0 

t-00 

5.3. Linear lists. 
The oldest and simplest structure for an FES 1s a llnear llst In whlch the ele- 

ments are kept accordlng to  lncreaslng event times. For what follows, i t  1s all but 
lrrelevant whether a llnked llst lmplementatlon or an array lmplementatlon 1s 
chosen. Deletion 1s obvlously a constant tlme operation. Insertlon of an element 
in the i - th  posltlon takes tlme proportlonal t o  z‘ if we start  searchlng from the 
front (small event times) of the list, and to  n- i  +1 if we s tar t  from the back and 
n 1s the cardlnallty of the FES. We can’t say that the time 1s mln ( i , n - i+ l )  
because the value of i 1s unknown beforehand. Thus, one of the questlons to  be 
studled is whether we should start  the search from the front or the back. 

By Theorem 5.2, part C, we observe that at tlme t o ,  the expected value of 
the number of events exceedlng the currently lnserted element (called Adto) 1s 

0303 

E (MtJ = XJJ(F (to+u )-F (u )) du dF ( t  ) 
O t  

00 11 

= XJ(F (tO+u )-F ( U  )) J d F  ( t  ) du 
0 0 
00 

XJF ( U  ) ( F    to+^ )-F (U )) du . 
0 

Here we used a standard lnterchange of Integrals. Slnce the expected number of 

elements In the FES 1s X J ( F ( t , + u ) - F ( u ) )  d u ,  the expected value of the 

number of event times at most equal t o  the event tlme of the currently lnserted 
element (called Lto) 1s 

03 

0 

03 

E (L t0 )  = XJ(1-F (21 ) ) (F  ( t o + %  )-F ( U  )) du . 
0 
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We should search from the back when E (hfto)<E (Lto) ,  and from the front other- 
wise. In an array Implementation, the search can always be done by blnary search 
In logarlthmlc tlme, but the updating of the array calls for the shift by one posi- 
tlon of the entlre lower or upper portion of the array. If one imagines a circular 
array implementation with free wrap-around, of the sort used to implement 
queues (Standish, ISSO), then I t  is always possible to move only the smaller por- 
tion. The same Is true for a llnlced llst implementation If we keep pointers to the 
front, rear and middle elements In the linked list and use double linking to allow 
for the two types of search. The middle element Is flrst compared with the 
inserted element. The outcome determines In whlch half we should Insert, where 
the search should start  from, and how the middle element should be updated. 
The last operation would also require us to keep a count of the number of ele- 
ments In the linked list. We can thus conclude that  for a linear list Insertion, we 
can And an implementation taklng tlme bounded by mln(Mto,Lto). By Jensen’s 
Inequality, the expected tlme for lnsertlon does not exceed 

min(E (Mto),E (Lto))  . 

The fact that all the formulas for expected values encountered so far depend 
upon the current tlme t o  could deprlve us from some badly needed Inslght. Luck- 
ily, as tO+co, a steady state Is reached. In fact, this Is the only case studied by 
Reeves (1984). We summarize: 

1 Theorem 5.3. 
In Reeves’s model, we have 

03 

E (Mt0) t XJF (1-F) as t0-+00 9 

E @ t o )  t X J ( l - F ) 2  as tO+m . 

0 
0 

0 

Proof of Theorem 5.3. 
We will only consider the flrst statement. Note that E(hf to)  1s monotone In 

t o ,  and that for every t o ,  the value does not exceed XJF(1-F). Also, by Fatou’s 

lemma, 

03 

0 

03 03 
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Remark 5.1. Front or back search. 
From Theorem 5.3, we deduce that a front search 1s lndlcated when 

J(1-F )2 < J F  (1-F ). It 1s perhaps lnterestlng to  note that equallty Is reached 
for the exponentlal dlstrlbutlon. Barlow and Proschan (1975) deflne the NBUE 
(NWUE) dlstrlbutlons as those dlstrlbutlgns for whlch for all t BO, 

03 

J(1-F 1 L ( L 1 /-to-F ( t  1) 9 

t 

where p is the mean for F . Examples of NBUE (new better than used In expecta- 
tlon) dlstrlbutlons lnclude the unlform, normal and gamma dlstrlbutlons for 
parameter at least one. NWUE dlstrlbutlons lnclude mlxtures of exponentlals and 
gamma dlstrlbutlons wlth parameter at most one. By our orlglnal change of 
integral we note that for NBUE dlstrlbutlons, 

-I: 0 I 00 

X J F ( 1 - F )  = X J  J ( 1 - F )  d F ( t )  
0 

03 5 XpJ(1-F ( t  )) dF ( t  ) = - XP . 
2 0 

Slnce the asymptotlc expected slze of the FES 1s Xp, we observe that for NBUE 
dlstrlbutlons, a back search 1s to  be preferred. For NWUf3 dlstrlbutlons, a front 
search 1s better. In all cases, the trlck wlth the medlan polnter (for llnked llsts) or 
the medlan cornparlson (for clrcular arrays) automatlcally selects the best search 
mode. 

Remark 5.2. The HOLD model. 
In the HOLD model, the worst-case lnsertlon tlme can be as poor as n .  For 

the expected lnsertlon tlme, the computatlons are slmple for the exponentlal dls- 
trlbutlon functlon. In vlew of The0re.m 5.1, I t  1s easy t o  see that  the expected 
number of comparlsons in a forward scan 1s n+2 1 n n -+-. --- = 

2 n+1 2 n+1 
The 

expected number of backward scans Is equal t o  thls, by symmetry. For all dlstrl- 
butlons F havlng a denslty, the expected lnsertlon tlme grows llnearly wlth n 
(see exercises). 

A brlef hlstorlcal remark Is In order. Llnear llsts have 'been used extensively 
In the past. They are slmple to  Implement, easy to  analyze and' use mlnlmal 

I 



XIV.5.DISCRETE EVENT SIMULATION 743 

storage. Among the possible physlcal lmplementatlons, the doubly llnlced llst Is 
perhaps the most popular (Knuth, 1969). The asymptotlc expected lnsertlon tlme 
for front and back search under the HOLD model was obtained by Vaucher 
(1977) and Englebrecht-Wlggans and Maxwell (1978). Reeves (1984) discusses the 
same thlng for hls model. Interestlngly, if the size n In the HOLD model is 
replaced by the asymptotic value of the expected slze of the FES, xp, the two 
results coincide. In particular, Remark 5.1 applles to  both models. The polnt 
about NBUE dlstrlbutlons In that  remark Is due t o  McCormack and Sargent 
(1981). The ldea of uslng a medlan polnter or a medlan comparlson goes back to 
Prltsker (1976) and Davey and Vaucher (1980). For more analysls Involving 
llnear llsts, see e.g. Jonassen and Dah1 (1975). 

The slmple linear llst has been generallzed and lmproved upon In many 
ways. For example, a number of algorithms have been proposed whlch keep an 
addltlonal set of pointers to selected events In the FES. These are known as mul- 
tlple polnter methods, and the lmplementatlons are sometlmes called Indexed 
llnear llst lmplementatlons. The pointers partltlon the FES into smaller sets con- 
talnlng a few events each. Thls greatly facllltates lnsertlon. For example, Vaucher 
and Duval (1975) space polnter events (events pointed to by these polnters) equal 
amounts of tlme (A) apart. In view of thls, we can locate a particular subset of 
the FES very qulckly by maklng use of the truncatlon operatlon. The subset 1s 
then searched in the standard sequentlal manner. Ideally, one would llke to have 
a constant number of events per Interval, but thls 1s dlfflcult to enforce. In 
Reeves’s model, the analysis of the Vaucher-Duval bucket structure 1s easy. We 
need only concern ourselves wlth lnsertlons. Furthermore, the tlme needed to 
locate the subset (or bucket) In whlch we should lnsert is constant. The buckets 
should be thought of as small llnked llsts. They actually need not be globally 
concatenated, but wlthln each Ilst, the events are ordered. The global tlme lnter- 
V a l  1s dlvlded Into intervals [O,A),[A,aA), .... Let A j  be the j - t h  interval, and let 
F ( A j )  denote the probablllty of the j - t h  Interval. For the sake of slmpllcity, let 
us assume that the tlme spent on an lnsertlon Is equal to the number of events 
already present In the Interval Into whlch we need to insert. In any case, lgnorlng 
a constant access tlme, thls wlll be an upper bound on the actual lnsertlon tlme. 
The expected number of events In bucket A j  = [ ( j - l ) A , j  A) under Reeves model 
at tlme t is glven by 

J x ( F  ( t  +u )-F (u  )) du 
A ,  -t 

where Ai-t means the obvlous thlng. Let J be the collectlon of all lndlces for 
whlch Ai overlaps wlth [ t  ,m), and let B j  be A U[t ,a). Then the expected time 
Is 

J X ( F ( t + u ) - F ( u ) )  du F ( B j - t ) .  
j E J  B, - t  

In Theorem 5.4, we derlve useful upper bounds for the expected tlme. 
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Theorem 5.4. 
Conslder the bucket based llnear llst structure of Vaucher and Duval wlth 

bucket width A. Then the expected tlme for lnsertlng (schedullng) an event at 
tlme t In the FES under Reeves’s model 1s bounded from above by 

A. Xp. 

B. XA. 
C. XCpA, where C is an upper bound for the denslty f for F (thls polnt 1s 

only applicable when a denslty exlsts). 
C In particular, for any t and F ,  taking A S -  for some constant c guarantees 

that the expected tlme spent on lnsertlons 1s bounded by c . x 

~ ~~ 

Proof of Theorem 5.4. 

equal to  1, and that F ( t  +u )SI. Bound B 1s obtained by boundlng 
Bound A is obtalned by notlng that each F (Bj-t ) In the sum 1s at most 

J 1 ( F ( t + u ) - F ( u ) )  du 
B, -t 

by XA, and observlng that the terms F (Bj -t ) summed over j EJ yield the value 
1. Finally lnequallty C uses the fact that F (Bj -t )s  c A for all j . 

Theorem 5.4 1s extremely Important. We see that I t  1s possible to have con- 
s tant  expected time deletlons and lnsertlons, unlformly over all F ,  t and A, pro- 
vided that A is taken small enough. The bound on A depends upon A. If 1s 
known, there is no problem. Unfortunately, has to be estlmated most of the 
tlme. Recall also that we are In Reeves’s idealized model. The present analysis 
does not extend beyond this model. As a rule of thumb, one can take A equal to 
l/X where 1s the expected number of polnts lnserted per unit of tlme. Thls 
should insure that every bucket has at most one point on the average. Taklng A 
too small is harmful from a space polnt of vlew because the number of lntervals 
into whlch the FES 1s cut up 1s 

[(maxc ri 1-t >/A 1 
where the Yi’s are the scheduled event tlmes at time t . Taking the expected 
value, we see that thls is bounded from above by 

where N 1s Poisson (xp).  Recall that for an upper bound the Yi’s can be con- 
sldered as lld random variables with density (1-F )/p on [O,co). This allows us to 
get a good idea of the expected number of buckets needed as a function of the 
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expected FES slze, or 1. We offer two quantltatlve results. 
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Theorem 5.5. 
The expected number of buckets needed In Reeves’s model does not exceed 

C where X has dlstrlbutlon functlon F .  If A-- as h-tm for some constant c , 
then thls upper bound - x 

L d E ( ( X X ) 3 )  . 
C &  

Furthermore, If E ( e U X ) < m  for some u >0, and A 1s as shown above, then the 
expected number of buckets 1s 0 (Xlog(X)). 

Proof of Theorem 5.5. 

that  x has flnlte thlrd moment. We argue as follows: 
For the flrst part of the Theorem, we can assume wlthout loss of generallty 

E(max(Y1, * * . 1 YN)) 5 E(dm) 
i < N  

- < d E  ( N ) E  ( Y  12) (Jensen’ s lnequallty) 

= dXpE (X3)/(3p) = d X E  (X3)/3. 

The last step follows from the slmple observatlon that 

c o t  
1 = J-Jx”x d F ( t )  

o p u o  
1 = - E ( X 3 ) .  

31.1 

The second statement of the Theorem follows In three Ilnes. Let u be a Axed con- 
s tant  for whlch E ( e  UX)=a  <m. Then, uslng X,, . . . , x, to denote an lld sam- 
ple wlth dlstrlbutlon functlon F ,  

E (max( Y,, . . . , Y, )) 5 E (max(X,, . . . , X ,  )) 
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Thls concludes the proof of Theorem 5.5. 

Except when F has compact support, the expected number of buckets 
needed grows superlinearly wlth A, when A 1s plcked as a constant over X. The 
situation 1s worse when A is picked even smaller. This 1s a good example of the 
time-space trade-off, because taking A larger than l / X  effectlvely decreases the 
space requlrements but slows down the algorlthm. However, large A's are unln- 
terestlng slnce we wlll see that there are nonllnear data structures whlch wlll run 
In expected or even worst-case tlme O(log(1)). Thus, there 1s no need to study 
cases In whlch the Vaucher-Duval structure performs worse than this. Vaucher 
and Duval (1975) and Davey and Vaucher (1980) circumvent the superllnear (In 
X) storage need by collapslng many buckets in one blg bucket, called an overflow 
bucket, or  overflow llst. Denardo and Fox (1979) conslder a hlerarchy of bucket 
structures where bucket wldth decreases with the level. 

Varlous other multiple polnter structures have been proposed, such as the 
structures of Franta  and Maly (1977, 1978) and Wyman (1976). They are largely 
slmllar to  the Vaucher-Duval bucket structure. One nlce new idea surfaclng In 
these methods 1s the followlng. Assume that one wants to keep the cardlnallty of 
all subllsts about equal and close t o  a number m ,  and assume that the FES has 
about n elements. Therefore, about n / m  pointers are needed, whlch In turn 
can be kept In a llnear llst, t o  be scanned sequentlally from left to rlght or rlght 
to left. The tlme needed for an lnsertlon cannot exceed a constant tlmes -+m 

where the last term accounts for the sequential search into the selected subllst. 
The optimal cholce for m 1s thus about 6, and the resultlng complexlty of an 
lnsertion grows also as &. The dlmculty wlth theses structures 1s the dynamlc 
balanclng of the subllst cardlnalitles so that all sublists have about m elements. 
Henriksen (1977) proposes to keep about m events per subllst, but the polnter 
records are now kept In a balanced blnary search tree, whlch 1s dynarnlcally 
adJusted. The complexlty of an lnsertlon 1s not lmmedlately clear since the 
updatlng of the polnter tree requlres some complicated work. Without the 
updatlng, we would need time about equal to log(-)+m Just to locate the polnt 

of lnsertlon of one event. Thls expresslon is minlmal for constant m (rn =4 1s the 
usual recommendation for Henrlksen's algorlthm (Klngston, 1984)). The complex- 
lty of lnsertion wlthout updating 1s O(log(n )). For a more detalled expected tlme 
analysls, see Klngston (1984). In the next sectlon, we dlscuss O(log(n)) worst- 
case structures whlch are much slmpler to lmplement than Henrlksen's structure, 
and perform about equally well In practlce. 

n 
m 

n 
m 
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5.4. Tree structures. 
If the event times are kept in a blnary search tree, then one would suspect 

that  after a whlle the tree would be skewed to the right, because elements are 
deleted from the left and added mostly to the rlght. Interestingly, thls Is not 
always the case, and the explanation parallels that for the forward and backward 
scannlng methods In linear llsts. Consider for example an  exponential F in the 
HOLD model. As we have seen in Theorem 5.1, all the relative event times in the 
FES are lld exponentlally dlstrlbuted. Thus, the blnary search tree at every polnt 
in tlme 1s distrlbuted as for any binary search tree constructed from a random 
permutation of 1, . . . , n .  The properties of these trees are well-known. For 
example, the expected number of comparlsons needed for an lnsertlon of a new 
element, dlstrlbuted as the n other elements, and lndependent of It, 1s -2log(n ) 
(see e.g. Knuth (1973) or Standlsh (1980)). The expected tlme needed to delete 
the smallest element 1s 0 (log(n )). Flrst, we need to locate the element at the 
bottom left, and then we need to restore the blnary tree in case the deleted ele- 
ment had rlght descendants, by puttlng the bottom left descendant of these rlght 
descendants in its place. Unfortunately, one cannot count on F belng exponen- 
tlal, and some distributions could lead to dangerous unbalancing, elther to the 
left or the rlght. Thls was for example polnted out  by Klngston (1985). 

For robust performance, i t  1s necessary to look at worst-case lnsertlon and 
deletlon tlmes. They are 0 (log(n )) for such structures as the 2-3 tree, the AVL 
tree and the heap. Of these, the heap 1s the easlest to lmplement and understand. 
The overhead with the other trees is excesslve. Suggested for the FES by Floyd In 
a letter to Fox In the late sixties, and formalized by Gonnet (1976), the heap 
compares favorably in the extenslve timlng studies of McCormack and Sargent 
(1981), Ulrich (1978) and Reeves (1984). However, in lsolated appllcatlons, I t  Is 
clearly lnferior to the bucket structures (Franta and Maly, 1978). Thls should 
come as no surprise since properly designed bucket structures have constant 
expected tlme lnsertions and deletions. If robustness 1s needed such as in a gen- 
eral purpose software package, the heap structure 1s warmly recommended (see 
also Ulrlch (1978) and Klngston (1985)). 

It  1s possible to streamllne the heap for use In discrete event slmulation. The 
flrst modlflcation (Franta and Maly, 1978) consists of comblnlng the DELETE 
and INSERT operatlons into one operatlon, the HOLD operation. Since a deletlon 
calls for a replacement of the root of the heap, I t  would be a waste of effort to 
replace I t  by the last element In the heap, flx the heap, then insert a new element 
In the last position, and flnally Ax the heap agaln. In the HOLD operatlon, the 
root posltlon can be fllled by the new element directly. After this, the heap needs 
only be Axed once. Thls lmprovement Is most marked when the number of HOLD 
operations is relatively large compared to the number of bare DELETE or 
INSERT operatlons. A second lmprovement, suggested by Klngston (1985), con- 
slsts of using an m-ary heap lnstead of a binary heap. Good experlmental results 
were obtained by him for the ternary heap. Thls improvement 1s based on the 
fact that insertlons are more efflcient for large values of m ,  while deletions 
become only sllghtly more tlme-consuming. 
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5.5. Exercises. 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8.  

9. 
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Prove Theorem 5.2. 

Conslder Reeves's model. Show that when p<00, llm sup Nt = 00 almost 

surely. 
Show that the gamma ( a  ) ( a 21 ) and uniform [0,1] dlstrlbutlons are 
"E. Show that the gamma ( a  ) ( a 51 ) dlstrlbutlon Is NWUE. 
Generallze Theorem 5.5 as follows. For r 21, the expected number of buck- 
ets needed In Reeves's model does not exceed 

t+co 

A 
1+ 9 

C 
where X has dlstrlbutlon functlon F .  If A-- as x+00 for some constant 
c , then thls upper bound - x 

Assume that F Is the 

1 
r 
- 

absolute normal dlstrlbutlon functlon. Prove that If A 
1s l / x  In the Vaucher-Duval bucket structure, then the expected number of 
buckets needed 1s 0 ( x d m )  and C l ( h d m )  as A-00. 

In the HOLD model, show that whenever F has a density, the expected tlme 
needed for lnsertlon of a new element In an ordered doubly llnked llst Is 
O ( n  ) and 0 (n ). 
Conslder the blnary heap under the HOLD model wlth an exponentlal dlstrl- 
butlon F .  Show that the expected tlme needed for lnsertlng an element at  
tlme t In the FES 1s 0 (1). 
Glve a heap-based data structure for lmplementlng the operations DELETE, 
INSERT and CANCEL In 0 (log(n )) worst-case tlme. 
Conslder the HOLD model wlth an ordlnary blnary search tree lmplementa- 
tlon. Flnd a dlstrlbutlon F for whlch the expected lnsertlon tlme of a new 
element at tlme t >O 1s O($(n )) for some functlon ?,b lncreaslng faster than a 
logarlthm: llm $(n )/log(n ) = 00. 

n '03 
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6. REGENERATIVE PHENOMENA. 

6.1. The principle. 
Many processes In slmulatlon are repetltlve, Le. one can ldentlfy a null state, 

or orlgln, to whlch a system evolvlng In tlme returns, and glven that the system 
Is In the null state at a certaln time, the future evolutlon does not depend upon 
what has happened up to that  polnt. Conslder for example a slmple random walk 
In whlch at each tlme unlt, one step to the rlght or left 1s taken wlth equal pro- 
bablllty 1/2. When the random walk returns to the origin, we start  from scratch, 
The future of the random walk 1s lndependent of the hlstory up to the polnt of 
return to the origln. In some slmulatlons of such processes, we can efflclently sklp 
ahead In tlme by generatlng the waltlng tlme untll a return occurs, at  least when 
this waltlng tlme is a proper random varlable. Systems In whlch the probabllity 
of a return Is less than one should be treated dlfferently. 

The galn In efflclency Is due to the fact that the waltlng time untll the flrst 
return to the orlgln 1s sometlmes easy to generate. We wlll work through the 
example of the slmple random walk ln the next sectlon. Regeneratlve phenomena 
are ublqultous: they occur In queuelng systems (see section 6.3), In Markov 
chalns, and renewal processes In general. Heyman and Sobel (1982) provlde a 
solid study of many stochastlc processes of practlcal lmportance and pay partlcu- 
lar attentlon to regenerative phenomena. 

6.2. Random walks. 
The one-dlmenslonal random walk Is deflned as follows. Let U1,U2,  ... be lld 

{-1,l)-valued random varlables where P ( U , = l ) = P  ( ul=-l)=-. Form the 

partlal sums 

1 
2 

n 

i = 1  

sn = vi . 

Here S, can be consldered a s  a gambler's galn of coln tosslng after n tosses pro- 
vlded that the stake Is one dollar; n 1s the tlme. Let be the tlme untll a flrst 
return to the orlgln. If we need to generate s,, then I t  1s not necessary to gen- 
erate the lndlvldual Vi 's. Rather, I t  sufflces to proceed as follows: 
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x-0 
W H I L E X S n  DO 

Generate a random variate T (distributed as the waiting time for the flrst return to 
the origin). 
X-X+T 

V-X-T , Yc-O 
WHILE V t n  DO 

Generate a random (1,-1)-valued step u . 

IF Y = O  THEN vtX-2' (reset V by rejecting partial random walk) 
Y + Y + U ,  v-v+l 

RETURN Y 

The prlnclple 1s clear: we generate all returns t o  the orlgln up to tlme n ,  and 
slmulate the random walk expllcltly from the last return onwards, keeplng In 
mlnd that from the last return onwards, the random walk 1s condltlonal: no 
further returns to the orlgln are allowed. If another return occurs, the partlal ran- 
dom walk 1s reJected. The example of the slmple random walk 1s rather unfor- 

1 tunate In two respects: Arst, we know that S, 1s blnomlal ( n  ,-). Thus, there 1s 

no need for an algorlthm such as the one descrlbed above, whlch cannot posslbly 
run In unlformly bounded tlme. But more Importantly, the method descrlbed 
above 1s lntrlnslcally lnefflclent because random walks spend most of thelr tlme 
on one of the two sldes of the orlgln. Thus, the last return to the orlgln 1s llkely 
to be st(n ) away from n , so that the probablllty of acceptance of the expllcltly 
generated random walk, whlch 1s equal t o  the probablllty of not returnlng to the 

2 

orlgln, 1s 0 (L). Even 1f we could generate T In zero tlme, we would be looklng 

at an overall expected tlme complexlty of d(n2) .  Nevertheless, the example has 
great dldactlcal value. 

The dlstrlbutlon of the tlme of the flrst return to the orlgln 1s glven In the 
followlng Theorem. 

n 
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Theorem 6.1. 

satlsfles 
In a symmetric random walk, the time T of the flrst return to the origin 

1 2n -2 
P (T=2n)"=  p a n  = 22n-1 [ n -1 1 ( n  21) 9 

P(T=2n+1)=0 ( n z o ) .  

If q 2 n  Is the probability that the random walk returns to the origin at time 2 n ,  

1 
n (l+-). 

Proof of Theorem 6.1. 
This proof will be given in full, because I t  Is a beautiful lllustratlon of how 

one can compute certain renewal time dlstrlbutlons via generating functions. We 
begin with the generating function G (s ) for the probabilltles q 2i =P (S2i =0) 
where SZi  Is the value of the random walk at time 2 i .  We have 

co 
G ( s )  = cq2i~i = c2-2i [ : ! ) s i  

i t =1 

Let us now relate p 2n to q 2i . It is clear that 
n -1 

i=1 
q 2 n  = ~ 2 n  + ~ 2 n - 2 i  ~ 2 i  . 

If H (s ) is the generating function for p 2 n ,  then we have 
03 

H ( s ) =  ~ 2 n s "  
n = 1  
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Therefore, 

Equatlng the coemclent of s i  wlth p 2i glves the dlstrlbutlon of T . Statement A 
1s easlly verlfled. Statement B follows by uslng Stlrllng's formula. Statement C 
follows dlrectly from B. Flnally, D and E are obtalned by slmple computatlons. 

Even though T has a unlmodal dlstrlbutlon on the even lntegers wlth peak 
at 2, generatlon by sequentlal lnverslon started at 2 1s not recommended because 
E (T )=m. We can proceed by reJectlon based upon the followlng lnequalltles: 

Lemma 6.1. 
The probablllties p 2n satlsfy for n > - 1,  

3 

Proof of Lemma 6.1. 
We rewrite p z n  as follows: 

2n 22n -2e -2n 2n - 2n 
n 

e 
1 )2n -1 e 12(2n -1)  e (I-- 

2n - - 
n d-- 

for some 0<6'<1. An upper bound 1s provlded by 
1 

e 12(2n-1) - - 
3 
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A lower bound 1s provlded by 

1 
2n 

e (I---)~" 
- - 

3 
1 -  

(n --) 2 6 
(1+-)2" 1 (1--)2" 1 

2n 2n > 

1 -  
(n --) 2 2 J43; 

1 -  
(n --) 2 6 

Generatlon can now be dealt wlth by truncatlon of a contlnuous random 
varlate. Note that p 2n 5 cg (a: ) where 

I 

1 
2 
- ( n = i ,  n - l < x < n )  

1 - c g  (x 1 = 

(n > I ,  n - l < x < n )  
e l2 

3 
6 ( X  --) 1 2  

2 

where 

Random varlates wlth denslty g can qulte easlly be generated by lnverslon. The 
algorlthm can be summarized as follows: 
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Generator for first return to origin in simple random walk 

[SET-UP] 
1 - 

1 2 e  l2 

- z + 7  
[GENERATOR] 
REPEAT 

Generate a uniform [O,c ] random variate U 

IF us' 
2 

THEN RETURN X t 2  
ELSE 

Generate a uniform [0,1] random variate V .  
1 1 
2 _- Yt-+ (Y has density g restricted to [ i , ~ ) ) .  

2-( ~ - f )  v G e  12 

w +I/(G(X-L)~/~) (prepare for squeeze steps) 

IF T /  W <I-- (quick acceptance) 

2 
1 

2 x  
THEN RETURN 2 x  

1 

ELSE IF T / W 5 e 12(2x-1) (quick rejection) 
THEN IF T < p  2 x  TKEN RETURN 2 X  

UNTIL False 

The reJection constant c is a good lndlcator of the expected time spent before 
haltlng provlded that p 2 x  can be evaluated In constant tlme unlformly over all 
X .  However, If p 2~ 1s computed dlrectly from Its deflnltlon, 1.e. as a ratlo of fac- 
torials, then the computatlon takes time roughly proportlonal t o  X .  Assume that 
I t  1s exactly X .  Wlthout squeeze steps, the expected tlme spent computlng p 2~ 

would be c times E ( X )  where X has denslty g . Thls 1s 00 (exerclse 6.1). How- 
ever, with the squeeze steps, the probablllty of evaluatlng p 2 x  expllcltly for Axed 
value of X decreases as - as x+00. Thls lmplles that the overall expected tlme 

of the algorithm 1s flnlte (exerclse 6.2). 

1 
X 

I 
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6.3. Birth and death processes. 
A birth and death process Is a process with states 0,1,2,3, ..., In which the 

time spent In state i Is distributed as an exponential random variate dlvlded by 
hi  + p i ,  at whlch time the system Jumps to state i +1 (a birth) with probabllity 
h i  /(hi  + p i ) ,  and to state i -1 (a death) otherwlse. Slmple examples include 
A. The Poisson process: h;=h>O , p i s o .  Blrths correspond essentlally to 

events such as arrlvals in a bank. 
B. The Yule process: hi  = h i  >O , pi  EO. Here we also require that at time 0, 

the state be 1. This is a particular case of a pure birth process. The state 
can be identifled with the size of a given populatlon In which no deaths can 
occur. 
The M/M/l queue: x i = X > O  , pi=p>O , po=O. Here the state can be 
identifled with the size of a queue, a birth with an arrival, and a death with 
a departure. The condition po=O Is natural slnce nobody can leave the 
queue when the queue 1s empty. 
In all these examples, simulation can often be accelerated by maklng use of 

flrst-passage-time random varlables. Formally, we deflne the first passage tlme 
from z' to j ( j  > z ' )  , T i j ,  by 

C. 

Tij  = \nf { t : X t = j  IX,=i} . 

Here X, is the state of the system (an Integer) at  time t ,  and X, Is the Initial 
state. Let us conslder the M/M/l queue. The busy period of such a queue Is Tl0. 
If the system starts In state 0 (empty queue), and we define a system cycle as the 
minimal time until for the flrst tlme another empty queue state 1s reached after 
some busy perlod, 1.e. after at least one person has been In the queue, then the 
system cycle Is dlstributed as ,?3 /h+T,,, where ,?3 is an exponential random varl- 
ate, independent of Tlo. The only M/M/1 queues of interest to  us are those 
which have wlth probabllity one a flnlte value for Tlo, 1.e. those for whlch p z h  
(Heyman and Sobel, 1982, p. 91). The actual derivation of the dlstrlbutlon of T,, 
would lead us astray. What matters is that we can generate random variates dls- 
trlbuted as T,,, quite easily. This should of course not be done by generating all 
the arrivals and departures until an empty queue is reached, because the expected 
time of this method 1s not uniformly bounded over all values of h < p .  This 1s 
best seen by noting that E ( Tlo)=l/(p-h). 

The M/M/1 queue provides one of the few lnstances In whlch the dlstrlbu- 
tion of the flrst passage times 1s analytically manageable. For example, 2 f i T 1 0  
has density 

1 -q [+ -1 e I , ( x ) L  (a: >o) , 
X f ( a : > = e  

where E= - and I ,  Is the Bessel functlon of the Arst kind wlth imaginary 

argument (see section IX.7.1 for a deflnltlon). Dlrect generatlon can be carried out 
based upon the following result. 

I/?- 

i 
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Theorem 6.2. 
When E Is exponentlally dlstrlbuted, Y Is a random variable with density 

A (E+ 'a 1-1 +2Y 
2 

where c =- " and E=&, and E , Y  are Independent, then 

E /( L(E+L)+2 Y-1) has denslty f , and E / ( p + x + 2 m ( 2  Y-1)) Is distributed 
7T 

2 E  
as TIO. 

Proof of Theorem 6.2. 

densltles. By an integral representatlon of 1, (Magnus et al, 1966, p. 84), 
Thls theorem illustrates once agaln the power of integral representations for 

1 -Z(E+-) 
f ( X I =  e E I 1 ( x ) I  2 

2 1  1 - -4 2 E+-) E b ~ S e - z z ~ d ~  
- e  

2 7T-1 

--z ($€+T)+2Y- l )  1 1  
= E ((-$E+7)+2Y--l)e 1 1 

1 1 where Y has denslty g . Glven Y ,  thls is the density of E /(-(E+-)+2Y-l). 
2 E  

Generatlon of Y can be taken care of very slmply by reJectlon. Note that 

1 3  
7T 2 2  

3 3  
2 2  

where c =- 4E. The top upper bound, proportional to a beta (-,-) density 

integrates to E.  The bottom upper bound, proportional to a beta (-,-) density, 

lntegrates to (E/((-1))2. One should always pick the bound which has the 
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smallest Integral. The cross-over point Is at [=-(3+&)~%2.0. 1 
2 

Generator for g 

CASE 

REPEAT 
Generate a uniform [0,1] random variate U .  

Generate a beta (L 3) random variate Y .  
2 ' 2  

UNTIL 

-* 
3+& 

2 

U -< 1-u - 

REPEAT 

Generate a uniform [OJ] random variate U. 
Generate a beta (- -) random variate Y, 3 3  

2 ' 2  
1 1  
-(t+-)-1 

UNTIL -< u 2 t  1-u- 2 Y  
RETURN Y 

The expected number of lteratlons 1s mln([,(-)2). s Thls 1s a unlmodal Punctlon 
in f ,  taking the value 1 as ti1 and ctoo. The E-1 peak Is at {=(3+6) /2 .  The algo- 

rlthm Is unlformly fast  wlth respect to [Ll. In the case [=1 the  acceptance con- 
dltlon 1s automatlcally satlsfled, and the comblnatlon of the g generator wlth the 
property of Theorem 6.2 1s reduced to a generator already dealt wlth In Theorem 
IX.7.1. 

6.4. Phase type distributions. 
Phase type distributions (or simply PH-distributions) are the dlstrlbu- 

tlons of absorptlon tlmes In absorblng Markov chalns, which are useful In study- 
lng queues and rellablllty problems. We conslder only dlscrete (or: dlscrete-tlme) 
Markov chalns wlth a flnlte number of states. An absorptlon state Is one whlch, 
when reached, does not allow escape. Even If there Is at least one absorptlon 
state, I t  1s not at all certaln that I t  wlll ever be reached. Thus, phase type dlstrl- 
butlons can be degenerate. 



758 XIV.6.REGENERATIVE PHENOMENA 

Any state can also be "promoted t o  absorptlon state to study the tlme 
needed untll thls state 1s reached. If we promote the startlng state to absorption 
state lmmedlately after we leave It, then thls promotlon mechanlsm can be used 
t o  slmulate Markov chalns by the shortcuts discussed In thls sectlon, at least If 
we can get a good handle on the tlmes untll absorption. 

Dlscrete Markov chalns can always be slmulated by uslng a slmple dlscrete 
random varlate generator for every state transltlon (Neuts and Pagano, 1981). 
Thls generator 1s not unlformly fa s t  over all Markov chalns wlth m states and 
nondegenerate phase type dlstrlbutlon. In the search for unlformly fa s t  genera- 
tors, slmple shortcuts are of llttle help. 

For example, when we are In state i ,  we could generate the (geometrlcally 
dlstrlbuted) tlme untll we flrst leave i In constant expected tlme. The 
correspondlng state can also be generated unlformly fa s t  by a method such as 
Walker's, because we have a slmple condltlonal dlscrete dlstrlbutlon wlth m -1 
outcomes. Thls method can be used to ellmlnate the tlmes spent ldllng In lndlvl- 
dual states. It cannot ellmlnate the tlmes spent in cycles, such as in a Markov 
chaln In whlch wlth hlgh probablllty we stay In a cycle vlsltlng states 
z 1,22, . . . , & ln turn. Thus, I t  cannot posslbly be unlformly fast  over all Markov 
chalns wlth m states. 

It seems that In thls problem, unlform speed does not come cheaply. Some 
preprocesslng lnvolvlng the transltlon matrlx seems necessary. 

. .  

6.5. Exercises. 
1. Conslder the rejectlon algorlthm for the tlme 2X untll the  flrst return to the 

orlgln In a syrnmetrlc random walk glven In the text. Show that when the 
tlme needed to compute p2x 1s equal to x, then the expected tlme taken by 
the algorlthm wlthout squeeze steps 1s 00. 

2. A contlnuatlon of exerclse 1. Show that when squeeze steps are added as In 
the text, then the algorlthm halts In flnlte expected time. 

3. Discrete Markov chains. Conslder a dlscrete Markov chaln wlth m 
states and lnltlal state 1. You are allowed to preprocess at any cost, but just 
once. What sort of preprocesslng would you do on the transltlon matrlx so 
that you can deslgn an algorlthm for generatlng the state S,, at tlme n In 
expected tlme unlformly bounded over n .  The expected tlme 1s however 
allowed to lncrease wlth m . Hlnc: can you decompose the transltlon matrlx 
uslng a spectral representatlon so that the n -th power of I t  can be computed 
unlformly qulckly over all n ? 

The lost-games distribution. Let X be the number of games lost before 
a player 1s rulned In the classlcal gambler's ruin problem, 1.e. a gambler adds 
one to hls fortune wlth probablllty p and loses one unlt wlth probablllty 
1-p . He starts out wlth r unlts (dollars). The purpose of thls exerclse 1s to 
deslgn an algorlthm for generatlng X In expected tlme unlformly bounded In 

4. 
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T when p <1-p Is Axed. Unlform speed In both T and p would be even 
better. Notlce flrst that the restrlctlon p e l - p  1s needed to lnsure that X Is 
a proper random variable, 1.e. to lnsure that the player Is ruined wlth proba- 
blllty one. 
A. Show that  when p <1-p , the player will eventually be rulned wlth pro- 

bablllty one. 
B. Show that X has dlscrete dlstrlbutlon given by 

(Kemp and Kemp, 1968). 

Suppose that customers arrlve at a queue according to a homogeneous 
Polsson process wlth parameter 1, that the service tlme Is exponentlal 
with parameter p e l ,  and that the queue has lnltlally r customers. 
Show that the number of customers served untll the queue flrst vanlshes 
has the lost-games dlstrlbutlon wlth parameters T and p = x / ( x + p ) .  

D. Uslng Stlrllng’s approxlmatlon, determine the general dependence of 
P (X=n  ) upon n , and use I t  to design a unlformly fast reJectlon algo- 
rlthm. 

For a survey of these and other waitlng tlme mechanlsms, see e.g. Pat11 and 
Boswell (1975). 

C. 

7. THE GENERALIZATION OF A SAMPLE. 

7.1. Problem statement. 
As In sectlon XIV.2, we will dlscuss an lncompletely speclfled random variate 

generation problem. Assume that we are glven a sample X , ,  . . . , X ,  of lld 
R -valued random vectors with common unknown denslty f , and that we are 
asked to generate a new independent sample Y,, . . . , Y, of independent ran- 
dom vectors wlth the same denslty f . Stated In thls manner, the problem is 
obvlously unsolvable, unless we are lncredlbly lucky. 

What one can do is construct a density estimate 
f, (%)=I, (a: ,xl, . . . , x, ) of f ( E  ), and then generate a sample of size m 
from f , .  Thls procedure has several drawbacks: flrst of all, f, Is typlcally not 
equal to f . Also, the new sample depends upon the orlglnal sample. Yet, we 
have very few optlons avallable to us. Ideally, we would llke the new sample to  
appear to  be dlstrlbuted as the orlglnal sample. Thls wlll be called sample lndls- 
tlngulshablllty. Thls and other lssues wlll be dlscussed In thls sectlon. The 
materlal appeared orlglnally In Devroye and Gyorfl (1985, chapter 8). 
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7.2. Sample independence. 
There 1s llttle that can be done about the dependence between X , ,  . . , , X ,  

and Y , ,  . . . , Y,,, except to  hope that for n large enough, some sort of asymp- 
totlc lndependence 1s obtalned. In some appllcatlons, sample lndependence 1s not 
an lssue at all. 

Slnce the Yi 's are condltlonally lndependent glven XI, . . . , X ,  , we need 
only conslder the dependence between Y ,  and x,, . . . , xn . A measure of the 
dependence 1s 

D, = SUP I P ( Y E A  , X E B ) - P ( Y E A ) P ( X E B )  1 , 
A ,B 

where the supremum 1s wlth respect t o  all Borel sets A of R and all Borel sets 
B of R n d ,  and where Y = Y ,  and x 1s our shorthand notatlon for 
( X I ,  . . . , X ,  ). We say that the samples are asymptotlcally lndependent when 

llm D, = 0 .  
n -03 

In sltuatlons In whlch x,,  . . . , X ,  1s used to  deslgn or bulld a system, and 
Y , ,  . . . , Y,,, 1s used to  test I t ,  the sample dependence often causes optlmlstlc 
evaluatlons. Wlthout the asymptotlc lndependence, we can't even hope to  dlmln- 
Ish thls optlmlstlc blas by lncreaslng n . 

The lnequallty In Theorem 7.1 below provldes us wlth a sufflclent condltlon 
for asymptotlc lndependence. Flrst, we need the followlng Lemma. 

Lemma 7.1. (Scheffe, 1947). 
For all densltles f and g on R d ,  

s I f - 9  I = 2 s u p / J f - J g  I , 
B B B  1 where the supremum 1s wlth respect to  all Borel sets B of R d .  

Proof of Lemma 7.1. 

s(f -g )=O, we see that 
Let us take B = { f  >g} ,  and let A be another Borel set 

J I f -9 I = 2J(f -9) f 
B 

of R d .  Because 

Thus, we have shown that I f -g I Is at most twlce the supremum over all 
Borel sets of I s(f -g ) I . T o  show the other half of the Lemma, note that if B' 

B 
denotes the complement of B ,  then 
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Scheffe’s lemma tells us that If we asslgn probabllltles to sets (events) using 
two dlfferent densities, then the maximal difference between the probabllltles over 
all sets 1s equal to one half of the L ,  dlstance between the densitles. From 
Lemma 7.1, we obtain 

Let f, be a density estlmate, which itself 1s density. Then -1 Theorem 7.1. 

761 

We see that  for the sake of asymptotlc sample Independence, I t  sufflces that 
the expected L dlstance between 1, and f tends to zero wlth n . Thls 1s also 
called consistency. Consistency does not imply asymptotlc Independence: Just 
let f, be the uniform denslty In all cases, and observe that D, =O, yet 
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s I f, -f I Is a posltlve constant for all n and all nonuniform f . 

7.3. Consistency of density estimates. 
A density estlmate f n  Is consistent If for all densltles f , 

1lm E ( J  1 f ,-f  I 1 = 0 . 
n d c o  

Consistency guarantees that the expected value of the maxlmal error committed 
by replacing probabllltles deflned wlth f with probabllltles deflned wlth f 
tends to 0. Many estlmates are conslstent, see e.g. Devroye and Gyorfl (1985). 
Parametric estlmates, 1.e. estlmates In which the form of f, Is Axed up to a 
flnlte number of parameters, which are estimated from the sample, cannot be 
consistent because f , 1s required to converge to f for all f , not a small sub- 
class. Perhaps the best known and most widely used consistent density estlmate 
Is the kernel estimate 

where K Is a given density (or kernel), chosen by the user, and h >O is a 
smoothlng parameter, which typically depends upon n or the data (Rosenblatt, 
1956; Parzen, 1902). For conslstency I t  Is necessary and sumcient that h +O and 
nh --too In probability as n --too (Devroye and Gyorfl, 1985). How one should 
choose h as a function of n or the data 1s the subJect of a lot of controversy. 
Usually, the cholce 1s made based upon the approxlmate minimization of an error 
crlterion. Sample lndependence (Theorem 7.1) and sample lndistingulshablllty 
(next section) suggest that we try to  minimize 

But even after narrowlng down the error crlterlon, there are several strategles. 
One could mlnlmlze the supremum of the crlterlon where the supremum Is taken 
over a class of densitles. Thls 1s called a minimax strategy. If f has compact 
support on the real llne and a bounded continuous second derivative, then the 
best choices for lndlvldual f (Le., not In the mlnlmax sense) are 

1 
5 

-- 
h = C n  , 

3 
4 

K (5 ) = -(I-x 2, 

where C Is a constant dependlng upon f only: 
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The optlmal kernel colncldes with the optimal kernel for L criteria (Bartlett, 
1903). The optimal formula for h , which depends upon the unknown denslty f , 
can be estlmated from the data. Alternatlvely, one could compute the formula 
for a glven parametric denslty, a rough guess of sorts, and then estimate the 
parameters from the data. For example, If thls 1s done with the normal density as 
initial guess, we obtain the recommendation to  take 

1 

where b Is a robust estlmate of the standard deviation of the normal density 
(Devroye and Gyorfl, 1985). A typlcal robust estlmate is the so-called qulck-and- 
dirty estlmate 

P xp -x 

where zp ,xp are the p -th and q -th quantlles of the standard normal denslty, and 
X ( , p  and X,,, are the p -th and q -th quantlles in the data, Le. the (np )-th and 
(nq )-th order statistics. 

The constructlon glven here with the kernel estlmate is simple, and ylelds 
fast  generators. Other constructions have been suggested In the literature with 
random varlate generatlon In mlnd. Often, the expllclt form of f, Is not glven or 
needed. Constructions often start  from an empirical distrlbution functlon based 
upon X , ,  . . . , X, ,  and a smooth approximatlon of thls distribution function 
(obtalned by Interpolation), which, Is dlrectly useful in the inversion method. 
Guerra, Tapia and Thompson (1978) use Akima’s (Akima, 1970) quasi-Hermite 
plecewlse cublc lnterpolatlon to  obtaln a smooth monotone functlon colncldlng 
with the empirical distribution functlon at the points X i .  Recall that the empirl- 
cal dlstrlbutlon 1s the dlstrlbutlon whlch puts mass - at polnt xi. Hora (1983) 

glves another method for the same problem. Butler (1970) on the other hand uses 
Lagrange’s quadratlc Interpolation on the lnverse emplrlcal dlstributlon functlon 
to speed random variate generatlon up even further. 

1 
n 

7.4. Sample indistinguishability . 
In simulations, one lmportant qualitative measure of the goodness of a 

method Is the indlstlngulshablllty of X , ,  . . . , X,,, and Y, ,  . . . , Y,  for the 
glven sample size m .  Note that we have forced both sample slzes to  be the 
same, although for the constructlon of f, we keep on using n polnts. The IndIs- 
tlngulshablllty could be measured quantitatlvely by 

s,,m = S U P  JWN(A)) -E(M(A)IX, ,  . . . , X , )  

= m SUP I J r  - J f n  I 
A 

A A A  
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Here, A 1s a Bore1 set of R , N ( A  ) 1s the cardlnallty of A for the orlglnal sam- 
ple (the data, artiflclally Inflated to size m ), and M ( A  ) 1s the cardlnallty of A 
for the artlflclal Yi sample. By cardlnallty of a set, we mean the number of data 
polnts falllng In the set. 

When Sn,,, Is smaller than one, then the expected cardlnallty of a set A 
with a perfect sample of slze m differs by at most one from the condltlonal 
expected cardlnallty of the generated sample of slze m . We say that  f ,  Is k - 
excellent for samples of slze m when 

Thls 1s equlvalent to asklng that  the expected L dlstance between f and f, 1s 
at most 2k / m  . The notlon of 1-excellence 1s very strong. For example, for most 
nonparametric estlmates such as the kernel estlmate 1-excellence forces us to use 
phenomenally large values of n for even moderate values of m .  Devroye and 
Gyorfl (1985) have shown that for all kernel estlmates (regardless of cholce of I( 
and h ), and for all densltles f , 1-excellence 1s not achlevable for samples of size 
ni =lo00 unless n 24,000,000. For m =10,000, we need n ~1,300,000,000. For 
the hlstogram estlmate, the sltuatlon 1s even worse. 

But  even 1-excellence may not be good enough for one's appllcatlon. For one 
thlng, no assurances are glven as to  the discrepancy In moments between the gen- 
erated sample and the origlnal sample. 

7.5. Moment matching. 

densltles f ,  and f . For d =1, the i - t h  moment mismatch is deflned as 
Some statlstlclans attach a great deal of lmportance to the moments of the 

Mn .i = J x i  f , - S x ' f  (i =1,2,3 ,...) . 

Clearly, Ad,,i 1s a random varlable. 
wlth a zero mean flnlte varlance (a2) 

. n  

1 -  M, ,2 - (Xi 2-E (Xi 2)) 
ni=1 

Thls follows from the fact that f, 

Assume that  we employ the kernel estimate 
kernel IC. Then, we have 

+ h2a2 . 

1s an equlprobable mlxture of densltles I( 
shlfted t o  the Xi 's  , each havlng varlance h2a2 and zero mean. It is lnterestlng 
to note that  the dlstrlbution of M, 1s not lnfluenced by h or I C .  By the weak 
law of large numbers, tends to 0 In probability as 12 --.too when f has a 
Anlte flrst moment. The story 1s dlfferent for the second moment mismatch. 
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Whereas E (M, ,1)=0, we now have E (M, , 2 )=h  202, a posltlve blas. Fortunately, 
h 1s usually small enough so that  thls 1s not too blg a blas. Note further that  the 
varlances of M, , M, ,2 are equal to 

Var ( X  Var (X 12) 

n n 
t 

respectlvely. Thus, h and I< only affect the blas of the second order mlsmatch. 
Maklng the blas very small 1s not recommended as I t  lncreases the expected L ,  
error, and thus the sample dependence and dlstlngulshablllty. 

7.6. Generators for f, . 
For the kernel estlmate, generators can be based upon the property that  a 

random variate 1s dlstrlbuted as an equlprobable mlxture, as Is seen from the fol- 
lowlng trlvlal algorlthm. 

Mixture method for kernel estimate 

Generate 2 ,  a random integer uniformly distributed on { l , Z ,  . . . , n }. 
Generate a random variate w with density K . 
RETURN x z  +hW 

3 
4 

For Bartlett’s kernel I< (a: )=-(1-x2)+, we suggest elther reJectlon or a 

method based upon properties of order statlstlcs: 

Generator based upon rejection for Bartlett’s kernel 

REPEAT 
Generate a uniform [-1,1] random variate x and an independent uniform [0,1] ran- 
dom variate u.  

UNTIL U 51-Xa 
RETURN x 
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The order statistics method for Bartlett’s kernel 

Generate three iid uniform [-1,1] random variates V,, V,, V,. 

IF I V , I > m ~ ( I V l I ~ I v [ / , / )  
THEN RETURN X + V, 
ELSE RETURN X + V, 

In th rejectlon method, X 1s accepted wlt,, probablllty 2/3, so that the algo- 
rlthm requlres on average three lndependent unlform random varlates. However, 
we also need some multlpllcatlons. The order statlstlcs method always uses pre- 
clsely three lndependent unlform random varlables, but the multlpllcatlons are 
replaced by a few absolute value operatlons. 

7.7. Exercises. 
1. Monte Carlo integration. To estlmate [ H ( z ) f  ( z )  dz , where H 1s a 

glven functlon, and f 1s a denslty, the Monte Carlo method uses a sample 
of slze n drawn from f (say, x,, . . . , X,).  The nalve estlmate 1s 

When n 1s small, this estlmate has a lot of bullt-ln varlance. Compute the 
varlance and assume that I t  1s flnlte. Then construct the bootstrap esti- 
mate 

where the Yi’s are lld random varlables wlth denslty f , , the kernel estl- 
mate of f based upon X , ,  . . . , X,.  The sample slze m can be taken as 
large as the user can afford. Thus, In the Ilmlt, one can expect the bootstrap 
estlmate t o  provlde a good estlmate of J H  (z )f , (z ) dz . 
A. Show that I S H f  -SHfn I 5 2  (sup H )  J I f -f, I (Devroye and 

Gyorfl, 1985). 

B. Compare the mean square errors of the nalve Monte Carlo estlmate and 
the estlmate (the latter 1s a llmlt as m +oo of the bootstrap estl- 
mate). 
Compute the mean square error of the bootstrap estlmate as a functlon 
of n and m ,  and compare wlth the nalve Monte Carlo estlmate. Also 

C. 
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2. 

3. 

4. 

consider what happens when you let m - m  In the expresslon for the 
mean square error. 

The generators for the kernel estimate based upon Bartlett’s kernel In the 
text use the mlxture method. Still for Bartlett’s kernel, derive the inversion 
method with all the details. Hint: note that the dlstrlbutlon function can be 
wrltten as the sum of polynomlals of degree three wlth compact support, and 
can therefore be considered as a cublc spline with at most 2 n  breakpoints 
when there are n data polnts (Devroye and Gyorfl, 1985). 

Bratley, Fox and Schrage (1983) conslder a density estlmate f, which pro- 
vldes fast  generation by lnverslon. The Xi ’s are ordered, and f , is constant 
on the lntervals determlned by the order statlstlcs. In addltlon, in the Inter- 
vals to the left of the mlnlmum and to the right of the maximum exponen- 
tlal tails are added. The constant pleces and exponentall tails lntegrate to 
l / ( n  +1) over thelr supports, 1.e. all pleces are equally likely to be picked. 
Rederive thelr fast  lnverslon algorlthm for f, . Is thelr estimate asymptotl- 
cally Independent? Show that I t  Is not consistent for any denslty f . To cure 
the latter problem, Bratley, Fox and Schrage suggest coalesclng breakpoints. 
Consider coalesclng breakpoints by lettlng f be constant on the lntervals 
determlned by the k- th ,  2k-th,  3k-th,  order statistics. How should one 
deflne the heights of f, on these Intervals, and how should k vary with n 
for conslstency? 
For the kernel estimate, show that for any denslty K ,  any f , and any 
sequence of numbers h > O  with h 4 0  ,nh +oo, we have E (s I f -f , I )-+O 
as n+m. Proceed as follows: flrst prove the statement for contlnuous f 
with compact support. Then, using the fact that any measurable function In 
L can be approximated arbitrarily closely by contlnuous functlons with 
compact support, wrap up the proof. In the flrst half of the proof, I t  1s useful 
to split the integral by consldering I f -8 (f , ) I separately. In the second 
half of the proof, you will need an embeddlng argument, In which you create 
a sample whlch wlth a few deletions can be consldered as a sample drawn 
from f , and wlth a few dlfferent deletlons can be consldered as a sample 
drawn from the L approximation of f . 

* 


