
Chap fer Four teen 
PROBABILISTIC SHORTCUTS 
AND ADDITIONAL TOPICS 

A probablllstlc shortcut In random varlate generatlon is a method for reduc- 
lng the expected tlme In a slmulatlon by recognlzlng a certaln structure In the 
problem. Thls prlnclple can be lllustrated In hundreds of ways. Indeed, there Is 
not a single example that could be called "typical". It should be stressed that the 
emclency 1s derlved from the problem itself, and Is probablllstlc In nature. Thls 
dlstlngulshes these shortcuts from certaln technlques that are based upon clever 
data structures or fast algorlthms for certaln sub-tasks. We will draw our exam- 
ples from three sources: the slmulatlon of maxima and sums of lid random varl- 
ables, and the slmulatlon of regeneratlve processes. 

Other toplcs brlefly touched upon lnclude the problem of the generatlon of 
random variates under lncomplete information (e.g. one Just wants to  generate 
random variates wlth a unlmodal density havlng certaln given moments) and the 
generatlon of random varlates when the dlstrlbutlon 1s lndlrectly specifled (e.g. 
the characteristic functlon Is given). Finally, we wlll brlefly deal wlth the problem 
of the design of efflclent algorlthms for large slmulatlons. 

1. THE MAXIMUM OF IID RANDOM VARIABLES. 

1.1. Overview of methods. 
In this sectlon, we wlll look at methods for generating 

X=max(X,,  . . . , X, ), where the xi's are lid random varlables wlth common 
density f (the correspondlng dlstrlbutlon functlon wlll be called F ) .  We wlll 
malnly be interested In the expected tlme as a functlon of n .  For example, the 
nalve method takes tlme proportlonal to n , and should be avoided whenever pos- 
slble. Because X has dlstrlbution function Fn , I t  1s easy to  see that the following 
algorlthm Is valld: 
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Inversion method 

Generate a uniform [0,1] random variate u .  

RETURN X-F-'( U'). 
1 
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The problem wlth thls approach 1s that for large n , U'In 1s close to 1, so that In 
regular wordslze arlthmetlc, there could be an accuracy problem (see e.g. Dev- 
roye, 1980). Thls problem can be allevlated 1f we use G =1-F lnstead of F and 
proceed as follows: 

Inversion method with more accuracy 

Generate an exponential random variate E and a gamma (n ) random variate G, . 
E 

E +G, RETURN X+G-I(- 1. 

Unless the dlstrlbutlon functlon 1s expllcltly lnvertlble, both lnverslon-based algo- 
rlthms are vlrtually useless. In the remalnlng sectlons, we present two probabllls- 
t lc  shortcuts, one based upon the qulck ellmlnatlon prlnclple, and one on the use 
of records. The expected tlmes of these methods usually lncrease as log(n ). Thls 
1s not as good as the constant tlme lnverslon method, but a lot better than the 
nalve method. The advantages over the lnverslon method are measured In terms 
of accuracy and flexlblllty (fewer thlngs are needed In order to be able t o  apply 
the shortcuts). 

1.2. The quick elimination principle. 
In the qulck ellmlnatlon prlnclple, we generate the maximum of a sequence 

of lld random varlables after havlng ellmlnated all but a few of the xi's wlthout 
ever generatlng them. We need a threshold polnt t and the tall probablllty 
P =1-F ( t  ). These are plcked before application of the algorithm. Typlcally, p 1s 
Of the order of (log(n ) ) / n  . The number of Xi ' s  that exceed t 1s blnomlal (n  , p  ). 
Thus. the following algorlthm 1s guaranteed to work: 
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The quick elimination algorithm (Devrq-e, 1980) 

Generate a binomial ( n  , p  ) random variaze z .  
IF z=o 

THEN 
RETURN X t m a x ( X , ,  . . . . -:' --  where the xi 's are iid random variates with 
density f /(l-p ) on (-co,t :. 

RETURN X t m a x ( X , ,  . . . . 
density / p  on [ t  so). 

ELSE 
where the xi 's are iid random variates with 

To analyze the expected tlme complexltv. -5serve that the blnomlal ( n  , p  ) ran- 
dom varlate can be generated In expecteC : h e  proportlonal to  np as np -00 by 
the waltlng tlme method. Obvlously, we c c L d  use 0 (1) expected tlme algorlthms 
too, but there 1s no need for thls here. &s-=e furthermore that every Xi In the 
algorlthm Is generated In one unlt of expez fd  tlme, unlformly over all values of 
p . It 1s easy to  see that the expected t I n 5  of the algorlthm Is T+o (np ) where 
we deflne T =UP (2 =O)n +6 (1-P (2 =O))np  +cnp for some constants 
a ,b ,c >o. 

I 1 Lemma 1.1. 

lnf T - ( 6  +c )log(n ) (n --x) . 
o c p  < 1  

log(n >+s, 
P' 9 n 

then T - ( 6  +c )log(n ) provlded that the sequence of real numbers 6, Is chosen 
so that 
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Proof of Lemma 1.1. 
Note that 

T = nu (1-p )" + b n p  ( I - (  1-p )" )+cnp 

5 ( b  +c )np +une+'p . 

The upper bound Is convex In p wlth one mlnlmum. Settlng the derlvatlve wlth 
respect to p equal to zero and solvlng for p glves the solutlon 

Resubstltutlon In the upper bound for T shows that 

T 5 ( b  + c ) l o g ( C )  
b +c 

When p =(log(n )+6, ) / n  , then the upper bound for T Is 

ue -" +( b +c )(log(n )+6, ) . 

Thls - ( b  +c )log(n) If 6, = o  (log(n )) and e-'"=o (log(n )). The latter condltlon 
Is satlsfled when 6, +log(log(n ))-)eo. 

Flnally, I t  sufflces to work on a lower bound for T. We have for every E > O  
and all n large enough, since the optlmal p tends to  zero: 

" P  -- 
T 2 (nu -bnp ) e  '-P+(b +c )np 

> - nu (1-c)e l-' +(b +c )np. 
nP -- 

. We have already .mlnlmlzed such an expresslon wlth respect to  p above. It 
sufflces to formally replace n by n / ( l - ~ ) ,  a by u ( l - ~ ) ~ ,  and ( b  +c ) by 
( b  + C  ) ( I -€ ) .  Thus; 

ane 
o < p  <1 b +c 

1nf T 2 (1--E)(b +c )log(-) 

for all n large enough. Thls concludes the proof of Lemma 1.1. 

U 
A good choke for 6, In Lemma 1.1 1s 6, = log(- ). When Z = O  In the 

algorlthm, lld random variates from the denslty f / ( l - p  ) restrlcted to (-oo,t] 
can be generated by generatlng random variates from f untll n values less than 
or equal to t are observed. Thls would force us to  replace the term uP(Z=O)n 
In the deflnltlon of T by u P ( Z = O ) n / ( l - p ) .  However, all the statements of 
Lemma 1.1 remain valld. 

b + c  
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The maln problem 1s that of the computatlon of a palr ( p  ,t ). For If we start  
wlth a value for p , such as the value suggested by Lemma 1.1, then the value for 
t 1s glven by F - ’ ( l - p )  (or G-’(p) where G = l - F ,  if numerical accuracy is of 
concern). Thls is unfortunately posslble only when the lnverse of the distrlbutlon 
functlon is known. But if the lnverse of the distrlbutlon were known, we would 
have been able t o  generate the maxlmum qulte efflclently by the inverslon 
method. There is a subtle difference though: for here, we need one lnversion, even 
if we would need to  generate a mlllion lid random varlables all distrlbuted as the 
maximum X .  With the lnverslon method, a mllllon inverslons would be requlred. 
If on the other hand we were to start wlth a value for t , then p would have to 

be set  equal to f = G ( t  ) = 1-F ( t  ). Thls requlres knowledge of the dlstrlbu- 

tlon function but not of its Inverse. The value of t we start  wlth should be such 
that p satisfies the condltlons of Lemma 1.1. Typlcally, t 1s plcked on theoretlcal 
grounds as 1s now lllustrated for the normal denslty. 

53 

t 

Example 1.1. 
For the normal density i t  1s known that G (z)-f (z ) /a :  as x --too. A flrst 

approximate solution of f ( t ) / t  = p 1s t=d2log(l /p) ,  but even if we substl- 
tute the value p =(log(n ) ) / n  in thls formula, the value of G ( t  ) would be such 
that the expected tlme taken by the algorlthm far exceeds log(n). A second 
approximatlon 1s 

wlth p =(log(n ) ) / n  . I t  can be verlfled that wlth this cholce, T = O  (log(n )). 

For other densities, one can use simllar arguments. For the gamma ( a  ) den- 
sity for example, we have G(z)-f ( z )  as 5400 ,  and 
f (z )I G (x )I f (z )/(l-(a /z )) for a > 1,a: > a  -1. This helps In the construction 
of a useful value for t . 

The computation of G ( t  ) 1s relatlvely stralghtforward for most dlstrlbu- 
tlons. For the normal denslty, see the series of papers publlshed after the book of 
Kendall and Stuart (1977) (Cooper (1968), Hlll (1969), Hltchin (1973)), the paper 
by Adams (1969), and an lmproved version of Adams’s method, called algorithm 
AS66 (H111 (1973)). For the gamma denslty, algorlthm AS32 (BhattacharJee 
(1970)) 1s recommended: I t  is based upon a contlnued fraction expanslon glven In 
Abramowitz and Stegun (1965). 
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1.3. The record time method. 
In some process slmulatlons one needs a sequence (Zn1, . . . , Z,,) of maxlma 

In other words, for all i , we have Zi =max(X,, . . . , xi ) where the Xi 's are lld 
random varlables wlth common denslty f . The lnverslon method requlres IC 
lnverslons, and can be lmplemented as follows: 

that correspond to  one reallzatlon of the experlment, where n , < n , <  . . <nk. 

Inversion method 

n oco,Z t - - 0 0  

FOR i:=1 TO k DO 
Generate z, the maximum of n; -ni-l iid random variables with common density f . 
zn, +max(z,,-l,z 1 

The record tlme method lntroduced In thls sectlon requlres on the average 
about log(nk ) exponentlal random varlates and evaluatlons of the dlstrlbutlon 
functlon. In addltlon, we need to report the values Z,,. When log(nk) 1s small 
compared to k : ,  the record tlme method can be competltlve. It explolts the fact 
that In a sequence of n lld random varlables wlth common denslty f , there are 
about log(n ) records, where we call the n -th observatlon a record If I t  1s the larg- 
est observatlon seen thus far. If the n- th  observatlon 1s a record, then the lndex 
n ltself 1s called a record tlme. It 1s noteworthy -that glven the value Vi of the 
i- th record, and glven the record tlme Ti of the i- th record, Ti+,-Ti and Vi+l  
are Independent: Ti+,-Ti 1s geometrlcally dlstrlbuted wlth parameter G (Vi ): 

P(T,+, -T;=~ I q,vi)  = G ( V ~ ) ( I - G ( V ~ ) ) ~ - ~ -  ( j 2 1 ) .  

Also, Vi+, has condltlonal denslty f / G  ( V i )  restrlcted to [Vi ,oo). An lnflnlte 
sequence of records and record tlmes {(Vi ,Ti ) , i 31) can be generated as fol- 
lows: 
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The record time method (Devroye, 1980) 

T , t l , i  t l  

P+-G(Vl) 

Generate a random variate v, with density f . 

WHILE True DO 

i & + l  
Generate an exponential random variate E. 
ri + - T ~ - ~ +  r-E / l og ( l -p  1 
Generate v. from the tail density - f ( x )  

112 2 V,-,I* 1-P 
P+-G(l/i)  

It 1s a stralghtforward exerclse to  report the Zn, values glven the sequence of 
records and record times. We should exlt from the loop when Ti > n k .  The 
expected number of loops before haltlng 1s thus equal to  the expected number of 
records In a sequence of length nk , 1.e. I t  1s 

nt 1 7 = log(nk )+r+o (1) 
i = i  

where r=0.5772 ... 1s Euler's constant. We note that the most tlme consuming 
operatlon In every lteratlon 1s the evaluatlon of G .  If the lnverse of G 1s avall- 
able, the llnes 

4 2  2 V,-,l. 
Generate K. from the tail density - f ( X I  

1-P 
P+-G(K) 

can be replaced by 
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Generate a uniform [O,l] random variate u . 
P CPU 
V ; . t G - ' ( p  ) 

A Anal remark 1s In order here. If we assume that G can be computed In one 
unlt of tlme for all dlstrlbutlons, then the (random) tlme taken by the algorlthm 
1s an lnvarlant, because the dlstrlbutlon of record tlmes 1s dlstrlbutlon-free. 

1.4. Exercises. 
1. Tail of the normal densky. Let f be the normal denslty, let t > O  and 

deflne p = G  ( t  ) where G =1-F and F is the normal dlstrlbutlon function. 
Prove the followlng statements: 
A. Gordon's inequality. (Gordon (1941), Mltrlnovlc (1970)). 

B. As t+m, G ( t ) - f  ( t ) / t .  

C. If t =d2log(n /log(n )), then for the qulck ellmlnatlon algorlthm, 

D. 

T = n(n l-') for every E>O as n +cx. 

If t=s--(log(4.rr)+log(log(-(n)))), where s 1s as In polnt C, then 

for the qulck ellminatlon algorlthm, T = 0 (log(n )). Does 
T-(b f c  )log(n ) 1P b ,c  are the constants In the deflnltlon of T (see 
Lemma 1.1) ? 

Let T I , T 2 , . . .  be the record tlmes In fi sequence of lld unlform [0,1] random 
varlables. Prove that E (T,)=m. Show furthermore that log( T,  )--n In pro- 
bablllty as n +m. 

1 n 
2s log 

2. 
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2. RANDOM VARIATES WITH GIVEN MOMENTS 

2.1. The moment problem. 
The classlcal moment problem can be formulated a s  follows. Let { p i  lrz} 

be a collectlon of moments. Determlne whether there 1s at least one dlstributlon 
whlch glves rlse to these moments; If so, construct such a dlstrlbutlon and deter- 
mlne whether I t  1s unlque. Solld detalled treatments of thls problem can be found 
In Shohat and Tamarkln (1943) and Wldder (1941). The maln result Is the follow- 
lng. 

XrV.2.RANDOM VARIATES WITH GIVEN MOMENTS 

~~ 

Theorem 2.1. 
If there exlsts a dlstrlbutlon wlth moments pi  , 15 i , then 

P2s u s  . . . .  

for all lntegers s wlth s 21. The lnequalltles hold strlctly If the dlstrlbutlon 1s 
nonatomlc. Conversely, If the matrlx lnequallty holds strictly for all lntegers s 
wlth s 21, then there exlsts a nonatomic dlstrlbutlon matchlng the glven 
moments. 

Proof of Theorem 2.1. 

fact that 
We wlll only outllne why the matrlx lnequallty 1s necessary. Considering the 

E((c,+c,X+ * * * +csxs)2) 2 0 
for all values of c ,, . . . , c,  , we have by a standard result from llnear algebra 
(Mlrsky (1955, p. 400)) that 

1 P l . . .  P, 

Pl P2 Ps +l  

1-129 ps . . . .  
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Theorem 2.2. 
If there exists a distrlbutlon on [O,m 

1-11 1-12 * * * 1-1,+1 

1-12 1-13 1-1s +2 

with moments pi , ls;, then 
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for all lntegers s 20. The lnequalltles hold strlctly If the dlstrlbutlon 1s nona- 
tomlc. Conversely, If the matrix inequality holds strictly for all lntegers s LO, 
then there exlsts a nonatomlc dlstrlbutlon matching the given moments. 

The determinants In Theorems 2.1, 2.2 are called Hankel determinants. 
What happens when one or more of them are zero 1s more cornpllcated (see e.g. 
Wldder (1941)). The problem of the unlqueness of a dlstrlbutlon Is covered by 
Theorem 2.3. 
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Theorem 2.3. 

dlstrlbutlon 1s unlque If Carleman's condltlon holds, 1.e. 
Let pl ,p2 ,  ... be the moment sequence of at least one dlstrlbutlon. Then this 

1 -- 03 

I p2i I 2r 0 0 .  
i =o 

If we have a dlstrlbutlon on the posltlve halfllne, then a sufflclent condltlon for 
unlqueness 1s 

i =o 

When the dlstrlbutlon has a density f , then a necessary and sufficient condltlon 
for unlqueness 1s 

(Kreln's condltlon). 

For example, normal dlstrlbutlons or dlstrlbutlons on compact sets satlsfy 
Carleman's condltlon and are thus unlquely determlned by thelr moment 
sequence. In exerclses 2.2 and 2.3, examples are developed of dlstrlbutlons havlng 
ldentlcal lnflnlte. moment sequences, but wldely varylng densltles. In exerclse 2.2, 
a unlmodal dlscrete dlstrlbutlon 1s glven whlch has the same moments as the log- 
normal dlstrlbutlon. 

The problem that we refer to as the moment problem 1s that of the genera- 
tion of a random varlate wlth a glven collectlon of moments p1,p2, . . . , p,, ,  
where n can be 00. Note that If we expand the characterlstlc functlon 4 of a ran- 
dom varlable In Its Taylor serles about 0, then 

where the remalnder term satlsfles 

Thls uses the fact that If I f l k  I <00, the k- th  derlvatlve of 4 exlsts, and 1s a 
contlnuous functlon glven by .?? ( ( ;X)k  e itx). In partlcular, the k- th  derlvatlve 1s 
In absolute value not greater than E (  I X I ). See for example Feller (1971, pp. 
512-514). The remalnder term Rk tends to 0 In a nelghborhood of the orlgln 
when 

<m.  
I pk I ' I k  

IC 
llm sup 
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Thus, the Taylor series converges In those cases. It follows that q5 1s analytlc In a 
neighborhood of the origin, and hence completely determined by Its power series 
&bout the origin. The condition given above Is thus sumcient for the moment 
sequence to uniquely determine the distribution. One can verify that the condl- 
tlon Is weaker, but not much weaker, than Carleman’s condition. The point of all 
this Is that If we are given an lnflnlte moment sequence which uniquely deter- 
mines the distributlon, we are In fact given the characteristic function In a special 
form. The problem of the generatlon of a random variate with a given charac- 
terlstlc function will be dealt with in section 3. Here we will mainly be concerned 
with the flnlte moment case. Thls 1s by far the most lmportant case in practlce, 
because researchers usually worry about matching the flrst few moments, and 
because the majority of distributions have only a flnlte number of flnlte 
moments. Unfortunately, there are typically an lnflnlte number of dlstrlbutlons 
sharing the same flrst n moments. These include discrete dlstrlbutlons and dis- 
tributions with densities. If some additional constraints are satisfled by the 
moments, I t  may be possible to pick a distribution from relatively small classes of 
dlstrlbutlons. These Include: 
A. 

B. 
C. 
D. 
E. 
F. 

The 

The class of all unimodal densities, 1.e. uniform scale mixtures. 
The class of normal scale mlxtures. 
Pearson’s system of densities. 
Johnson’s system of densities. 
The class of all hlstograms. 
The class of all dlstrlbutions of random variables of the form 
a +bN +cN2+dN3 where N Is normally distributed. 
list is Incomplete, but representative of the attempts made In practlce by 

some statlstlclans. For example, In cases C,D and F, we can match the Arst four 
moments with those of exactly one member In the class except In case F, where 
some combinations of the flrst four moments have no match In the class. The fact 
that a match always occurs In the Pearson system has contributed a lot to the 
early popularity of the system. For a descrlptlon and details of the Pearson sys- 
tem, see exerclse IX.7.4. Johnson’s system (exercise JX.7.12) Is better for quantlle 
matchlng than moment mstchlng. We also refer the reader to the Burr family 
(sectlon IX.7.4) and other famllles given In sectlon IX.7.5. These famllles of dlstrl- 
butlons are usually designed for matching up to four moments. Thls of course 1s 
their main limitation. What Is needed 1s a general algorlthm that can be used for 
arbitrary n >4. In this respect, I t  may flrst be worthwhile to verlfy whether there 
exlsts a uniform or normal scale mixture havlng the given set of moments. If this 
1s the case, then one could proceed with the construction of one such distribution. 
If thls attempt falls, I t  may be necessary to construct a matchlng histogram or 
dlscrete dlstributlon (note that discrete distributions are limits of histograms). 
Good references about the moment problem include Wldder (1941), Shohat and 
Tamarkln (1943), Godwln (1964), von Mlses (1964), Hlll (1969) and Sprlnger 
(1Q79). 
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2.2. Discrete distributions. 
Assume that we want t o  match the flrst 2n-1  moments wlth those of a 

dlscrete dlstrlbutlon havlng n atoms located at xl, . . . , xn , wlth respectlve 
welghts p . . . , pn . We know that we should have 

n 
z p i ( x i ) j  = p j  ( 0 5 j 5 2 n - 1 ) .  

1 =l 

Thls 1s a system of 2 n  equalltles wlth 2 n  unknowns. It has preclsely one solutlon 
If at least one dlstrlbutlon exlsts wlth the glven moments (von Mlses, 1904). In 
partlcular, If the locatlons xi are known, then the p i ' s  can be determlned from 
the flrst n llnear equatlons. The locatlons can flrst be obtalned as the n roots of 
the equation 

x"+Cn-lxn-l+ * * +clx+cO = 0 ,  

where the ci 's are the solutlons of 

To  do thls could take some valuable tlme, but at least we have a mlnlmal solu- 
tlon, In the sense that the dlstrlbutlon 1s as concentrated as posslble In as few 
atoms as posslble. One could argue that this ylelds some savlngs In space, but n 
1s rarely large enough t o  make thls the decldlng factor. On the other hand, I t  1s 
lmposslble to start wlth 2 n  locatlons of atoms and solve the 2 n  equatlons for the 
welghts p i ,  because there 1s no guarantee that all p i  's are nonnegatlve. 

If an  even number of moments 1s glven, say 2 n ,  then we have 2 n  +1 equa- 
tlons. If we conslder n + l  atom locatlons wlth n + l  welghts, then there ls an 
excess of one varlable. We can thus choose one Item, such as the locatlon of one 
atom. Call thls locatlon a .  Shohat and Tamarkln (1943) (see also Royden, 1953) 
have shown that If there exlsts at least one dlstrlbutlon wlth the glven moments, 
then there exlsts at least one dlstrlbutlon wlth at most n +1 atoms, one of them 
located at a ,  sharlng the same moments. The locatlons zo, . . . , xn of the atoms 
are the zeros of 

1 1 Po ' Pn-i 

X U Pi * Pn 

x n + l  a n + l  Pn+1 . I.l2n 

= o .  

The welghts p o , p  , . . , pn are llnear comblnatlons of the moments: 
n 

P i  - - Cj iP j  * 

j =O 
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The coefflclents c j ;  In turn are deflned by the ldentlty 
n x - x j  

j =o j # i X i . - X j  
C j i X j  E J-J- (osi L n )  . 

When the dlstrlbutlon puts all Its mass on the nonnegatlve real Ilne, a sllght 
modlflcatlon is necessary (Royden, 1953). Closely related to discrete dlstrlbutlons 
are the hlstograms: these can be consldered as speclal cases of dlstrlbutlons wlth 
denslt les 

where K 1s a Axed form denslty (such as the unlform [-1,1] denslty In the case of 
a histogram), xi 1s the center of the i - th  component, p i  1s the welght of the i - th  
cbmponent, and hi 1s the ”wldth” of the i - th  component. Densltles of thls form 
are well-known ln the nonparametrlc denslty estlmatlon llterature: they are the 
kernel estlmates. Archer (1980) proposes to  solve the moment equatlons numerl- 
cally for the unknown parameters In the hlstogram. We should polnt out that the 
denslty f shown above Is the denslty of x z + h z  Y where Y has denslty K ,  and 
Z has probablllty vector p . . . , pn on (1, . . . , n }. This greatly facllltates the 
cornputatlons and the vlsuallzatlon process. 

2.3. Unimodal densities and scale mixtures. 
A random varlable X has a unlmodal dlstrlbutlon If and only If there exlsts 

a random varlable Y such that X 1s dlstrlbuted as YU where U 1s a unlform 
[0,1] random varlable independent of Y(Khlnch1ne’s theorem). If U 1s not unl- 
form and Y 1s arbitrary then the dlstrlbutlon of x 1s called a scale mlxture for 
u .  O f  partlcular lmportance are the normal scale mlxtures, whlch correspond to 
the case when U 1s normally dlstrlbuted. For us I t  helps to  be able to verlfy 
whether for a glven collectlon of n moments, there exlsts a unlmodal dlstrlbutlon 
or a scale mlxture whlch matches these moments. Usually, we have a partlcular 
scale mlxture In mlnd. Assume for example that U has moments v1,v2, .... Then, 
because E ( X i  )=E (Yi)E (U’ ), we see that Y has i - th  moment p i  /vi. Thus, 
the exlstence problem Is solved If we can And at least one dlstrlbutlon havlng 
moments pi /vi. 

Applylng Theorem 2.1, then we observe that a sumclent condltlon for the 
moment sequence p i  t o  correspond to  a U scale mlxture 1s that the determlnants 
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1 0  1 

0 1 pa 

1 Pa P4 

are all posltlve for 2s < n  , n odd. Thls was flrst observed by Johnson and Rogers 
(1951). For unlform mlxtures, 1.e. unlmodal dlstrlbutlons, we should replace v i  by 
i / ( i  +I) In the determlnants. Havlng established the exlstence of a scale mixture 
wlth the glven moments, I t  1s then up to  us to  determlne at least one Y with 
moment sequence p ; / u i .  Thls can be done by the methods of the prevlous see- 
tlon. 

By lnslstlng that a partlcular scale mlxture be matched, we are narrowlng 
down the posslbllltles. By thls 1s meant that fewer moment sequences lead to 
solutlons. The advantage 1s that If a solutlon exlsts, i t  1s typlcally "nlcer" than In 
the dlscrete case. For example, If Y 1s dlscrete wlth no atom at 0, and U 1s unl- 
form, then X has a unlmodal stalrcase-shaped denslty with mode at the orlgln 
and breakpolnts at the atoms of Y. If U 1s normal, then x 1s a superposltlon of 
a few normal densltles centered at 0 wlth dlfferent varlances. Let us lllustrate 
brlefly how restrlctlve some scale mlxtures are. We wlll take as example the case 
of four moments, wlth normallzed mean and varlance, p1=Q,p2=1. Then, the 
condltlons of Theorem 2,.1 lmply that we must always have 

L o .  

Thus, p4z(p3)2+l. It turns out that for all p3,pq satlsfylng the lnequallty, we can 
And at least one dlstrlbutlon wlth these moments. Incldentally, equallty occurs 
for the Bernoulll dlstrlbutlon. When the lnequallty 1s strlct, a denslty exlsts. Con- 
slder next the case of a unlmodal dlstrlbutlon wlth zero mean and unlt varlance. 

' The exlstence of at least one dlstrlbutlon wlth the glven moments 1s guaranteed If 

9 16 
5 15 

In other words, ~ ~ > - + - ( p ~ ) ~ .  It 1s easy t o  check that In the (p3,p4) plane, a 

smaller area gets selected by thls condltlon. It 1s preclsely the (p3,p4) plane whlch 
can help us In the fast  constructlon of moment rnatchlng dlstrlbutlons. Thls 1s 
done In the next sectlon. 
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2.4. Convex combinations. 
are random varlables wlth moment sequences pi and vi respec- 

tlvely, then the random varlable X whlch equals Y wlth probablllty p and 2 
wlth probablllty 1-p has moment sequence p pi +(1-p )vi, ln other words, i t  1s 
the convex comblnatlon of the orlglnal moment sequences. Assume that we want 
to match four normallzed moments. Recall that  the allowable area In the (p3,p4) 
plane 1s the area above the parabola , ~ ~ L ( p ~ ) ~ + 1 .  Every polnt (p3,p4) In thls area 
lles on a horlzontal line at helght g4 whlch lntersects the parabola at the polnts 
( - a , p 4 ) ,  ( a , p 4 ) .  In other words, we can match the moments by a slmple 
convex comblnatlon of two dlstrlbutlons wlth thlrd and fourth moments (-43,~~) and ( m , p 4 )  respectively. 

The welght In the convex comblnatlon 1s determlned qulte easlly slnce we 
must have, attachlng welght p t o  the dlstrlbution wlth posltlve thlrd moment, 

If Y and 

Thus, I t  sufflces to take 

It 1s also easy to verlfy that for a Bernoulll ( q  ) random varlable, we have normal- 
lzed fourth moment 

3q 2-3q +1 

9 (1-q 1 
and normallzed thlrd moment 

1-2 q 

&-Fa* 
Notlce that thls dlstrlbutlon always falls on the llmltlng parabola. Furthermore, 
by lettlng q vary from 0 to 1, all polnts on the parabola are obtalned. Glven the 
fourth moment p4, we can determlne q vla the equatlon 

where the plus slgn 1s chosen If p3>0, and the mlnus slgn 1s chosen otherwlse. 
Let us call the solutlon wlth the plus slgn q . The mlnus slgn solutlon 1s 1-q .  If 
B 1s a Bernoulll ( q )  random varlable, then ( B - q ) / m  and 
- ( B - q ) / d m  are the two random varlables correspondlng to the two lnter- 
sectlon polnts on the parabola. Thus, the followlng algorlthm can be used to gen- 
erate a general random varlate wlth four moments p l ,  . . . , p4: 
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Generator matching first four moments 

Normalize the moments: u t d a ,  

q - -(l+ 2 &l 

P3 
1+ - 

2 
m 

P' 
Generate a uniform [0,1] random variate u 

The algorlthm shown above can be shortened by a varlety of trlcks. As I t  stands, 
one unlform random varlate 1s needed per returned random varlate. The polnt of 
thls example 1s that I t  1s very slmple to  generate random varlates that match four 
moments If one 1s not plcky. Indeed, few users wlll be pleased wlth the convex 
comblnatlon of two Bernoulll dlstrlbutlons used In the example. But lnterestlngly, 
the example can also be used In the constructlon of the dlstrlbutlon of Y ln scale 
mlxtures of the form YU dlscussed In the prevlous sectlon. In that respect, the 
algorlthm becomes more useful, because the returned dlstrlbutlons are " nlcer". 
The algorlthm for unlmodal dlstrlbutlons wlth mode at 0 1s glven below. 
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Simple unimodal distribution generator matching four momenta 

Readjustment of moments: p1c2pl ,  p2-3jJ2, p3+4p3, pr4-5pU6. 
Generate a random variate Y having the readjusted moments (e.g. by the algorithm given 
above). 
Generate a uniform [OJ] random variate U . 
RETURN x +- Yu . 

The algorlthms for other scale mlxtures are slmllar. 
One Anal remark about moment matchlng 1s In order here. Even wlth a unl- 

modality constralnt, there are many dlstrlbutlons wlth wldely varylng densltles 
but ldentlcal moments up to the n - th  moment. One should therefore always ask 
the questlon whether I t  1s a good thlng at all to bllndly go ahead and generate 
random varlates wlth a certaln collection of moments. Let us make thls polnt 
wlth two examples. 

Example fL.l.(Godwin, 1964) 
The followlng two densltles have ldentlcal lnflnlte moment sequences: 

(Kendall and Stuart (1977), see exerclse 2.3). Thus, notlng that 

sf = 0.4658.. . ; s g  = 0.7328 ... , 
A A 

where A =[-7r22/4,7r2/4], we observe that 

I I f -9 1 2 0.5344... . 
Conslderlng that the L ,  dlstance between two densltles 1s at most 2, the dlstance 
0.5344... 1s phenomenally large. 
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Example 2.2. 
The prevlous example lnvolves a unlmodal and an osclllatlng denslty. But 

even If we enforce unlmodallty on our counterexamples, not much changes. See 
for example Lelpnlk’s example descrlbed In exerclse 2.2. Another way of lllustrat- 
lng thls Is as follows: for any symrnetrlc unlmodal denslty f wlth moments p2,  
p4, I t  Is true that 

where the supremum Is taken over all symrnetrlc unlmodal g wlth the same 
second and fourth moments, and w = d m .  It should be noted that 
05~51 In all cases (thls follows from the nonnegatlvlty of the Hankel deter- 
mlnants applled to unlmodal dlstrlbutlons). When f Is normal, w = m  and the 

lower bound is -(1- &), whlch 1s stlll quite large. For some comblnatlons of 

moments, the lower bound can be as large as -. There are two dlfferences wlth 
Example 2.1: we are only matchlng the flrst four moments, not all moments, and 
the counterexample applies to any symrnetrlc unlmodal f , not Just one denslty 
plcked beforehand for convenience. Example 2.2 thus relnforces the bellef that 
the moments contaln surprlslngly llttle lnformatlon about the dlstrlbutlon. To 
prove the lnequallty of thls example, we wlll argue as follows: let f ,g ,h be three 
densltles In the glven class of densltles. Clearly, 

5 
4 

27 

Thus I t  sumces to prove twlce the lower bound for J I h-g I for two partlcular 
densltles h ,g . Conslder densltles of random varlables Yu where U Is unlformly 
dlstrlbuted on [O,l] and Y is lndependent of u and has a symrnetrlc discrete dls- 
trlbutlon wlth atoms at f b  , f c  , where O < b  < c  <w. The atom at c has welght 
p /2, and the atom at b has welght ( l -p ) /2 .  For h and g we will conslder 
dlfferent chokes of b ,c , p  . Flrst, any cholce must be conslstent wlth the moment 
restrlctlons: 

( 1 - p ) b 2 + p c 2  = ~ P u ,  , 
(I-p ) b  4 + p ~  5p4 . 

Solvlng for p glves 

5P4-3p2c 
1-p = 

6 4-b 2c  

Forclng p E[O,l] glves us the constralnts O<3p2c 2-5p45 b 2 ( c  2-b 2) .  It 1s to our 
advantage to take the extreme values for c .  In partlcular, for g we wlll take 
c =d-, b =0, p =w2. It should be noted that thls not yield a densltY 
g slnce there wlll be an atom at the orlgln. Thus, we use an approxlmatlng 
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argument wlth a sequence g, approachlng g In the sense that the atom at 0 Is 
approached by an atom at E ,  +O. Next, for h , we take the llmlt of the sequence 
h, where as n 400,  b 46, p +O, and c --too. Thls 1s the case In whlch the 
rlghtmost atom escapes to lnflnlty but has lncreaslngly negllglble welght p . Slnce 
p 4 0 ,  the contrlbutlon of the rlghtmost atom to the L dlstance Is also o (1). 
Thus, h can be consldered as havlng one atom at &of welght 1/2. We obtaln 
by slmple geometrlcal conslderatlons, 

= 2u2(1-w) . 

Slnce the sequences h, ,gn are entlrely In our class, we see that the lower bound 
for sup J I f -9 1 IS at least ~ ~ ( 1 - w ) .  

9 

2.5. Exercises. 
1. Show that for the normal denslty, the 2i-th moment Is 

/J,; = (2i-1)(2i-3) * * * (3)(1) (i 2 2 )  . 
Show furthermore that Carleman’s condltlon holds. 
The lognormal density. In thls exerclse, we conslder the lognormal den- 
slty 

2 .  

(log(z )I2 -- 
(x >o) . 1 e 202  

&OX 
f ( a : ) =  

Show flrst that thls denslty falls both Carleman’s condltlon and Kreln’s con- 
dltlon. Hlnt: show flrst that  the r - t h  moment 1s pT = Thus, there 
exlst other dlstrlbutlons wlth the same moments. We wlll construct a famlly 
of such dlstrlbutlons, referred to hereafter as Heyde’s famlly (Heyde (1g63), 
Feller (1971, p. 227)): let -1 5 a 5 1 be a parameter, and deflne the denslty 

f a  ( a : )  = f (x)( i+a sfn(2~log(x 1)) (x >o) . 

To show that f a  Is a denslty, and that all the moments are equal to  the 
moments of f o=f , I t  sufflces to show that 

J x  / (a: )sln(2n1og(x >> dx = o 
00 

0 
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3. 

4. 

5. 

6. 

for all lnteger k 20. Show thls. Show also the followlng result due to Lelpnlk 
(1981): there exlsts a famlly of dlscrete unlmodal random varlables X havlng 
the same moments as a lognormal randop2varlable. It sufflces to let X take 
the value aeai wlth probablllty C U - ~  e 4  ’ I2 for i =O,fl,f2,. .., where a > O  
Is a parameter, and c 1s a normallzatlon constant. 
The Kendall-Stuart density. Kendall and Stuart (1977) lntroduced the 
denslty 

Followlng Kendall and Stuart, show that for all real a wlth I a I < I ,  

are densltles wlth moments equal to  those of f . 
Yet another famlly of densltles sharlng the same moment sequence Is glven 
by 

1 - 

where a E(0, l )  1s a parameter. Show that f vlolates Kreln’s condltlon and 
that all moments are equal to  those of f o. Thls example 1s due to StleltJes 
(see e.g. Wldder (1941, pp. 125-126)). 

Let p E(0,-) be a parameter, and let c = ( p  cos(p T ) ) ’ / ~  / r ( l / p  ) be a con- 

stant. Show that the followlng two densltles on ( 0 , ~ )  have the same 
moments: 

1 
2 

f (z)  = c e - z P c o S ( p ~ l  

g (z ) = I (z ) (l+sln(z sln(p n))) 

(Lukacs (1970, p. 20)). 

Fleishman’s family of distributions. Conslder all random varlables of 
the form a+bN+cN2+dN3 where N 1s a normal random varlable, and 
a , b  ,c ,d are constants. Many dlstrlbutlons are known to be approxlmately 
normal, and can probably be modeled by dlstrlbutlons of random varlables 
of the form glven above. Thls famlly of dlstrlbutlons, studied by Flelshman 
(1978), has the advantage that random varlate generatlon Is easy once the 
constants are determlned. To compute the constants, the flrst four moments 
can be matched wlth Axed values /~1,/~2,/~3,pUq. For the sake of slmpllclty, let 
us normallze as follows: p,=0,p2=l. Show that b ,d can be found by solv- 
1ng 

1 = b2+6bd +i5d2+2c2 , 
P4-3 = 24(bd + C  2 ( l + b  2+28bd)+d2(12+48bd +141C 2+255d2)) , 
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7. 

8. 

3. 

where 

l-43 c =  
2(b2+24bd +iosd2+2) ' 

Furthermore, a =-c . Show that not all comblnatlons of normallzed 
moments of dlstrlbutlons (1.e. all palrs (p3,p4) wlth ,uu,2(p3)2+1 ) lead to a 
solutlon. Determlne the reglon In the (pa,p4) plane of allowable palrs. 
Flnally, prove that there exlst comblnatlons of constants for whlch the den- 
slty 1s not unlmodal, and determine the form of the dlstrlbutlon In these 
cases. 
Assume that we wlsh to match the flrst slx moments of a symmetrlc dlstrl- 
butlon (all odd moments are zero). We normallze by forclng p2 to be 1. Show 
flrst that  the allowable reglon In the (p4,pus) plane 1s deflned by the lnequall- 
tles p4>1, psL(p4>2. Flnd slmple famllles of dlstrlbutlons whlch cover the 
borders of thls reglon. Rewrlte each polnt ln the plane as the convex combl- 
natlon of two of these slmple dlstrlbutlons, and glve the correspondlng gen- 
erator, Le. the generator for the dlstrlbutlon that corresponds to thls polnt. 
Let the a -th and b -th absolute moments of a unlmodal symrnetrlc dlstrlbu- 
tlon wlth a denslty be glven. Flnd a useful lower bound for 

where the lnflmum and supremum 1s over all symrnetrlc unlmodal densltles 
havlng the glven absolute moments. The lower bound should colnclde wlth 
that of Example 2.2 In the case a =2,b =4. 

CHARACTERISTIC FUNCTIONS. 

3.1. Problem statement.' 
In many appllcatlons, a dlstrlbutlon 1s best descrlbed by Its characterlstlc 

functlon 4. Sometimes, I t  1s outrlght dlfflcult to invert the characterlstlc functlon 
to obtaln a value for the denslty or dlstrlbutlon functlon. One mlght ask whether 
In those cases, I t  1s stlll posslble to generate a random varlate X wlth the glven 
dlstrlbutlon. An example of such a dlstrlbutlon 1s the stable dlstrlbutlon. In par- 
tlcular, the symmetrlc stable dlstrlbutlon wlth parameter af(0,2] has the slmple 
characterlstlc functlon e - 1  I O. Yet, except for a€{-,1,2}, no convenlent analytlc 

expresslon 1s known for the correspondlng denslty f ; the denslty 1s best com- 
puted wlth the help of a convergent serles or a dlvergent asyrnptotlc expanslon 
(sectlon M.6.3). For random varlate generation In thls slmple case, we refer to 
sectlon M.6. For a130,l] the characterlstlc functlon can be wrltten as a mlxture 
Of trlangular characterlstlc functions. Thls property 1s shared by all real (thus, 
symrnetrlc) convex characterlstlc functlons, also called Polya characterlstlc 

1 
2 

' I  
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functlons. The mlxture property can be used to  obtaln generators (Devroye, 
1984; see also sectlon W.6.7) .  In a black box method one only assumes that 4 
belongs to  a certaln class of characterlstlc functlons, and that 4 ( t )  can be corn- 
puted ln flnlte tlme for every t .  Thus, maklng use of the mlxture property of 
Polya characterlstlc functlons cannot lead to a black box method because 4 h a  
t o  be glven expllcltly In analytlc form. 

Under certaln regularlty condltlons, upper bounds for the denslty can be 
obtalned ln terms of quantltles (functlonals, suprema, and so forth) deflned In 
terms of the characterlstlc functlon (Devroye, 1981). These upper bounds can In 
turn be used in a reJectlon algorlthm. Thls slmple approach 1s developed In sec- 
tlon 3.2. Unfortunately, one now needs to compute f In every lteratlon of the 
reJectlon algorlthm. Thls requlres once agaln an lnverslon of 4, and may not be 
feaslble. One should note however that thls can be avoided If we are able t o  use 
the serles method based upon a convergent serles for f . Thls serles could be 
based upon the lnverslon formula. 

A genuine black box method for a large subclass of Polya characterlstlc func- 
tlons was developed In Devroye (1985). Another black box method based upon 
the sertes method wlll be studled In sectlon 3.3. 

3.2. The rejection method for characteristic functions. 
General reJectlon algorlthms can be based upon the following lnequallty: 

Theorem 3.1. 

characterlstlc functlon 
a denslty f bounded as follows: 

Assume that a glven dlstrlbutlon has two Anlte moments, and that the 
has two absolutely Integrable. Then the dlstrlbutlon has 

The 

I 

’SI4 27r 

1 1  -s Id” I 2nx * 

area under the mlnlmum of the two boundlng curves 2 1s - 
7r m. 
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Proof of Theorem 3.1. 
Slnce 4 1s absolutely lntegrable, f can be computed as follows from 4: 

f 1x1 = -J$(t  1 )e- i tz d t  . 
27r 

Furthermore, because the flrst absolute moment 1s flnlte, 4’ exlsts and 

Because the second moment 1s flnlte, 4’’ exlsts and 

(Loeve, 1963, p. 199). From thls, all the lnequalltles follow trlvlally. 

The lntegrablllty condltlon on 4 lmplles that f 1s bounded and contlnuous. 
The lntegrablllty condltlon on 4‘’ translates lnto a strong tall condltlon: the tall 
of f can be tucked under a qulckly decreaslng curve. Thls explalns why f can 
globally be tucked under a bounded lntegrable curve. Based upon Theorem 3.1, 
we can now formulate a flrst general rejectlon algorlthm for characterlstlc func- 
tlons satlsf’ylng the condltlons of the Theorem. 

General rejection algorithm for characteristic functions 

[SET-UP] 

[GENERATOR] 
REPEAT 

Generate two iid uniform [-1,1] random variates U.V. 
IF U C O  

(Note that this is I u I av’.) 
UNTIL 2’ < f  (x) 
RETURN x 
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Various slmpllficatlons are possible In this rudimentary algorithm. What matters 
1s that f is still required in the acceptance step. 

Remark 3.1. 

The expected number of lteratlons is ”dJ-. This 1s a scale 

lnvariant quantity: Indeed, let X have characteristic functlon $. Then, under the 
condltlons of Theorem 3.1, $(t  )=E (e i tx ) ,  $”(t )=E (-X2e i tx) .  For the scaled 
random varlable ax, we obtain respectively $ ( a t )  and a2$” (u t ) .  The product of 
the lntegrals of the last two functions does not depend upon a .  Unfortunately, 
the product 1s not translation lnvariant. Noting that X +c has characterlstlc 
functlon $( t  ) e  

7r 

, we see that J I $ I 1s translatlon lnvarlant. However, 

1s not. From the quadratic form of the Integrand, one deduces quickly that the 
lntegral is approxlmately mlnlmal when c =E ( X ) ,  1.e. when the dlstributlon 1s 
centered at the mean. Thls 1s a common sense observatlon, relnforced by the 
symmetrlc form of the domlnatlng curve. Let us Anally note that in Theorem 3.1 
we have implicitly proved the lnequallty 

which is of Independent interest In mathematical statlstlcs. 

If the evaluation of f 1s to  be avolded, then we must And at the very least a 
converglng serles for f . Assume Arst that $ is absolutely Integrable, symmetrlc 
and nonnegatlve. Then ( x )  is sandwlched between consecutlve partial sums in 
the series 

X 2  
1 0  +-f x 4  f ( 0 ) - 2 ! 1  ( 1 4! 

”(0)- * . * , 

Thls can be seen as follows: slnce cos(ts ) Is sandwlched between consecutlve par- 
tlal sums In Its Taylor series expanslon, and since 

f (5)  = -J$(t)cos(tx) 1 dt  , 
27r 

we see that by our assumptlons on $, f ( x )  Is sandwlched between consecutlve 
partlal sums in 

x 2  x 4  vo--v2+-v4- . . * , 
2! 4! 
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where 

V2n =--Jt2n 1 4 ( t )  dt . ’ 
2T 

If J t 2 ”  $ ( t )  dt Is flnlte, then f ( 2 n )  exlsts, and Its value at 0 1s equal to  I t .  Thls 
glves the desired collectlon of lnequalltles. Note thus that for an inequality 
lnvolvlng f ( 2 n  t o  be valld, we need to  ask that 

J t 2 ” 4 ( t )  dt  < 00 . 

Thls moment condltlon on 4 Is a smoothness condition on f . F o r  extremely 
smooth f , all moments can be flnlte. Examples lnclude the normal density, the 
Cauchy denslty and all symmetric stable densltles with parameter at least equal 
to one. Also, all characterlstlc functlons wlth compact support are Included, such 
as the trlangular characterlstlc functlon. If furthermore the serles x 2n u2,, /(2n )! 
1s summable for all x >0, we see that f Is determlned by all Its derivatives at 0. 
A sufflclent condltlon 1s 

1 

Thls class of densltles 1s enormously smooth. In addltlon, these densltles are unl- 
modal wlth a unlque mode at 0 (see exerclses). Random varlate generatlon can 
thus be based upon the alternatlng series method. As domlnatlng curve, we can 
use any curve available to us. If Theorem 3.1 Is used, note that 
J 14 I =J4=f (0). 
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Series method for very smooth densities 

[NOTE: This algorithm is valid for densities with a symmetric real nonnegative characteris- 
tic function for which the value of f is uniquely determined by the Taylor series expansion 
of f about 0.1 
[SET-UP] 

[GENERATOR] 
REPEAT 

Generate a uniform [0,1] random variate u ,  and a random variate x with density 
proportional to  g (z )=min( a , b /z 2). 

S+f (0) , n +-0 , Q 
WHILE T < S  DO 

T+-Ug (X) 
(prepare for series method) 

n +n +I , Q 4--QX2/(2n ( 2 n  -1)) 
S +-S +Qf  (")(o) 
IF T <s THEN RETURN x 
n t n  +I , Q +-QX2/(2n ( 2 %  -1)) , S +S + Q f  (*)(0) 

UNTIL False 

Thls algorithm could have been presented in the sectlon on the series method, or 
in the sectlon on unlversal algorithms. I t  has a place in thls section because i t  
shows how one can avold inverting the characterlstlc functlon In a genera1 rejec- 
tion method for characteristic functions. 

3.3. A black box method. 

puted by the lnverslon formula 
When 4 1s absolutely Integrable, the value of the denslty f can be com- 

Thls integral can be approximated in a number of ways, by using well-known 
technlques from numerlcal integratlon. If such approximatlons are to be useful, I t  
is essential that we have good explicit estimates of the error. The approxlmatlons 
include the rectangular rule 
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where [ a  ,b ] Is a flnlte Interval. Other popular rules are the trapezoidal rule 

and Simpson’.s rule 

These are the flrst few rules in an lnAnlte sequence of rules called the Newton- 
Cotes integration formulas. The simple trapezoldal rule lntegrates linear func- 
tions on [ a  ,b ] exactly, and Slmpson’s rule lntegrates cubics exactly. The next few 
rules, llsted for example In Davls and Rablnowltz (1975, p. 83-84), lntegrate 
higher degree polynomials exactly. For example, Boole’s rule 1s 

The error committed by these rules 1s very important to us. In general $ Is a 
complex-valued function; and so are the estimates r ,  , t, , etcetera. A llttle care 
should be taken when we use only the real parts of these estimates. The main 
tools are collected In Theorem 3.2: 



Theorem 3.2. 

and 
E,, = 

Then: 

Let [-a ,a ] be a flnlte lnterval on the real Ilne, let n be an arbltrary Integer, 
and let the denslty f ( z )  be approximated by f ,, (a:) where f , (a:) 1s Re(r, (z)), 
Re(t, (5 )), Re(s, (z )), or Re( b, (a: )). Let X be a random varlable wlth denslty f 

j -th absolute moment p ;. Deflne the absolute dlfference 
f (z )- f , (z ) I , and the tall Integral 

-a 00 

A. If t, 1s used and pl<oo, then 

B. If t, 1s used and ,u2<00, then 

C. If s, 1s used and p4<oo, then 
4 

3. If b ,  IS used and &<00, then 
6 

Before provlng Theorem 3.2, i t  1s helpful to polnt out the followlng lnequalf- 
tles: 
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Lemma 3.1. 
Let q5 be a characterlstlc functlon, and let ?+b be deflned by 

q( t )  = b(t )e- i tz . 
Assume that the absolute moments for the dlstrlbutlon correspondlng to 4 are 
denoted by p j .  Then, If the j - t h  absolute moment 1s flnlte, 

where j=O,1,2 ,... . 

Proof of Lemma 3.1. 

tlon that 
Note that $ j ) = g j  e-itz for some functlon g j  . It can be verlfled by lnduc- 

When p j  <oo, b ( j )  1s a bounded contlnuous functlon glven by 

s ( i z ) j  e f (x) dx. In partlcular, I I L p j .  If we also use the lnequalltles 
k - 

hk 5 h j  j ( k S . i ) ,  
then we obtaln 

Proof of Theorem 3.2. 
1 

2n 
Let us deflne ?+b(t)=-4(t)e-it‘. Then by Lemma 3.1, 
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where p j  1s the flnlte j - t h  absolute moment of the dlstrlbutlon. Next, we need 
some estlmates from numerlcal analysis. In partlcular, 

-a  

To the last term, whlch 1s an error term in the estlmatlon of the lntegral of Re(+) 
over a flnlte lnterval, we can apply estlmates such as those glven In Davls and 
Rablnowltz (1975, pp. 40-64). To apply these estlmates, we recall that, when 
p j  <00, $ 1s a bounded contlnuous functlon on the real line. If r ,  1s used and 
p1 < 00, then the last term does not exceed 

If t, 1s used and p2<00, then the last term does not exceed 

If s, 1s used and p4<00, then the last term does not exceed 

If 6,  1s used and &<O0, then the last term does not exceed 

The bounds of Theorem 3.2 allow us to apply the serles method. There are 

The cholce of a as a functlon of n . 
The selectlon of a domlnatlng curve g for rejection. 

two key problems left t o  solve: 
A. 

B. 
It 1s wasteful t o  compute t, , t ,+1 , tn+2, . . .  when trylng to  make an acceptance or 
reJectlon declslon. Because the error decreases at a polynomlal rate wlth n ,  I t  
seems better t o  evaluate t , t  for some c > 1  and k=1,2, ... . Addltlonally, I t  1s 
advantageous to  use the standard dyadlc ”trlck” of computlng only t,, t,, t,, 
etcetera. When computlng t,, , the computatlons made for t, can be reused pro- 
vlded that we allgn the cutpolnts. In other words, If a, 1s the constant a wlth 
the dependence upon n made expllclt, I t  1s necessary to  demand that 

a2‘ 

2k 
- 

, 
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be equal to  

or to  

Thus, a,k+l 1s equal to a,t or to  twlce that value. Note that for the estimates f ,  
In Theorem 3.2 to tend to f (a:), I t  1s necessary that a, +co (unless the charac- 

terlstlc functlon has compact support), and that a, = o  (n j + ' )  where j is 1,2,4 
or 6 depending upon the estimator used. Thus, i t  does not hurt to choose a, 
monotone and of the form 

i - 

where C k  IS a posltlve Integer sequence satisfylng ck +1-ck  E{o,I}, and a IS a con- 
stant. 

The problem of the selectlon of a domlnatlng curve has a slmple solutlon In 
many cases. To be able to  use Theorem 3.2, we need upper bounds for p j  and 

s I d I . Lucklly, thls 1s also sufflclent for the deslgn of good upper bounds. TQ 

make thls polnt, we conslder several examples, after an auxiliary lemma. 

00 

a 

Lemma 3.2. 

derlvatlve $(, where n 1s a nonnegatlve Integer. Then 4 has a denslty f where 
Let 4 be a characterlstlc functlon wlth continuous absolutely lntegrable n -th 

If s I t I I 4 ( t )  I dt  <m, then d has a Llpschltz denslty f wlth Llpschltz con- 
stant not exceedlng 

2 n  



706 XrV.3.CHARACTERISTIC FUNCTIONS 

Proof of Lemma 3.2. 

denslty f exlsts, and the followlng lnverslon formula 1s valld: 
When 6 has a contlnuous absolutely lntegrable n -th derlvatlve 6(fl ), then a 

The flrst lnequallty follows dlrectly from thls. Next, assume that 
J I t 1 I ( f ( t )  I dt (00 .  Once agaln, a denslty exlsts, and because f can be 
computed by the standard lnverslon formula, we have 

1 d ( t )  d t  I ( x 1 - j  ( y )  I = - I J(e- i tz-e- i ty  
1 

2n I 

Example 3.1. Characteristic functions with compact support. 
Assume that 4 1s known to vanlsh outslde [-A ,A ] for some flnlte value A . 

It should be stressed that thls 1s a very strong condltlon of smoothness for the 
denslty f of thls dlstrlbutlon. From Lemma 3.2, we know that f 1s a bounded 
dens1 ty: 

Furthermore, f 1s Llpschltz wlth Llpschltz constant C not exceedlng A 2 / ( 2 ~ ) .  
The densltles In thls class can have arbltrarlly large talls, and can not be unl- 
formly bounded wlthout lmposlng some sort of tall condltlon. For a detailed dls- 
cusslon of thls, we refer to sectlon VII.3.3, and In partlcular t o  Example VII.3.4, 
where a domlnatlng curve for a Llpschltz ( c )  denslty on the posltlve real llne 
wlth absolute moment p ,  ( j  >2) 1s glven. The area under that domlnatlng 
curve 1s 

Here the factor 2 allows for the extenslon of the bound to  the entlre real llne. 
Note tha t  wlth C =A 2 / (2n) ,  the rejectlon constant becomes 
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whlch 1s scale lnvarlant. 
We suggest that a be plcked constant and equal to A ,  slnce T, -0 - In 

Theorem 3.2 when a > A .  1 

Example 3.2. Unimodal densities. 
For unlmodal densltles wlth mode at 0, a varlety of good domlnatlng curves 

were glven In sectlon VII.3.2. These requlred a bound on the value of f (0) and 
one addltlonal plece of lnformatlon, such as an upper bound for p j .  For the 
bound at the mode, we can use 

It 1s dlfflcult to verlfy the unlmodallty of a denslty from a characterlstlc functlon, 
so thls example 1s not as strong as Example 3.1. Also, the cholce of a causes a 
few extra problems. See Example 3.3 below. 

Example 3.3. Optimization of parameter a. 
Uslng a Chebyshev type lnequallty applled to characterlstlc functlons, 

co 
0 

a' 
SI41 L 9 

a 

we can obtaln upper bounds of the form ca +da-' for the error E,, In Theorem 
3.2, where c ,d ,k ,r are posltlve constants, and c depends upon n . Consldered as 
a functlon of a ,  thls has one mlnlmum at 

1 

The mlnlmal value 1s 
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What matters here 1s that the only factor depending upon n 1s the flrst one, and 
that  i t  tends to 0 at the rate c r / ( k + r ) .  Slnce c varies typically as n - ( k - l )  for the 
estlmators given In Theorem 3.2, we obtain the rate 

r ( k - I )  
k + r  

-- 

This rate 1s necessarlly subllnear when r=1,  regardless of how large k 1s. Note 
that I t  decreases quickly when r 2 2  for all usual values of k . For example, wlth 
r =2 and Slmpson's rule (k =5), our rate 1s n-8/7.  With r =3 and the trapezoidal 
rule ( k = 3 ) ,  our rate IS n-3/2.  

Example 3.4. Sums of iid uniform random variables. 

The sum of m ild uniform [-ill] random varlables has characteristic functlon 
The unlform denslty on [-1,1] has characteristic function d( t  ) = sln(t ) / t  . 

The corresponding denslty is unimodal, which should be of help in the derlvatlon 
of bounds for the denslty. By taking consecutlve derlvatlves of d m ,  i t  1s easily 
establlshed that the second moment p2 is -, m and that the fourth moment p4 is 

A 3 
m' 2m --- . Furthermore, the mode, which occurs at zero, has value 
3 15 

1 t 2  t 4  < -Jmin((i--+-)m , I t I -m ) dt 
- 2n 6 120 

m t 2  
--t2(1--) 

2o , I t  I - " ) d t  
1 < -Jmln(e - 2n 

where we split the integral over the lntervals [-1,1] and its complement. We now 
refer to Theorem VII.3.2 for symrnetrlc unlmodal densltles bounded by M and 
havlng r - th  absolute moment p r .  Such densltles are bounded by 
mln(M,(r +l)pr / I 5 I r + l ) ,  and the domlnating curve has lntegral 

1 r - -  r+1 
-((T +I)pr ) r + l  M . 

T 
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For example, for T =4, we obtain In our example 
1 4 .  1 2 

5 5 - 6 0 -  
4 3  19 

- -  5 
~ ( 5 ~ 4 )  M - -(-) (-) 

as m - w .  In other words, as m+w,  the rejection constant tends to a Axed 
value. One can verlfy that this same property holds true for all values of T >o. 
This example is continued In Example 3.6. 

This leaves us with the black box algorithm and Its analysis. We assume 
that a dominatlng curve cg  Is known, where g 1s a density, that another func- 
tion h is known havlng the property that 

00 

a 

and that integrals will be evaluated only for the subsequence a,2k ,k L O ,  where 
a ,  Is a given Integer. Let f, denote a numerlcal Integra1,estlmating $J such as 
T ,  , s, , t, or b ,  . This estlmate uses as lnterval of integratlon [-I ( n  ,z ) , l  (n  ,x )] 
for some functlon 2 which normally diverges as n tends to 00. 

Series method based upon numerical integration 

REPEAT 
Generate a random variate X with density g . 
Generate a uniform [0,1] random variate U. 
Compute T t U c g  (X) (recall that  f S c g ) .  
n t u &  ,a t l ( n  ,XI (prepare for integration) 

REPEAT 
W t f ,  (X) (f, is an integral estimate of f =[$ with parameter n on inter- 
val [-a ,a ]: the number of evaluations of q5 required is proportional to n ) 
Compute an upper bound on the error, E. (Use the bounds of Theorem 3.2 

n +2n 

plus h ( a  ).) 

UNTIL IT-WI>E 
UNTIL T < W 
RETURN x 

The flrst lssue Is that of correctness of the algorlthm. Thls bolls down to verlfylng 
Jvhether the algorlthm halts with probablllty one. We have: 

1 

I 
I 
1 

.-- 
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Theorem 3.3. 

wlth probablllty one, when 

llm Z ( n , x )  = oc) 

llm h ( a  ) = 00 

The algorlthm based upon the serles method glven above 1s correct, 1.e. halts 

(all x )  , 
n +03 

a -+oo 

(thls forces 4 to  be absolutely Integrable), and one of the following condltlons 
holds: 
A. 

B. 
C. 
D. 
Here p j  1s the j - t h  absolute moment for f . 

r ,  1s used, pl<0o, and I ( n , x ) = ~ ( n ’ / ~ )  for all x. 
t ,  1s used, p 2 < m ,  and I(n , x ) = o  (7~~’~) for all x. 
s, 1s used, p,<00, and l ( n , x ) = o  (n4/‘) for all x. 
b,  1s used, p6<oo, and 1 (n  ,a:)=o (n6/7) for all x. 

Proof of Theorem 3.3. 
We need only verlfy that the error bound used In the algorlthm tends to 0 as 

n +oo for all x . Theorem 3.3 1s a dlrect corollary of Theorem 3.2. 1 

Theorem 3.3 1s reassurlng. Under very mlld condltlons on the denslty, a 
valld algorlthm indeed exlsts. We have to know ,uj for some j and we need also 
an expllclt expresslon for the tall bound h ( a  ). The theorem Just states that 
glven thls lnformatlon, we can choose a functlon I ( n , x )  and an estlmator f, 
whlch guarantee the valldlty. Unfortunately, there is a snake In the grass. The 
functlon l(n ,s) has a profound lmpact on the tlme before haltlng. In many 
examples, the expected tlme 1s 00. Thus, let us conslder the expected number of 
evaluatlons of $ (or 9) before haltlng. This can’t posslbly be glven wlthout dls- 
cusslng how large h ( . )  Is, and whlch functlon I( . , . )  1s plcked. Perhaps the best 
thlng to  do at thls stage 1s to  offer a helpful lemma, and then to lllustrate I t  on a 
few examples. 

-- I 
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Lemma 3.3. 

tlons h and 2 ,  we have an inequallty of the type 
Conslder the serles method glven above, and assume that for the glven func- 

I f (z)-f , (z)  I 5 C(a:)n-" (n 21 9 all a : )  9 

where C 1s a posltlve function and a>l  1s a constant. If u o = l  and f, requlres 
pn +1 evaluations of $J for some constant P (for t ,  ,P=1, and for s, , p=2), then 
the expected number of evaluatlons of $J before haltlng does not exceed 

where y 1s a number satlsfylng 

ay > 1 9 7  5 1 .  

Proof of Lemma 3.3. 
By Wald's equatlon, our expected number 1s equal to c tlmes the expected 

number of evaluatlons In the flrst lteratlon (regardless of acceptance or reJectlon). 
Let us flrst condltion on X=z wlth denslty g .  For f we use up p+1 evalua- 
tlons In all cases. The probablllty of havlng to  evaluate f does not exceed 
2C(z)l-"/cg (5). Contlnuing In thls fashlon, i t  is easlly seen that the expected 
number of evaluations of $J 1s not greater than 

Taklng expectatlons wlth respect to g (5) dx and multiplylng wlth c glves the 
uncondltlonal upper bound 

c (P+l) + 5 ( (Pzk +'+I.)! mln(2C (z )(zk )-",cg (z )) dz) 

5 c (P+I) + 
- < c (p+i) + J (2c (a: ))7(cg (Z ))'-r da: 

k =o 
03 

( (~2 '+ '+1)J  m l n ( 2 ~ ( z  >(2k )-a,cg (z 1) dz) 
k =O 

00 
2-k 7" (P2k +'+1) 

k =O 

= c (P+1) + 27c1-f CYgl-7 2p + 
1-21-7" 1-27" 

( 
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where 7 1s a number satlsfylng 

C r y > 1 , 7 5 1 .  

By Holder’s lnequallty, the integral In the last expresslon does not exceed 

Lemma 3.3 reveals the extent to whlch the efflclency of the algorlthm 1s 
affected by c ,C (5 ),g (a: ) and p j .  

Example 3.5. Characteristic functions with compact support. 
Assume that the characterlstlc functlon vanlshes outslde [-A ,A 1. If we take 

I (n ,a: )=A , then h EO ln the algorlthm. Note that thls cholce vlolates the con- 
slstency condltlons of Theorem 3.3, but leads nevertheless to  a conslstent pro- 
cedure. Wlth t ,  , we have p=l,cr=2 and an error 

E, 5 C(Z)7P 

where 

Wlth s, , we have p=2, a=4 and 

’Wlth both error bounds, Jc=oo, so we can’t take 7=1 In Lemma 3.3. Also, 
1 2-- Jc  r < m  

1 1 
7 a 

when ->2+-. Thus, for the bound of Lemma 3.3 to  be useful, we need to 

choose 
1 CY 
- < 7 < - .  a 2a+1 

1 2  1 4  
2 5  4 9  

Thls yields the lntervals (-,-) and (-,-) respectlvely. Of course, the former 

lnterval 1s empty. Thls 1s due to the fact that the last lnequallty In Lemma 3.3 
(comblned with Theorem 3.2) never leads to a flnlte upper bound for the tra- 
pezoldal rule. Let us further concentrate therefore on s, . Note that 
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where ,u$ 1s the fourth absolute moment for g . Typlcally, when g 1s close to f , 
the fourth moment 1s close to that of f . We won't proceed here wlth the expll- 
clt computatlon of the full bound of Lemma 3.3. It sufflces to note that the 
bound 1s large when elther A or p4 Is large. In other words, I t  1s large when the 
support of 4 1s large. (the denslty 1s less smooth) and/or the tall of the denslty 1s 
large. Let us conclude thls sectlon by repeatlng the algorithm: 

Series method based upon numerical integration 

[NOTE: The characteristic function 4 vanishes off [-A , A ] ,  and the fourth absolute mo- 
ment does not exceed p,.] 

REPEAT 
Generate a random variate x with density g . 
Generate a uniform [0,1] random variate u.  
Compute T t U c g  (X) (recall that f s c g  ). 
n +a (prepare for integration) 
REPEAT 

w+-Re(s,(X)) ( 8 ,  is Simpson's integral estimate of f =S$J with parameter 
n on interval [-A ,A 1; the number of evaluations of I$ required is 2n +1) 

n t 2 n  
UNTIL I T-W \ > E  

UNTIL T < W 
RETURN x 

For domlnatlng curves cg ,. there are numerous posslbllltles. See for example 
Lemma 3.2. In Example 3.1, a domlnatlng curve based upon an lnequallty for 
Llpschltz densltles (sectlon VII.3.4) was developed. The rejectlon constant c for 
that example 1s 

.-- I 
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Example 3.6. Sums of iid uniform random variables. 
This is a contlnuatlon of Example 3.4, where a good domlnatlng denslty was 

found for use In the reJectlon algorlthm. What 1s left here 1s malnly the choice of 
h and 1 for use In the algorithm. Let us start wlth the declslon to estlmate by 
Simpson's rule s, . Thls 1s based upon a qulck prellmlnary analysls whlch shows 
that the trapezoidal rule for example Just Isn't good enough to  obtaln flnlte 
expected tlme. 

The functlon h (a ) can be chosen as 
1 h ( a ) =  

nu m-l(m -1) 

where m 1s the number of unlform [-1,1] random varlables that are summed. To 
see thls, note that 

Glven X = s  In the algorlthrn, we see that wlth s,, the error E,  Is  not greater 
than 

1/4 4 
(2a IS( I 5  I +P4 1 

E, I h ( 4 +  
360 m4 

7 

where a determlnes the lntegratlon interval (Theorem 3.2). Optlmizatlon of the 
upper bound wlth respect to a 1s slmple and leads t o  the value 

1 

a = [  9 n 4  

4( I 2 I +/-441'4) 

Wlth this value for a (or 1 (n ,x )), we obtaln 

E, _< C(z)n-" 

for a=4(m -l)/(m +4) and 
m -1 

This 1s all the users need to  Implement the algorlthm. We can now apply Lemma 
3.3 t o  obtaln an idea of the expected complexity of the algorithm. We will show 
that the expected tlme 1s better than O(m(5+')/8) for all E > O .  A brlef outllne of 
the proof should sumce at thls polnt. In Lemma 3.3, we need to pick a constant 

7. The condltlons a7> 1 and 
1 2-- c 

cy<-. 

< 00 force us t o  lmpose the condltlons 
4m -4 m +4 

4m -4 9m -4 


