Chapter Fourteen
 PROBABILISTIC SHORTCUTS AND ADDITIONAL TOPICS

A probabillstlc shortcut in random varlate generation is a method for reducing the expected time in a slmulation by recognizing a certain structure in the problem. This princlple can be illustrated in hundreds of ways. Indeed, there is not a single example that could be called "typical". It should be stressed that the efflelency is derived from the problem itself, and is probabllistic in nature. This distingulshes these shortcuts from certaln techniques that are based upon clever data structures or fast algorithms for certaln sub-tasks. We will draw our examples from three sources: the slmulation of maxima and sums of IId random variables, and the simulation of regenerative processes.

Other toples brlefly touched upon include the problem of the generation of random varlates under incomplete information (e.g. one just wants to generate random varlates with a unlmodal density having certaln given moments) and the generation of random varlates when the distribution is indirectly specifled (e.g. the characteristic function is given). Finally, we will briefly deal with the problem of the design of effclent algorithms for large slmulations.

1. THE MAXIMUM OF IID RANDOM VARIABLES.

1.1. Overview of methods.

In this section, we will look at methods for generating $X=\max \left(X_{1}, \ldots, X_{n}\right)$, where the X_{i} 's are IId random varlables with common density f (the corresponding distribution function will be called F). We will malnly be interested in the expected time as a function of n. For example, the naive method takes time proportional to n, and should be avolded whenever possible. Because X has distribution function F^{n}, it is easy to see that the following algorithm is valld:

Inversion method

Generate a uniform $[0,1]$ random variate U. RETURN $X \leftarrow F^{-1}\left(U^{\frac{1}{n}}\right)$.

The problem with this approach is that for large $n, U^{1 / n}$ is close to 1 , so that in regular wordsize arthmetic, there could be an accuracy problem (see e.g. Devroye, 1980). This problem can be allevlated if we use $G=1-F$ Instead of F and proceed as follows:

Inversion method with more accuracy
Generate an exponential random variate E and a gamma (n) random variate G_{n}. RETURN $X \leftarrow G^{-1}\left(\frac{E}{E+G_{n}}\right)$.

Unless the distribution function is explicitly Invertible, both inversion-based algorithms are virtually useless. In the remalning sections, we present two probabillstlc shortcuts, one based upon the quick ellmination principle, and one on the use of records. The expected times of these methods usually increase as $\log (n)$. This is not as good as the constant time inversion method, but a lot better than the nalve method. The advantages over the inversion method are measured in terms of accuracy and flexibility (fewer things are needed in order to be able to apply the shortcuts).

1.2. The quick elimination principle.

In the quick ellmination princlple, we generate the maximum of a sequence of Ind random varlables after having ellminated all but a few of the X_{i} 's without ever generating them. We need a threshold point t and the tall probabillty $p=1-F(t)$. These are picked before application of the algorithm. Typically, p is of the order of $(\log (n)) / n$. The number of X_{i} 's that exceed t is binomial (n, p). Thus, the following algorithm is guaranteed to work:

The quick elimination algorithm (Devrose, 1980)
Generate a binomial (n, p) random variaie Z.
IF $Z=0$
THEN
RETURN $X \leftarrow \max \left(X_{1}, \ldots,-\mathcal{F}_{2}\right.$ where the X_{i} 's are iid random variates with density $f /(1-p)$ on $(-\infty, t]$.
ELSE
RETURN $X \leftarrow \max \left(X_{1}, \ldots, X_{z}\right.$ where the X_{i} 's are iid random variates with density f / p on $[t, \infty)$.

To analyze the expected time complexity, observe that the binomial (n, p) random varlate can be generated in expectec $\because:$ me proportional to $n p$ as $n p \rightarrow \infty$ by the walting tlme method. Obvlously, we cc:ad use O (1) expected time algorlthms too, but there is no need for thls here. Ass:me furthermore that every X_{i} in the algorlthm is generated in one unlt of expez:ed time, unlformly over all values of p. It is easy to see that the expected time of the algorithm is $T+o(n p)$ where we deflne $T=a P(Z=0) n+b(1-P(Z=0)) n p+c n p$ for some constants $a, b, c>0$.

Lemma 1.1.

$$
\operatorname{lnf}_{0<p<1} T \sim(b+c) \log (n) \quad(n-\infty)
$$

If we set

$$
p=\frac{\log (n)+\delta_{n}}{n}
$$

then $T \sim(b+c) \log (n)$ provided that the sequence of real numbers δ_{n} is chosen so that

$$
\lim _{n \rightarrow \infty} \delta_{n}+\log (\log (n))=\infty, \delta_{n}=o(\log (n))
$$

Proof of Lemma 1.1.

Note that

$$
\begin{aligned}
& T=n a(1-p)^{n}+b n p\left(1-(1-p)^{n}\right)+c n p \\
& \leq(b+c) n p+a n e^{-n p}
\end{aligned}
$$

The upper bound is convex in p with one minimum. Setting the derivative with respect to p equal to zero and solving for p gives the solution

$$
p=\frac{1}{n} \log \left(\frac{a n}{b+c}\right) .
$$

Resubstitution in the upper bound for T shows that

$$
T \leq(b+c) \log \left(\frac{a n e}{b+c}\right)
$$

When $p=\left(\log (n)+\delta_{n}\right) / n$, then the upper bound for T is

$$
a e^{-\delta_{n}}+(b+c)\left(\log (n)+\delta_{n}\right) .
$$

This $\sim(b+c) \log (n)$ if $\delta_{n}=o(\log (n))$ and $e^{-\delta_{n}}=o(\log (n))$. The latter condition is satisfled when $\delta_{n}+\log (\log (n)) \rightarrow \infty$.

Finally, it suffices to work on a lower bound for T. We have for every $\epsilon>0$ and all n large enough, since the optlmal p tends to zero:

$$
\begin{aligned}
& T \geq(n a-b n p) e^{-\frac{n p}{1-p}}+(b+c) n p \\
& \geq n a(1-\epsilon) e^{-\frac{n p}{1-\epsilon}}+(b+c) n p
\end{aligned}
$$

We have already minimized such an expression with respect to p above. It suffices to formally replace n by $n /(1-\epsilon), a$ by $a(1-\epsilon)^{2}$, and $(b+c)$ by $(b+c)(1-\epsilon)$. Thus,

$$
\operatorname{lnf}_{0<p<1} T \geq(1-\epsilon)(b+c) \log \left(\frac{a n e}{b+c}\right)
$$

for all n large enough. This concludes the proof of Lemma 1.1.

A good choice for δ_{n} in Lemma 1.1 is $\delta_{n}=\log \left(\frac{a}{b+c}\right)$. When $Z=0$ in the algorithm, ild random varlates from the density $f /(1-p)$ restricted to ($-\infty, t$] can be generated by generating random variates from f untll n values less than or equal to t are observed. Thls would force us to replace the term $a P(Z=0) n$ In the definition of T by $a P(Z=0) n /(1-p)$. However, all the statements of Lemma 1.1 remain valld.

The main problem is that of the computation of a palr (p, t). For if we start with a value for p, such as the value suggested by Lemma 1.1 , then the value for t is given by $F^{-1}(1-p)$ (or $G^{-1}(p)$ where $G=1-F$, if numerical accuracy is of concern). This is unfortunately possible only when the inverse of the distribution function is known. But if the Inverse of the distribution were known, we would have been able to generate the maximum quite efflclently by the inversion method. There is a subtle difference though: for here, we need one inverston, even if we would need to generate a million ild random varlables all distributed as the maximum X. With the inversion method, a million Inversions would be required. If on the other hand we were to start with a value for t, then p would have to be set equal to $\int_{t}^{\infty} f=G(t)=1-F(t)$. This requires knowledge of the distribution function but not of its inverse. The value of t we start with should be such that p satisfles the conditions of Lemma 1.1. Typlcally, t is picked on theoretical grounds as is now lllustrated for the normal density.

Example 1.1.

For the normal density it is known that $G(x) \sim f(x) / x$ as $x \rightarrow \infty$. A first approximate solution of $f(t) / t=p$ is $t=\sqrt{2 \log (1 / p)}$, but even if we substitute the value $p=(\log (n)) / n$ in thls formula, the value of $G(t)$ would be such that the expected time taken by the algorlthm far exceeds $\log (n)$. A second approximation is

$$
t=\sqrt{2 \log \left(\frac{1}{p}\right)}-\frac{\log (4 \pi)+\log \left(\log \left(\frac{1}{p}\right)\right)}{2 \sqrt{2 \log \left(\frac{1}{p}\right)}}
$$

with $p=(\log (n)) / n$. It can be verffied that with thls choice, $T=O(\log (n))$.

For other densitles, one can use slmilar arguments. For the gamma (a) density for example, we have $G(x) \sim f(x)$ as $x \rightarrow \infty$, and $f(x) \leq G(x) \leq f(x) /(1-(a / x))$ for $a>1, x>a-1$. This helps in the construction of a useful value for t.

The computation of $G(t)$ is relatively stralghtforward for most distributlons. For the normal density, see the serles of papers published after the book of Kendall and Stuart (1977) (Cooper (1968), HIII (1968), HItchin (1973)), the paper by Adams (1968), and an improved version of Adams's method, called algorithm AS66 (Hill (1973)): For the gamma density, algortthm AS32 (Bhattacharjee (1970)) is recommended: it is based upon a continued fraction expansion given in Abramowltz and Stegun (1865).

1.3. The record time method.

In some process slmulations one needs a sequence ($Z_{n_{1}}, \ldots, Z_{n_{k}}$) of maxima that correspond to one reallzation of the experiment, where $n_{1}<n_{2}<\cdots<n_{k}$. In other words, for all i, we have $Z_{i}=\max \left(X_{1}, \ldots, X_{i}\right)$ where the X_{i} 's are IId random varlables with common denslty f. The inversion method requires k inversions, and can be implemented as follows:

Inversion method

$n_{0} \leftarrow 0, Z \leftarrow-\infty$
FOR $i:=1$ TO k DO
Generate Z, the maximum of $n_{i}-n_{i-1}$ iid random variables with common density f.

$$
Z_{n_{i}} \leftarrow \max \left(Z_{n_{i-1}}, Z\right)
$$

The record time method introduced in thls section requires on the average about $\log \left(n_{k}\right)$ exponential random varlates and evaluations of the distribution function. In addition, we need to report the k values $Z_{n_{i}}$. When $\log \left(n_{k}\right)$ is small compared to k, the record time method can be competitive. It exploits the fact that in a sequence of n ild random varlables with common density f, there are about $\log (n)$ records, where we call the n-th observation a record if it is the largest observation seen thus far. If the n-th observation is a record, then the Index n Itself is called a record time. It is noteworthy that given the value V_{i} of the i-th record, and given the record time T_{i} of the i-th record, $T_{i+1}-T_{i}$ and V_{i+1} are independent: $T_{i+1}-T_{i}$ is geometrically distrlbuted with parameter $G\left(V_{i}\right)$:

$$
P\left(T_{i+1}-T_{i}=j \mid T_{i}, V_{i}\right)=G\left(V_{i}\right)\left(1-G\left(V_{i}\right)\right)^{j-1 .} \quad(j \geq 1) .
$$

Also, V_{i+1} has conditional density $f / G\left(V_{i}\right)$ restricted to $\left[V_{i}, \infty\right)$. An infinite sequence of records and record times $\left\{\left(V_{i}, T_{i}\right), i \geq 1\right\}$ can be generated as follows:

The record time method (Devroye, 1980)
$T_{1} \leftarrow 1, i \leftarrow 1$
Generate a random variate V_{1} with density f.
$p \leftarrow G\left(V_{1}\right)$
WHILE True DO
$i \leftarrow i+1$
Generate an exponential random variate E.
$T_{i} \leftarrow T_{i-1}+\lceil-E / \log (1-p)\rceil$
Generate V_{i} from the tail density $\frac{f(x)}{1-p} I_{i_{2} \geq V_{i-1}}$.
$p \leftarrow G\left(V_{i}\right)$

It is a stralghtforward exercise to report the $Z_{n_{i}}$ values glven the sequence of records and record times. We should extt from the loop when $T_{i} \geq n_{k}$. The expected number of loops before halting is thus equal to the expected number of records in a sequence of length n_{k}, i.e. It is

$$
\sum_{i=1}^{n_{k}} \frac{1}{i}=\log \left(n_{k}\right)+\gamma+o(1)
$$

where $\gamma=0.5772 \ldots$ Is Euler's constant. We note that the most time consuming operation in every Iteration is the evaluation of G. If the inverse of G is avallable, the llnes

Generate V_{i} from the tail density $\frac{f(x)}{1-p} I_{[x} \geq V_{i-1}$.
$p \leftarrow G\left(V_{i}\right)$
can be replaced by

Generate a uniform $[0,1]$ random variate U.
$p \leftarrow p U$
$V_{i} \leftarrow G^{-1}(p)$

A flnal remark is in order here. If we assume that G can be computed in one unlt of time for all distributions, then the (random) time taken by the algorithm is an invarlant, because the distribution of record times is distribution-free.

1.4. Exercises.

1. Tail of the normal density. Let f be the normal density, let $t>0$ and define $p=G(t)$ where $G=1-F$ and F is the normal distribution function. Prove the following statements:
A. Gordon's inequality. (Gordon (1941), Mitrinovic (1970)).

$$
\frac{t}{t^{2}+1} f(t) \leq p \leq \frac{1}{t} f(t)
$$

B. As $t \rightarrow \infty, G(t) \sim f(t) / t$.
C. If $t=\sqrt{2 \log (n / \log (n))}$, then for the qulck ellmination algorithm, $T=\Omega\left(n^{1-\epsilon}\right)$ for every $\epsilon>0$ as $n \rightarrow \infty$.
D. If $t=s-\frac{1}{2 s}\left(\log (4 \pi)+\log \left(\log \left(\frac{n}{\log }(n)\right)\right)\right)$, where s is as \ln polnt C, then for the quick ellmination algorithm, $T=O(\log (n))$. Does $T \sim(b+c) \log (n)$ if b, c are the constants in the defintion of T (see Lemma 1.1)?
2. Let T_{1}, T_{2}, \ldots be the record times \ln a sequence of $11 d$ unlform $[0,1]$ random varlables. Prove that $E\left(T_{2}\right)=\infty$. Show furthermore that $\log \left(T_{n}\right) \sim n$ in probabllity as $n \rightarrow \infty$.

2. RANDOM VARIATES WITH GIVEN MOMENTS

2.1. The moment problem.

The classlcal moment problem can be formulated as follows. Let $\left\{\mu_{i} ; 1 \leq i\right\}$ be a collection of moments. Determine whether there is at least one distribution which glves rise to these moments; if so, construct such a distribution and determine whether it is unique. Solld detalled treatments of this problem can be found In Shohat and Tamarkin (1943) and Widder (1941). The maln result is the following.

Theorem 2.1.

If there exists a distribution with moments $\mu_{i}, 1 \leq i$, then

$$
\left|\begin{array}{ccccc}
1 & \mu_{1} & \cdots & \mu_{s} \\
\mu_{1} & \mu_{2} & & \mu_{s+1} \\
\cdot & & & & \cdot \\
\cdot & & & \cdot \\
\mu_{s} & \cdots & \cdots & \mu_{2 s}
\end{array}\right| \geq 0
$$

for all integers s with $s \geq 1$. The inequallties hold strictly if the distribution is nonatomic. Conversely, if the matrix inequallty holds strictly for all integers s with $s \geq 1$, then there exists a nonatomic distribution matching the given moments.

Proof of Theorem 2.1.

We will only outline why the matrix Inequallty is necessary. Considering the fact that

$$
E\left(\left(c_{0}+c_{1} X+\cdots+c_{s} X^{s}\right)^{2}\right) \geq 0
$$

for all values of c_{0}, \ldots, c_{s}, we have by a standard result from linear algebra (Mirsky (1955, p. 400)) that

$$
\left|\begin{array}{ccccc}
1 & \mu_{1} & \cdots & \mu_{s} \\
\mu_{1} & \mu_{2} & & \mu_{s+1} \\
\cdot & & & \ddots \\
\cdot & & & & \cdot \\
\mu_{s} & \cdots & \cdots & \mu_{2 s}
\end{array}\right| \geq 0 . \square
$$

Theorem 2.2.
If there exlsts a distribution on $[0, \infty)$ with moments $\mu_{i}, 1 \leq i$, then

for all Integers $s \geq 0$. The Inequallties hold strictly if the distribution is nonatomic. Conversely, if the matrix Inequality holds strictly for all integers $s \geq 0$, then there exists a nonatomic distribution matching the given moments.

The determinants in Theorems 2.1, 2.2 are called Hankel determinants. What happens when one or more of them are zero is more compllcated (see e.g. Widder (1941)). The problem of the uniqueness of a distribution is covered by Theorem 2.3.

Theorem 2.3.

Let μ_{1}, μ_{2}, \ldots be the moment sequence of at least one distribution. Then this distribution is unique if Carleman's condition holds, 1.e.

$$
\sum_{i=0}^{\infty}\left|\mu_{2 i}\right|^{-\frac{1}{2 i}}=\infty
$$

If we have a distrlbution on the positlve halfilne, then a sufficlent condition for uniqueness is

$$
\sum_{i=0}^{\infty}\left(\mu_{i}\right)^{-\frac{1}{2 i}}=\infty
$$

When the distribution has a density f, then a necessary and sufficient condition for unlqueness is

$$
\int_{-\infty}^{\infty} \frac{\log (f(x))}{1+x^{2}} d x=-\infty
$$

(Kreln's condition).

For example, normal distributions or distributions on compact sets satisfy Carleman's condition and are thus uniquely determined by their moment sequence. In exerclses 2.2 and 2.3, examples are developed of distributions having identical infinite moment sequences, but widely varying densitles. In exercise 2.2 , a unimodal discrete distribution is given which has the same moments as the lognormal distribution.

The problem that we refer to as the moment problem is that of the generatlon of a random varlate with a given collection of moments $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$, where n can be ∞. Note that if we expand the characteristic function ϕ of a random varlable in its Taylor serles about 0 , then

$$
\phi(t)=\phi(0)+\frac{t}{1!} \phi^{(1)}(0)+\cdots+\frac{t^{k-1}}{(k-1)!} \phi^{(k-1)}(0)+R_{k}
$$

where the remainder term satisfles

$$
\left|R_{k}\right| \leq \mu_{k} \frac{|t|^{k}}{k!}
$$

This uses the fact that if $\left|\mu_{k}\right|<\infty$, the k-th derivative of ϕ exists, and is a continuous function given by $E\left((i X)^{k} e^{i t X}\right)$. In particular, the k-th derivative is In absolute value not greater than $E\left(|X|^{k}\right)$. See for example Feller (1971, pp. 512-514). The remalnder term R_{k} tends to 0 in a neighborhood of the origin when

$$
\operatorname{llm} \sup \frac{\left|\mu_{k}\right|^{1 / k}}{k}<\infty
$$

Thus, the Taylor serles converges in those cases. It follows that ϕ is analytic in a nelghborhood of the origin, and hence completely determined by its power serles about the orlgin. The condltion given above is thus sufficlent for the moment sequence to uniquely determine the distribution. One can verify that the condition is weaker, but not much weaker, than Carleman's condition. The polnt of all this is that if we are given an infinite moment sequence which unlquely determines the distribution, we are in fact glven the characterlstic function in a spectal form. The problem of the generation of a random varlate with a given characterlstlc functlon will be dealt with in section 3 . Here we will malnly be concerned with the finite moment case. This is by far the most Important case in practice, because researchers usually worry about matching the first few moments, and because the majorlty of distributions have only a finlte number of finlte moments. Unfortunately, there are typically an Infinite number of distributions sharing the same flrst n moments. These include discrete distributions and distributlons with densitles. If some additlonal constraints are satisfied by the moments, it may be possible to plck a distribution from relatively small classes of distributions. These Include:
A. The class of all unimodal densities, 1.e. unlform scale mixtures.
B. The class of normal scale mixtures.
C. Pearson's system of densittes.
D. Johnson's system of densittes.
E. The class of all histograms.
F. The class of all distributions of random varlables of the form $a+b N+c N^{2}+d N^{3}$ where N is normally distributed.
The list is incomplete, but representative of the attempts made in practice by some statistlclans. For example, in cases C,D and F, we can match the flrst four moments with those of exactly one member in the class except in case F, where some combinations of the first four moments have no match in the class. The fact that a match always occurs in the Pearson system has contributed a lot to the early popularlty of the system. For a description and detalls of the Pearson system, see exerclse IX.7.4. Johnson's system (exerclse IX.7.12) is better for quantlle matching than moment matching. We also refer the reader to the Burr famlly (section IX.7.4) and other familles given in section IX.7.5. These familles of distributions are usually designed for matching up to four moments. This of course is their main limitation. What is needed is a general algorlthm that can be used for arbltrary $n>4$. In this respect, it may first be worthwhile to verlfy whether there exlsts a unlform or normal scale mixture having the given set of moments. If thls is the case, then one could proceed with the construction of one such distribution. If this attempt falls, it may be necessary to construct a matching histogram or discrete distribution (note that discrete distrlbutions are llmits of histograms). Good references about the moment problem Include Widder (1941), Shohat and Tamarkin (1843), Godwin (1984), von Mises (1984), Hill (1889) and Springer (1979).

2.2. Discrete distributions.

Assume that we want to match the first $2 n-1$ moments with those of a discrete distribution having n atoms located at x_{1}, \ldots, x_{n}, with respective welghts p_{1}, \ldots, p_{n}. We know that we should have

$$
\sum_{i=1}^{n} p_{i}\left(x_{i}\right)^{j}=\mu_{j} \quad(0 \leq j \leq 2 n-1)
$$

This is a system of $2 n$ equalities with $2 n$ unknowns. It has prectsely one solution If at least one distribution exists with the given moments (von Mises, 1964). In particular, if the locations x_{i} are known, then the p_{i} 's can be determined from the first n linear equations. The locations can first be obtalned as the n roots of the equation

$$
x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}=0
$$

where the c_{i} 's are the solutions of

$$
\left|\begin{array}{ccc}
\mu_{0} & \cdot & \mu_{n-1} \\
\mu_{1} & \cdot & \mu_{n} \\
\cdot & & \cdot \\
\mu_{n-1} & \cdot & \mu_{2 n-2}
\end{array}\right|\left|\begin{array}{c}
c_{0} \\
c_{1} \\
\cdot \\
c_{n-1}
\end{array}\right|=-\left|\begin{array}{c}
\mu_{n} \\
\mu_{n+1} \\
\cdot \\
\mu_{2 n-1}
\end{array}\right|
$$

To do thls could take some valuable time, but at least we have a minimal solutlon, in the sense that the distribution is as concentrated as possible in as few atoms as posslble. One could argue that this ylelds some savings in space, but n is rarely large enough to make this the deciding factor. On the other hand, it is impossible to start with $2 n$ locatlons of atoms and solve the $2 n$ equations for the welghts p_{i}, because there is no guarantee that all p_{i} 's are nonnegative.

If an even number of moments Is given, say $2 n$, then we have $2 n+1$ equatlons. If we consider $n+1$ atom locations with $n+1$ welghts, then there is an excess of one varlable. We can thus choose one item, such as the location of one atom. Call thls location a. Shohat and Tamarkin (1843) (see also Royden, 1953) have shown that if there exists at least one distribution with the glven moments, then there exists at least one distribution with at most $n+1$ atoms, one of them located at a, sharing the same moments. The locations x_{0}, \ldots, x_{n} of the atoms are the zeros of

$$
\left|\begin{array}{ccccc}
1 & 1 & \mu_{0} & \cdot & \mu_{n-1} \\
x & a & \mu_{1} & \cdot & \mu_{n} \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
x^{n+1} & a^{n+1} & \mu_{n+1} & \cdot & \mu_{2 n}
\end{array}\right|=0 .
$$

The welghts $p_{0}, p_{1}, \ldots, p_{n}$ are linear comblnations of the moments:

$$
p_{i}=\sum_{j=0}^{n} c_{j i} \mu_{j}
$$

The coefficlents $c_{j i}$ in turn are deffned by the identity

$$
\sum_{j=0}^{n} c_{j i} x^{j} \equiv \prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}} \quad(0 \leq i \leq n)
$$

When the distribution puts all its mass on the nonnegative real line, a slight modification is necessary (Royden, 1953). Closely related to dlscrete distributions are the histograms: these can be considered as special cases of distributions with densitles

$$
f(x)=\sum_{i=1}^{n} \frac{p_{i}}{h_{i}} K\left(\frac{x-x_{i}}{h_{i}}\right),
$$

where K is a flxed form density (such as the unlform $[-1,1]$ density in the case of a histogram), x_{i} is the center of the i-th component, p_{i} is the welght of the i-th component, and h_{i} is the "wldth" of the i-th component. Densitles of this form are well-known in the nonparametric density estimation literature: they are the kernel estlmates. Archer (1980) proposes to solve the moment equations numerically for the unknown parameters in the histogram. We should polnt out that the density f shown above is the density of $x_{Z}+h_{Z} Y$ where Y has density K, and Z has probabillty vector p_{1}, \ldots, p_{n} on $\{1, \ldots, n\}$. This greatly facllltates the computations and the visualization process.

2.3. Unimodal densities and scale mixtures.

A random variable X has a unimodal distribution if and only if there exists a random variable Y such that X is distributed as $Y U$ where U is a unform [0,1] random varlable independent of Y (Khinchine's theorem). If U is not unlform and Y is arbitrary then the distribution of X is called a scale mixture for U. Of particular Importance are the normal scale mixtures, which correspond to the case when U is normally distributed. For us it helps to be able to verify whether for a given collection of n moments, there exists a unimodal distribution or a scale mlxture which matches these moments. Usually, we have a particular scale mlxture in mind. Assume for example that U has moments ν_{1}, ν_{2}, \ldots. Then, because $E\left(X^{i}\right)=E\left(Y^{i}\right) E\left(U^{i}\right)$, we see that Y has i-th moment μ_{i} / ν_{i}. Thus, the existence problem is solved if we can find at least one distribution having moments μ_{i} / ν_{i}.

Applying Theorem 2.1, then we observe that a sufflcient condition for the moment sequence μ_{i} to correspond to a U scale mixture is that the determinants

$$
\left|\begin{array}{cccc}
1 & \mu_{1} / \nu_{1} & \cdots & \mu_{s} / \nu_{s} \\
\mu_{1} / \nu_{1} & \mu_{2} / \nu_{2} & & \mu_{s+1} / \nu_{s+1} \\
\cdot & & & \\
\cdot & & & \cdot \\
\mu_{s} / \nu_{s} & \cdot & \cdots & \mu_{2 s} / \nu_{2 s}
\end{array}\right| \geq 0
$$

are all positive for $2 s<n, n$ odd. This was first observed by Johnson and Rogers (1951). For uniform mixtures, i.e. unimodal distributions, we should replace ν_{i} by $1 /(i+1)$ in the determinants. Having establlshed the existence of a scale mixture with the glven moments, it is then up to us to determine at least one Y with moment sequence μ_{i} / ν_{i}. This can be done by the methods of the prevlous sectlon.

By insisting that a particular scale mixture be matched, we are narrowing down the possibilties. By this is meant that fewer moment sequences lead to solutions. The advantage is that if a solution exists, it is typically "nicer" than in the discrete case. For example, if Y is discrete with no atom at 0 , and U is uniform, then X has a unimodal stalrcase-shaped density with mode at the origin and breakpoints at the atoms of Y. If U is normal, then X is a superposition of a few normal densitles centered at 0 with different varlances. Let us Illustrate brlefly how restrictive some scale mixtures are. We will take as example the case of four moments, with normalized mean and varlance, $\mu_{1}=0, \mu_{2}=1$. Then, the conditions of Theorem 2.1 Imply that we must always have

$$
\left|\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & \mu_{3} \\
1 & \mu_{3} & \mu_{4}
\end{array}\right| \geq 0
$$

Thus, $\mu_{4} \geq\left(\mu_{3}\right)^{2}+1$. It turns out that for all μ_{3}, μ_{4} satisfying the inequality, we can find at least one distribution with these moments. Incidentally, equally occurs for the Bernoulli distribution. When the Inequality is strict, a density exists. Consider next the case of a unimodal distribution with zero mean and unit varlance. The existence of at least one distribution with the given moments is guaranteed if

$$
\left|\begin{array}{ccc}
1 & 0 & 3 \\
0 & 3 & 4 \mu_{3} \\
3 & 4 \mu_{3} & 5 \mu_{4}
\end{array}\right| \geq 0,
$$

In other words, $\mu_{4} \geq \frac{9}{5}+\frac{18}{15}\left(\mu_{3}\right)^{2}$. It is eqasy to check that in the $\left(\mu_{3}, \mu_{4}\right)$ plane, a smaller area gets selected by thls condltion. It is precisely the (μ_{3}, μ_{4}) plane which can help us in the fast construction of moment matching distributlons. This is done in the next section.

2.4. Convex combinations.

If Y and Z are random varlables with moment sequences μ_{i} and ν_{i} respectively, then the random varlable X which equals Y with probablltty p and Z with probabllity $1-p$ has moment sequence $p \mu_{i}+(1-p) \nu_{i}$, in other words, it is the convex combination of the original moment sequences. Assume that we want to match four normallzed moments. Recall that the allowable area in the (μ_{3}, μ_{4}) plane is the area above the parabola $\mu_{4} \geq\left(\mu_{3}\right)^{2}+1$. Every point (μ_{3}, μ_{4}) In this area lles on a horizontal line at helght μ_{4} which intersects the parabola at the points $\left(-\sqrt{\mu_{4}-1}, \mu_{4}\right),\left(\sqrt{\mu_{4}-1}, \mu_{4}\right)$. In other words, we can match the moments by a simple convex combination of two distributions with third and fourth moments $\left(-\sqrt{\mu_{4}-1}, \mu_{4}\right)$ and ($\sqrt{\mu_{4}-1}, \mu_{4}$) respectively.

The welght in the convex combination is determined quite easlly since we must have, attaching weight p to the distribution with positive third moment,

$$
(p-(1-p)) \sqrt{\mu_{4}-1}=\mu_{3} .
$$

Thus, it suffices to take

$$
p=\frac{1+\frac{\mu_{3}}{\sqrt{\mu_{4}-1}}}{2}
$$

It is also easy to verlfy that for a Bernoulll (q) random varlable, we have normalized fourth moment

$$
\frac{3 q^{2}-3 q+1}{q(1-q)}
$$

and normalized third moment

$$
\frac{1-2 q}{\sqrt{q(1-q)}} .
$$

Notice that this distribution always falls on the limiting parabola. Furthermore, by letting q vary from 0 to 1 , all points on the parabola are obtalned. Given the fourth moment μ_{4}, we can determine q via the equation

$$
q=\frac{1}{2}\left(1 \pm \sqrt{\frac{\mu_{4}-1}{\mu_{4}+3}}\right),
$$

where the plus sign is chosen if $\mu_{3} \geq 0$, and the minus sign is chosen otherwise. Let us call the solution with the plus sign q. The minus sign solution is $1-q$. If B Is a Bernoulli (q) random varlable, then $(B-q) / \sqrt{q(1-q)}$ and $-(B-q) / \sqrt{q(1-q)}$ are the two random variables corresponding to the two intersection polnts on the parabola. Thus, the following algorithm can be used to generate a general random variate with four moments μ_{1}, \ldots, μ_{4} :

Generator matching first four moments

Normalize the moments: $\sigma \leftarrow \sqrt{\mu_{2}-\left(\mu_{1}\right)^{2}}$,
$\left(\mu_{3}, \mu_{4}\right) \leftarrow\left(\frac{\mu_{3}-3 \mu_{2} \mu_{1}+2\left(\mu_{1}\right)^{3}}{\sigma^{3}}, \frac{\mu_{4}-4 \mu_{3} \mu_{1}+6 \mu_{2}\left(\mu_{1}\right)^{2}-3\left(\mu_{1}\right)^{4}}{\sigma^{4}}\right)$
$q \leftarrow \frac{1}{2}\left(1+\sqrt{\frac{\mu_{4}-1}{\mu_{4}+3}}\right)$
$p \leftarrow \frac{1+\frac{\mu_{3}}{\sqrt{\mu_{4}-1}}}{2}$
Generate a uniform $[0,1]$ random variate U.
IF $U \leq p$
THEN

$$
\begin{aligned}
& X \leftarrow I_{[U \leq p q]}(X \text { is Bernoulli }(q)) \\
& \text { RETURN } X \leftarrow \mu_{1}+\sigma \frac{X-q}{\sqrt{q(1-q)}}
\end{aligned}
$$

ELSE

$$
\begin{aligned}
& X \leftarrow I_{|U \leq p+(1-p) q|}(X \text { is Bernoulli }(q)) \\
& \text { RETURN } X \leftarrow \mu_{1}-\sigma \frac{X-q}{\sqrt{q(1-q)}}
\end{aligned}
$$

The algorithm shown above can be shortened by a variety of tricks. As it stands, one unlform random varlate is needed per returned random varlate. The polnt of this example is that it is very slmple to generate random varlates that match four moments if one is not picky. Indeed, few users will be pleased with the convex combination of two Bernoulll distributions used in the example. But interestingly, the example can also be used in the construction of the distrlbution of Y in scale mixtures of the form $Y U$ discussed in the previous section. In that respect, the algorlthm becomes more useful, because the returned distrlbutions are "nlcer". The algorithm for unlmodal distributions with mode at 0 is glven below.

Simple unimodal distribution generator matching four moments

Readjustment of moments: $\mu_{1} \leftarrow 2 \mu_{1}, \mu_{2} \leftarrow 3 \mu_{2}, \mu_{3} \leftarrow 4 \mu_{3}, \mu_{4} \leftarrow 5 \mu_{5}$.
Generate a random variate Y having the readjusted moments (e.g. by the algorithm given above).
Generate a uniform $[0,1]$ random variate U.
RETURN $X \leftarrow Y U$.

The algorlthms for other scale mlxtures are simllar.
One final remark about moment matching is in order here. Even with a unlmodallty constraint, there are many distributions with widely varying densitles but identical moments up to the n-th moment. One should therefore always ask the question whether it is a good thing at all to blindly go ahead and generate random varlates with a certain collection of moments. Let us make this point wlth two examples.

Example 2.1.(Godwin, 1964)

The following two densitles have Identical lnfinlte moment sequences:

$$
\begin{aligned}
& f(x)=\frac{1}{4} e^{-|x|^{\frac{1}{2}}} \quad(x \in R) \\
& g(x)=\frac{1}{4} e^{-|x|^{\frac{1}{2}}}(1+\cos (\sqrt{|x|}) \quad(x \in R)
\end{aligned}
$$

(Kendall and Stuart (1977), see exercise 2.3). Thus, noting that

$$
\int_{A} f=0.4856 \ldots ; \int_{A} g=0.7328 \ldots
$$

where $A=\left[-\pi^{2} / 4, \pi^{2} / 4\right]$, we observe that

$$
\int|f-g| \geq 0.5344 \ldots
$$

Consldering that the L_{1} distance between two densitles is at most 2, the distance $0.5344 \ldots$ is phenomenally large.

Example 2.2.

The prevlous example involves a unimodal and an osclllating density. But even if we enforce unlmodality on our counterexamples, not much changes. See for example Lelpnik's example described in exercise 2.2. Another way of illustrating this is as follows: for any symmetric unimodal denslty f with moments μ_{2}, μ_{4}, It is true that

$$
\sup _{g} \int|f-g| \geq \omega^{2}(1-\omega)
$$

where the supremum is taken over all symmetric unimodal g with the same second and fourth moments, and $\omega=\sqrt{\left(3 \mu_{2}\right)^{2} /\left(5 \mu_{4}\right)}$. It should be noted that $0 \leq \omega \leq 1 \ln$ all cases (thls follows from the nonnegativity of the Hankel determinants applled to unimodal distributions). When f is normal, $\omega=\sqrt{3 / 5}$ and the lower bound is $\frac{3}{5}\left(1-\sqrt{\frac{3}{5}}\right)$, which is still quite large. For some comblnations of moments, the lower bound can be as large as $\frac{4}{27}$. There are two differences with Example 2.1: we are only matching the first four moments, not all moments, and the counterexample applles to any symmetric unimodal f, not Just one denslty plcked beforehand for convenlence. Example 2.2 thus relnforces the bellef that the moments contain surprisingly little information about the distribution. To prove the Inequality of this example, we will argue as follows: let f, g, h be three densities in the given class of densities. Clearly,

$$
\begin{aligned}
& \max \left(\int|f-h|, \int|f-g|\right) \geq \frac{1}{2}\left(\int|f-h|+\int|f-g|\right) \\
& \geq \frac{1}{2} \int|h-g| .
\end{aligned}
$$

Thus it suffces to prove twice the lower bound for $\int|h-g|$ for two particular densities h, g : Consider densittes of random varlables $Y U$ where U is unfformly distributed on $[0,1]$ and Y is independent of U and has a symmetric discrete distrlbution with atoms at $\pm b, \pm c$, where $0<b<c<\infty$. The atom at c has weight $p / 2$, and the atom at b has welght $(1-p) / 2$. For h and g we will consider different cholces of b, c, p. First, any cholce must be conslstent with the moment restrictions:

$$
\begin{aligned}
& (1-p) b^{2}+p c^{2}=3 \mu_{2}, \\
& (1-p) b^{4}+p c^{4}=5 \mu_{4} .
\end{aligned}
$$

Solving for p glves

$$
1-p=\frac{5 \mu_{4}-3 \mu_{2} c^{2}}{b^{4}-b^{2} c^{2}}
$$

Forclng $p \in[0,1]$ gives us the constralnts $0 \leq 3 \mu_{2} c^{2}-5 \mu_{4} \leq b^{2}\left(c^{2}-b^{2}\right)$. It is to our advantage to take the extreme values for c. In particular, for g we will take $c=\sqrt{\left(5 \mu_{4}\right) /\left(3 \mu_{2}\right)}, b=0, p=\omega^{2}$. It should be noted that this not yleld a densty g since there will be an atom at the origin. Thus, we use an approximating
argument with a sequence g_{n} approaching g in the sense that the atom at 0 is approached by an atom at $\epsilon_{n} \rightarrow 0$. Next, for h, we take the limit of the sequence h_{n} where as $n \rightarrow \infty, b \rightarrow \sqrt{3 \mu_{2}}, p \rightarrow 0$, and $c \rightarrow \infty$. This is the case in which the rightmost atom escapes to inflnity but has increasingly negliglble welght p. Since $p \rightarrow 0$, the contribution of the rightmost atom to the L_{1} distance is also o (1). Thus, h can be consldered as having one atom at $\sqrt{3 \mu_{2}}$ of welght $1 / 2$. We obtain by simple geometrical considerations,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int\left|g_{n}-h_{n}\right|=4\left(\sqrt{\left(5 \mu_{4}\right) /\left(3 \mu_{2}\right)}-\sqrt{3 \mu_{2}}\right)\left(\frac{1}{2} \omega^{2} \frac{1}{\sqrt{\left(5 \mu_{4}\right) /\left(3 \mu_{2}\right)}}\right) \\
& =2 \omega^{2}(1-\omega)
\end{aligned}
$$

Since the sequences h_{n}, g_{n} are entlrely in our class, we see that the lower bound for $\sup _{g} \int|f-g|$ is at least $\omega^{2}(1-\omega)$.

2.5. Exercises.

1. Show that for the normal density, the $2 i$-th moment is

$$
\mu_{2 i}=(2 i-1)(2 i-3) \cdots(3)(1) \quad(i \geq 2)
$$

Show furthermore that Carleman's condition holds.
2. The lognormal density. In this exerclse, we consider the lognormal density

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma x} e^{-\frac{(\log (x))^{2}}{2 \sigma^{2}}} \quad(x>0)
$$

Show first that this density falls both Carleman's condition and Krein's condition. Hint: show flrst that the r-th moment is $\mu_{r}=e^{\sigma^{2} r^{2} / 2}$. Thus, there exist other distributions with the same moments. We will construct a family of such distributions, referred to hereafter as Heyde's family (Heyde (1983), Feller (1971, p. 227)): let $-1 \leq a \leq 1$ be a parameter, and deflne the denslty

$$
f_{a}(x)=f(x)(1+a \sin (2 \pi \log (x))) \quad(x>0)
$$

To show that f_{a} is a density, and that all the moments are equal to the moments of $f_{0}=f$, it sufflees to show that

$$
\int_{0}^{\infty} x^{k} f(x) \sin (2 \pi \log (x)) d x=0
$$

for all integer $k \geq 0$. Show this. Show also the following result due to Lelpnik (1981): there exists a family of discrete unimodal random variables X having the same moments as a lognormal random varlable. It suffices to let X take the value $a e^{\sigma i}$ with probabllity $c a^{-i} e^{-\sigma^{2} i^{2} / 2}$ for $i=0, \pm 1, \pm 2, \ldots$, where $a>0$ is a parameter, and c is a normallzation constant.
3. The Kendall-Stuart density. Kendall and Stuart (1977) Introduced the density

$$
f(x)=\frac{1}{4} e^{-|x|^{\frac{1}{2}}} \quad(x \in R)
$$

Following Kendall and Stuart, show that for all real a with $|a| \leq 1$,

$$
f_{a}(x)=\frac{1}{4} e^{-|x|^{\frac{1}{2}}}(1+a \cos (\sqrt{|x|}) \quad(x \in R)
$$

are densities with moments equal to those of f.
4. Yet another famlly of densitles sharing the same moment sequence is given by

$$
f_{a}(x)=e^{-x^{\frac{1}{4}} \frac{\left(1-a \sin \left(x^{\frac{1}{4}}\right)\right)}{24} \quad(x>0), ~ . ~}
$$

where $a \in[0,1)$ is a parameter. Show that f_{0} violates Kreln's condition and that all moments are equal to those of $f 0$. This example is due to Stieltjes (see e.g. Wldder (1941, pp. 125-126)).
5. Let $p \in\left(0, \frac{1}{2}\right)$ be a parameter, and let $c=(p \cos (p \pi))^{1 / p} / \Gamma(1 / p)$ be a constant. Show that the following two densitles on $(0, \infty)$ have the same moments:

$$
\begin{aligned}
& f(x)=c e^{-x^{p} \cos (p \pi)} \\
& g(x)=f(x)\left(1+\sin \left(x^{p} \sin (p \pi)\right)\right)
\end{aligned}
$$

(Lukacs (1870, p. 20)).
6. Fleishman's family of distributions. Consider all random variables of the form $a+b N+c N^{2}+d N^{3}$ where N is a normal random variable, and a, b, c, d are constants. Many distributlons are known to be approximately normal, and can probably be modeled by distributions of random varlables of the form given above. This family of distributions, studied by Fleishman (1978), has the advantage that random varlate generation is easy once the constants are determined. To compute the constants, the first four moments can be matched with fixed values $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$. For the sake of slmplicity, let us normalize as follows: $\mu_{1}=0, \mu_{2}=1$. Show that b, d can be found by solvIng

$$
\begin{aligned}
& 1=b^{2}+8 b d+15 d^{2}+2 c^{2} \\
& \mu_{4}-3=24\left(b d+c^{2}\left(1+b^{2}+28 b d\right)+d^{2}\left(12+48 b d+141 c^{2}+255 d^{2}\right)\right)
\end{aligned}
$$

where

$$
c=\frac{\mu_{3}}{2\left(b^{2}+24 b d+105 d^{2}+2\right)} .
$$

Furthermore, $a=-c$. Show that not all combinations of normallzed moments of distributlons (i.e. all palrs (μ_{3}, μ_{4}) with $\mu_{4} \geq\left(\mu_{3}\right)^{2}+1$) lead to a solution. Determine the region in the (μ_{3}, μ_{4}) plane of allowable pairs. Finally, prove that there exist comblnations of constants for which the density is not unimodal, and determine the form of the distribution in these cases.
7. Assume that we wish to match the first slx moments of a symmetrlc distribution (all odd moments are zero). We normallze by forclng μ_{2} to be 1 . Show flrst that the allowable region in the (μ_{4}, μ_{6}) plane is deflned by the Inequallthes $\mu_{4} \geq 1, \mu_{6} \geq\left(\mu_{4}\right)^{2}$. Find simple familles of distributions which cover the borders of thls region. Rewrite each point in the plane as the convex comblnation of two of these simple distrlbutions, and give the corresponding generator, l.e. the generator for the distribution that corresponds to thls point.
8. Let the a-th and b-th absolute moments of a unimodal symmetric distribution with a density be given. Find a useful lower bound for

$$
\operatorname{lnf}_{f} \sup _{g} \int|f-g|
$$

where the infimum and supremum is over all symmetric unimodal densitles having the given absolute moments. The lower bound should coinclde with that of Example 2.2 In the case $a=2, b=4$.

3. CHARACTERISTIC FUNCTIONS.

3.1. Problem statement.

In many applications, a distribution is best described by its characteristic function ϕ. Sometimes, it is outright difficult to invert the characteristic function to obtaln a value for the density or distrlbution function. One mlght ask whether In those cases, it is still possible to generate a random variate X with the given distribution. An example of such a distribution is the stable distribution. In particular, the symmetric stable distribution with parameter $\alpha \in(0,2]$ has the simple characteristic function $e^{-|t|^{\alpha}}$. Yet, except for $\alpha \in\left\{\frac{1}{2}, 1,2\right\}$, no conventent analytic expression is known for the corresponding density f; the density is best computed with the help of a convergent serles or a divergent asymptotic expansion (section IX.8.3). For random varlate generation in this slmple case, we refer to section IX.B. For $\alpha \in(0,1]$ the characteristic function can be written as a mixture of trlangular characteristic functions. This property is shared by all real (thus, symmetric) convex characteristic functions, also called Polya characteristic
functions. The mlxture property can be used to obtain generators (Devroye, 1984; see also section IV.6.7). In a black box method one only assumes that ϕ belongs to a certain class of characterlstic functions, and that $\phi(t)$ can be computed in finlte time for every t. Thus, making use of the mixture property of Polya characteristic functions cannot lead to a black box method because ϕ has to be glven expllcitly in analytlc form.

Under certaln regularlty conditions, upper bounds for the density can be obtalned in terms of quantlies (functlonals, suprema, and so forth) deflned in terms of the characteristic function (Devroye, 1981). These upper bounds can in turn be used in a rejection algorithm. This simple approach is developed in section 3.2. Unfortunately, one now needs to compute f in every lteration of the rejection algorithm. This requires once again an inversion of ϕ, and may not be feasible. One should note however that this can be avoided if we are able to use the serles method based upon a convergent serles for f. This serles could be based upon the inversion formula.

A genuine black box method for a large subclass of Polya characteristic functions was developed in Devroye (1985). Another black box method based upon the serles method will be studled in section 3.3.

3.2. The rejection method for characteristic functions.

General rejection algorlthms can be based upon the following inequallty:

Theorem 3.1.

Assume that a given distribution has two finite moments, and that the characteristic function ϕ has two absolutely integrable. Then the distribution has a density f bounded as follows:

$$
f(x) \leq\left\{\begin{array}{c}
\frac{1}{2 \pi} \int|\phi| \\
\frac{1}{2 \pi x^{2}} \int\left|\phi^{\prime \prime}\right|
\end{array}\right.
$$

The area under the minimum of the two bounding curves is $\frac{2}{\pi} \sqrt{\int|\phi| \int\left|\phi^{\prime \prime}\right|}$.

Proof of Theorem 3.1.

Since ϕ is absolutely integrable, f can be computed as follows from ϕ :

$$
f(x)=\frac{1}{2 \pi} \int \phi(t) e^{-i t x} \cdot d t
$$

Furthermore, because the first absolute moment is finite, ϕ^{\prime} exists and

$$
f(x)=\frac{1}{2 \pi i x} \int \phi^{\prime}(t) e^{-i t x} d t
$$

Because the second moment is finite, $\phi^{\prime \prime}$ exists and

$$
f(x)=-\frac{1}{2 \pi x^{2}} \int \phi^{\prime \prime}(t) e^{-i t x} d t
$$

(Loeve, 1983, p. 199). From thls, all the Inequallties follow trivially.

The integrabillty condition on ϕ implles that f is bounded and continuous. The integrability condition on $\phi^{\prime \prime}$ translates into a strong tall condition: the tall of f can be tucked under a quickly decreasing curve. This explains why f can globally be tucked under a bounded integrable curve. Based upon Theorem 3.1, we can now formulate a first general rejection algorithm for characteristlc functions satisfying the conditions of the Theorem.

General rejection algorithm for characteristic functions

[SET-UP]
$a \leftarrow \frac{1}{2 \pi} \int|\phi|, b \leftarrow \frac{1}{2 \pi} \int\left|\phi^{\prime \prime}\right|$
[GENERATOR]

REPEAT

Generate two ild uniform $[-1,1]$ random variates U, V.
IF $U<0$

> THEN $X \leftarrow \sqrt{\frac{b}{a}} V, T \leftarrow|U| a$
> ELSE $X \leftarrow \sqrt{\frac{b}{a}} \frac{1}{V}, T \leftarrow \frac{\perp U \mid b}{X^{2}}$
(Note that this is $|U| a V^{2}$.)
UNTIL $T \leq f(X)$
RETURN X

Varlous slmplifications are possible in this rudimentary algorithm. What matters is that f is still required in the acceptance step.

Remark 3.1.

The expected number of iterations is $\frac{2}{\pi} \sqrt{\int|\phi| \int\left|\phi^{\prime \prime}\right|}$. This is a scale Invarlant quantity: Indeed, let X have characteristic function ϕ. Then, under the conditions of Theorem 3.1, $\phi(t)=E\left(e^{i t X}\right), \phi^{\prime \prime}(t)=E\left(-X^{2} e^{i t X}\right)$. For the scaled random varlable $a X$, we obtaln respectively $\phi(a t)$ and $a^{2} \phi^{\prime \prime}(a t)$. The product of the integrals of the last two functions does not depend upon a. Unfortunately, the product is not translation invarlant. Noting that $X+c$ has characteristic function $\phi(t) e^{i t c}$, we see that $\int|\phi|$ is translation Invarlant. However,

$$
\int\left|\phi^{\prime \prime}\right|=\int\left|E\left(-(X-c)^{2} e^{i t X}\right)\right|
$$

is not. From the quadratlc form of the integrand, one deduces quickly that the integral is approximately minimal when $c=E(X)$, i.e. when the distribution is centered at the mean. This is a common sense observation, reinforced by the symmetric form of the dominating curve. Let us finally note that in Theorem 3.1 we have Implicitly proved the Inequallty

$$
\int|\phi| \int\left|\phi^{\prime \prime}\right| \geq \frac{\pi^{2}}{4}
$$

which is of independent interest in mathematical statistics.

If the evaluation of f is to be avolded, then we must find at the very least a converging serles for f. Assume first that ϕ is absolutely integrable, symmetric and nonnegative. Then $f(x)$ is sandwiched between consecutive partial sums in the serles

$$
f(0)-\frac{x^{2}}{2!} f^{\prime}(0)+\frac{x^{4}}{4!} f^{\prime \prime}(0)-\cdots
$$

This can be seen as follows: since $\cos (t x)$ is sandwiched between consecutive parthal sums in its Taylor serles expansion, and since

$$
f(x)=\frac{1}{2 \pi} \int \phi(t) \cos (t x) d t
$$

we see that by our assumptions on $\phi, f(x)$ is sandwiched between consecutive partial sums in

$$
\nu_{0}-\frac{x^{2}}{2!} \nu_{2}+\frac{x^{4}}{4!} \nu_{4}-\cdots,
$$

where

$$
\nu_{2 n}=\frac{1}{2 \pi} \int t^{2 n} \phi(t) d t
$$

If $\int t^{2 n} \phi(t) d t$ is finite, then $f{ }^{(2 n)}$ exists, and its value at 0 is equal to It . This glves the desired collection of inequalities. Note thus that for an inequallty involving $f^{(2 n)}$ to be valld, we need to ask that

$$
\int t^{2 n} \phi(t) d t<\infty
$$

Thls moment condition on ϕ is a smoothness condltion on f. For extremely smooth f, all moments can be finlte. Examples include the normal denslty, the Cauchy density and all symmetrlc stable densitles with parameter at least equal to one. Also, all characteristlc functlons with compact support are included, such as the triangular characteristlic function. If furthermore the series $x^{2 n} \nu_{2 n} /(2 n)$! is summable for all $x>0$, we see that f is determined by all its derlvatives at 0 . A sufficient condition is

$$
\nu_{2 n}{ }^{\frac{1}{2 n}}=o(n)
$$

This class of densitles is enormously smooth. In addition, these densitles are unimodal with a unlque mode at 0 (see exerclses). Random varlate generation can thus be based upon the alternating serles method. As dominating curve, we can use any curve avallable to us. If Theorem 3.1 is used, note that $\int|\phi|=\int \phi=f(0)$.

Series method for very smooth densities

[NOTE: This algorithm is valid for densities with a symmetric real nonnegative characteristic function for which the value of f is uniquely determined by the Taylor series expansion of f about 0.]
[SET-UP]
$a \leftarrow \frac{1}{2 \pi} \int|\phi|(=f(0)), b \leftarrow \frac{1}{2 \pi} \int\left|\phi^{\prime \prime}\right|$.
[GENERATOR]
REPEAT
Generate a uniform $[0,1]$ random variate U, and a random variate X with density proportional to $g(x)=\min \left(a, b / x^{2}\right)$.
$T \leftarrow U g(X)$
$S \leftarrow f(0), n \leftarrow 0, Q \leftarrow 1$ (prepare for series method)
WHILE $T \leq S$ DO
$n \leftarrow n+1, Q \leftarrow Q X^{2} /(2 n(2 n-1))$
$S \leftarrow S+Q f^{(n)}(0)$
IF $T \leq S$ THEN RETURN X
$n \leftarrow n+1, Q \leftarrow-Q X^{2} /(2 n(2 n-1)), S \leftarrow S+Q f^{(n)}(0)$
UNTIL False

This algorithm could have been presented in the section on the serles method, or in the section on universal algorithms. It has a place in this section because it shows how one can avold inverting the characterlstic function in a general rejectlon method for characteristic functions.

3.3. A black box method.

When ϕ is absolutely integrable, the value of the density f can be computed by the inversion formula

$$
f(x)=\frac{1}{2 \pi} \int \phi(t) e^{-i t x} d t=\int \psi(t) d t
$$

This integral can be approxlmated in a number of ways, by using well-known techniques from numerical Integration. If such approximations are to be useful, it is essentlal that we have good expllcit estimates of the error. The approximations include the rectangular rule

$$
r_{n}(x)=\frac{b-a}{n} \sum_{j=0}^{n-1} \psi\left(a+(b-a) \frac{j}{n}\right),
$$

where $[a, b]$ is a finite interval. Other popular rules are the trapezoidal rule

$$
t_{n}(x)=\frac{b-a}{n} \sum_{j=1}^{n}\left(\frac{1}{2} \psi\left(a+\frac{(j-1)(b-a)}{n}\right)+\frac{1}{2} \psi\left(a+\frac{j(b-a)}{n}\right)\right),
$$

and Simpson's rule

$$
\begin{aligned}
& s_{n}(x)=\frac{b-a}{n} \sum_{j=1}^{n}\left(\frac{1}{6} \psi\left(a+\frac{(j-1)(b-a)}{n}\right)\right. \\
& \left.+\frac{4}{6} \psi\left(a+\frac{\left(j-\frac{1}{2}\right)(b-a)}{n}\right)+\frac{1}{6} \psi\left(a+\frac{j(b-a)}{n}\right)\right) .
\end{aligned}
$$

These are the first few rules in an Infinite sequence of rules called the NewtonCotes integration formulas. The simple trapezoldal rule integrates linear functions on [a, b] exactly, and Simpson's rule integrates cubics exactly. The next few rules, llsted for example in Davis and Rabinowitz (1975, p. 83-84), Integrate higher degree polynomlals exactly. For example, Boole's rule is

$$
\begin{aligned}
& b_{n}(x)=\frac{b-a}{n} \sum_{j=1}^{n}\left(\frac{7}{90} \psi\left(a+\frac{(j-1)(b-a)}{n}\right)+\frac{32}{90} \psi\left(a+\frac{\left(j-\frac{3}{4}\right)(b-a)}{n}\right)\right. \\
& +\frac{12}{90} \psi\left(a+\frac{\left(j-\frac{1}{2}\right)(b-a)}{n}\right)+\frac{32}{90} \psi\left(a+\frac{\left(j-\frac{1}{4}\right)(b-a)}{n}\right) \\
& \left.+\frac{7}{90} \psi\left(a+\frac{j(b-a)}{n}\right)\right)
\end{aligned}
$$

The error committed by these rules is very important to us. In general ψ is a complex-valued function; and so are the estimates r_{n}, t_{n}, etcetera. A llttle care should be taken when we use only the real parts of these estlmates. The main tools are collected in Theorem 3.2:

Theorem 3.2.

Let $[-a, a]$ be a finite interval on the real llne, let n be an arbitrary integer, and let the density $f(x)$ be approximated by $f_{n}(x)$ where $f_{n}(x)$ is $\operatorname{Re}\left(r_{n}(x)\right)$, $\operatorname{Re}\left(t_{n}(x)\right), \operatorname{Re}\left(s_{n}(x)\right)$, or $\operatorname{Re}\left(b_{n}(x)\right)$. Let X be a random variable with density f and j-th absolute moment μ_{j}. Deflne the absolute difference $E_{n}=\left|f(x)-f_{n}(x)\right|$, and the tall Integral

$$
T_{n}=\frac{1}{2 \pi}\left(\int_{-\infty}^{-a}|\phi|+\int_{a}^{\infty}|\phi|\right) .
$$

Then:
A. If r_{n} is used and $\mu_{1}<\infty$, then

$$
E_{n} \leq T_{n}+\frac{(2 a)^{2}}{4 \pi n}\left(|x|+\mu_{1}\right)
$$

B. If t_{n} is used and $\mu_{2}<\infty$, then

$$
E_{n} \leq T_{n}+\frac{(2 a)^{3}}{24 \pi n^{2}}\left(|x|+\mu_{2}^{\frac{1}{2}}\right)^{2}
$$

C. If s_{n} is used and $\mu_{4}<\infty$, then

$$
E_{n} \leq T_{n}+\frac{(2 a)^{5}}{360 \pi n^{4}}\left(|x|+\mu_{4}^{\frac{1}{4}}\right)^{4}
$$

D. If b_{n} is used and $\mu_{6}<\infty$, then

$$
E_{n} \leq T_{n}+\frac{(2 a)^{7}}{3870720 \pi n^{6}}\left(|x|+\mu_{6}^{\frac{1}{6}}\right)^{6}
$$

Before proving Theorem 3.2, it is helpful to point out the following inequalltles:

Lemma 3.1.
Let ϕ be a characteristic function, and let ψ be defined by

$$
\psi(t)=\phi(t) e^{-i t x}
$$

Assume that the absolute moments for the distribution corresponding to ϕ are denoted by μ_{j}. Then, if the j-th absolute moment is finite,

$$
\sup _{t}\left|\psi^{(j)}(t)\right| \leq\left(|x|+\mu_{j}^{\frac{1}{j}}\right)^{j}
$$

where $j=0,1,2, \ldots$.

Proof of Lemma 3.1.

Note that $\psi^{(j)}=g_{j} e^{-i t x}$ for some function g_{j}. It can be verifled by inductlon that

$$
g_{j}=\sum_{k=0}^{j}\binom{j}{k}(-i x)^{k} \phi^{(j-k)}
$$

When $\mu_{j}<\infty, \phi^{(j)}$ is a bounded continuous function given by $\int(i x)^{j} e^{i t x} f(x) d x$. In particular, $\left|\phi^{(j)}\right| \leq \mu_{j}$. If we also use the inequalitles

$$
\mu_{k} \leq \mu_{j}^{\frac{k}{j}} \quad(k \leq j)
$$

then we obtaln

$$
\begin{aligned}
& \left|\psi^{(j)}\right| \leq\left|g_{j}\right| \leq \sum_{k=0}^{j}\binom{j}{k}|x|^{k} \mu_{j-k} \\
& \leq \sum_{k=0}^{j}\binom{j}{k}|x|^{k} \mu_{j} \frac{j-k}{j} \\
& =\left(|x|+\mu_{j}{ }^{\frac{1}{j}}\right)^{j} .
\end{aligned}
$$

Proof of Theorem 3.2.

Let us define $\psi(t)=\frac{1}{2 \pi} \phi(t) e^{-i t x}$. Then by Lemma 3.1,

$$
2 \pi\left|\psi^{(j)}\right| \leq\left(|x|+\mu_{j}^{\frac{1}{j}}\right)^{j}
$$

where μ_{j} is the finite j-th absolute moment of the distribution. Next, we need some estimates from numerical analysis. In particular,

$$
\left|f(x)-f_{n}(x)\right| \leq T_{n}+\left|\int_{-a}^{a} \operatorname{Re}(\psi(t)) d t-f_{n}(x)\right|
$$

To the last term, which is an error term in the estimation of the integral of $\operatorname{Re}(\psi)$ over a finite interval, we can apply estimates such as those given in Davis and Rabinowitz (1975, pp. 40-64). To apply these estimates, we recall that, when $\mu_{j}<\infty, \psi$ is a bounded continuous function on the real line. If r_{n} is used and $\mu_{1}<\infty$, then the last term does not exceed

$$
\begin{aligned}
& \frac{(2 a)^{2}}{2 n} \sup \left|\operatorname{Re}(\psi)^{\prime}\right| \leq \frac{(2 a)^{2}}{2 n} \sup \left|\psi^{(1)}\right| \\
& \leq \frac{(2 a)^{2}}{4 \pi n}\left(|x|+\mu_{1}\right) .
\end{aligned}
$$

If t_{n} is used and $\mu_{2}<\infty$, then the last term does not exceed

$$
\frac{(2 a)^{3}}{12 n^{2}} \sup \left|\psi^{(2)}\right| \leq \frac{(2 a)^{3}}{24 \pi n^{2}}\left(|x|+\mu_{2}^{\frac{1}{2}}\right)^{2} .
$$

If s_{n} is used and $\mu_{4}<\infty$, then the last term does not exceed

$$
\frac{(2 a)^{5}}{180 n^{4}} \sup \left|\psi^{(4)}\right| \leq \frac{(2 a)^{5}}{380 \pi n^{4}}\left(|x|+\mu_{4}^{\frac{1}{4}}\right)^{4}
$$

If b_{n} is used and $\mu_{6}<\infty$, then the last term does not exceed

$$
\frac{(2 a)^{7}}{1935360 n^{6}} \sup \left|\psi^{(6)}\right| \leq \frac{(2 a)^{7}}{3870720 \pi n^{6}}\left(|x|+\mu_{6}^{\frac{1}{6}}\right)^{6} .
$$

The bounds of Theorem 3.2 allow us to apply the serles method. There are two key problems left to solve:
A. The cholce of a as a function of n.
B. The selection of a dominating curve g for rejection.

It is wasteful to compute $t_{n}, t_{n+1}, t_{n+2}, \ldots$ when trying to make an acceptance or rejection decision. Because the error decreases at a polynomial rate with n, it seems better to evaluate t_{c} for some $c>1$ and $k=1,2, \ldots$. Additionally, it is advantageous to use the standard dyadic "trick" of computing only t_{2}, t_{4}, t_{8}, etcetera. When computing $t_{2 n}$, the computations made for t_{n} can be reused provided that we align the cutpoints. In other words, if a_{n} is the constant a with the dependence upon n made explicit, it is necessary to demand that

$$
\frac{a_{2^{k}}}{2^{k}}
$$

be equal to

$$
\frac{a_{2^{k+1}}}{2^{k+1}}
$$

or to

$$
\frac{a_{2^{k+1}}}{2^{k}}
$$

Thus, $a_{2^{k+1}}$ is equal to $a_{2^{k}}$ or to twice that value. Note that for the estimates f_{n} In Theorem 3.2 to tend to $f(x)$, it is necessary that $a_{n} \rightarrow \infty$ (unless the characteristic function has compact support), and that $a_{n}=0\left(n^{\frac{j}{j+1}}\right)$ where j is $1,2,4$ or 6 depending upon the estimator used. Thus, it does not hurt to choose a_{n} monotone and of the form

$$
a_{2^{k}}=a_{\mathrm{o}^{2}} 2^{c_{k}}
$$

where c_{k} is a positive Integer sequence satisfying $c_{k+1}-c_{k} \in\{0,1\}$, and a_{0} is a constant.

The problem of the selection of a dominating curve has a simple solution in m_{∞} my cases. To be able to use Theorem 3.2, we need upper bounds for μ_{j} and ∞ $\int_{a}|\phi|$. Luckily, this is also sufficlent for the design of good upper bounds. To make this polnt, we consider several examples, after an auxlliary lemma.

Lemma 3.2.

Let ϕ be a characteristlc function with continuous absolutely integrable n-th derlvative $\phi^{(n)}$ where n is a nonnegative Integer. Then ϕ has a density f where

$$
f(x) \leq \frac{\int\left|\phi^{(n)}\right|}{2 \pi|x|^{n}}
$$

If $\int|t||\phi(t)| d t<\infty$, then ϕ has a Lipschitz density f with Lipschitz constant not exceeding

$$
\frac{\int|t||\phi(t)| d t}{2 \pi}
$$

Proof of Lemma 3.2.

When ϕ has a continuous absolutely integrable n-th derivative $\phi^{(n)}$, then a density f exists, and the following inversion formula is valld:

$$
(i x)^{n} f(x)=\frac{1}{2 \pi} \int \phi^{(n)}(t) e^{-t x} d t
$$

The first inequallty follows directly from thls. Next, assume that $\int|t||\phi(t)| d t<\infty$. Once agaln, a density f exists, and because f can be computed by the standard inversion formula, we have

$$
\begin{aligned}
& |f(x)-f(y)|=\frac{1}{2 \pi}\left|\int\left(e^{-i t x}-e^{-i t y}\right) \phi(t) d t\right| \\
& \leq \frac{1}{2 \pi} \int\left|e^{-i t(y-x)}-1\right||\phi(t)| d t \\
& \leq \frac{1}{2 \pi}|y-x| \int|t||\phi(t)| d t
\end{aligned}
$$

Example 3.1. Characteristic functions with compact support.

Assume that ϕ is known to vanish outside $[-A, A]$ for some finite value A. It should be stressed that this is a very strong condition of smoothness for the denslty f of this distribution. From Lemma 3.2, we know that f is a bounded denslty:

$$
f(x) \leq \frac{A}{\pi}
$$

Furthermore, f is Lipschitz with Lipschitz constant C not exceeding $A^{2} /(2 \pi)$. The densitles in this class can have arbitrarily large talls, and can not be unlformly bounded without imposing some sort of tall condition. For a detalled discussion of this, we refer to section VII.3.3, and in particular to Example VII.3.4, where a dominating curve for a Lipschitz (C) density on the positive real line with absolute moment $\mu_{j}(j>2)$ is glven. The area under that dominating curve is

$$
2 \sqrt{8 C} \frac{j}{j-2} \mu_{j}^{\frac{1}{j}}
$$

Here the factor 2 allows for the extension of the bound to the entire real line. Note that with $C=A^{2} /(2 \pi)$, the rejection constant becomes

$$
\frac{4 A}{\sqrt{\pi}} \frac{j}{j-2} \mu_{j}{ }^{\frac{1}{j}}
$$

which is scale Invariant.
We suggest that a be plcked constant and equal to A, slnce $T_{n}=0 \ln$ Theorem 3.2 when $a \geq A$.

Example 3.2. Unimodal densities.

For unimodal densitles with mode at 0 , a varlety of good dominating curves were glven in section VII.3.2. These required a bound on the value of $f(0)$ and one additional plece of information, such as an upper bound for μ_{j}. For the bound at the mode, we can use

$$
f(x) \leq \frac{\int|\phi|}{2 \pi}
$$

It is difflcult to verlfy the unimodality of a denslty from a characteristlc function, so this example is not as strong as Example 3.1. Also, the cholce of a causes a few extra problems. See Example 3.3 below.

Example 3.3. Optimization of parameter a.

Using a Chebyshev type inequality applled to characteristic functions,

$$
\int_{a}^{\infty}|\phi| \leq \frac{\int_{0}^{\infty}|t|^{r}|\phi(t)| d t}{a^{r}}
$$

we can obtaln upper bounds of the form $c a^{k}+d a^{-r}$ for the error E_{n} In Theorem 3.2 , where c, d, k, r are positive constants, and c depends upon n. Considered as a function of a, this has one minimum at

$$
a=\left(\frac{d r}{c k}\right)^{\frac{1}{k+r}}
$$

The minimal value is

$$
c^{\frac{r}{k+r}} d^{\frac{k}{k+r}}\left(\left(\frac{r}{k}\right)^{\frac{k}{k+r}}+\left(\frac{k}{r}\right)^{\frac{r}{k+r}}\right)
$$

What matters here is that the only factor depending upon n is the flrst one, and that it tends to 0 at the rate $c^{+/(k+r)}$. Since c varles typlcally as $n^{-(k-1)}$ for the estimators given in Theorem 3.2, we obtaln the rate

$$
n^{-\frac{r(k-1)}{k+r}} .
$$

This rate is necessarlly sublinear when $r=1$, regardless of how large k is. Note that it decreases quickly when $r \geq 2$ for all usual values of k. For example, with $r=2$ and Simpson's rule ($k=5$), our rate is $n^{-8 / 7}$. With $r=3$ and the trapezoldal rule $(k=3)$, our rate is $n^{-3 / 2}$.

Example 3.4. Sums of iid uniform random variables.

The uniform density on $[-1,1]$ has characterlstic function $\phi(t)=\sin (t) / t$. The sum of m ild uniform $[-1,1]$ random variables has characteristlc function

$$
\phi_{m}(t)=\left(\frac{\sin (t)}{t}\right)^{m}
$$

The corresponding density is unimodal, which should be of help in the derivation of bounds for the density. By taking consecutive derivatives of ϕ_{m}, it is easily established that the second moment μ_{2} is $\frac{m}{3}$, and that the fourth moment μ_{4} is $\frac{m^{2}}{3}-\frac{2 m}{15}$. Furthermore, the mode, which occurs at zero, has value

$$
\begin{aligned}
& \frac{1}{2 \pi} \int \phi_{m}(t) d t \\
& \leq \frac{1}{2 \pi} \int \min \left(\left(1-\frac{t^{2}}{6}+\frac{t^{4}}{120}\right)^{m},|t|^{-m}\right) d t \\
& \leq \frac{1}{2 \pi} \int \min \left(e^{-\frac{m}{6} t^{2}\left(1-\frac{t^{2}}{20}\right)},|t|^{-m}\right) d t \\
& \leq \frac{2}{2 \pi(m-1)}+\int \frac{1}{2 \pi} e^{-\frac{m}{6} \frac{19}{20} t^{2}} d t \\
& =\frac{1}{\pi(m-1)}+\sqrt{\frac{60}{18 m}}=M,
\end{aligned}
$$

where we split the integral over the intervals $[-1,1]$ and its complement. We now refer to Theorem VII.3.2 for symmetric unimodal densitles bounded by M and having r-th absolute moment μ_{r}. Such densitles are bounded by $\min \left(M,(r+1) \mu_{r} /|x|^{r+1}\right)$, and the dominating curve has integral

$$
\frac{r+1}{r}\left((r+1) \mu_{r}\right)^{\frac{1}{r+1}} M^{\frac{r}{r+1}} .
$$

For example, for $r=4$, we obtain \ln our example

$$
\frac{5}{4}\left(5 \mu_{4}\right)^{\frac{1}{5}} M^{\frac{4}{5}} \sim \frac{5}{4}\left(\frac{5}{3}\right)^{\frac{1}{5}}\left(\frac{60}{19}\right)^{\frac{2}{5}}
$$

as $m \rightarrow \infty$. In other words, as $m \rightarrow \infty$, the rejection constant tends to a flxed value. One can verlfy that thls same property holds true for all values of $r>0$. This example is continued in Example 3.6.

This leaves us with the black box algorithm and its analysis. We assume that a dominating curve $c g$ is known, where g is a density, that another function h is known having the property that

$$
\frac{1}{2 \pi}\left(\int_{-\infty}^{-a}|\phi|+\int_{a}^{\infty}|\phi|\right) \leq h(a) \quad(a>0)
$$

and that integrals will be evaluated only for the subsequence $a_{0} 2^{k}, k \geq 0$, where a_{0} is a given integer. Let f_{n} denote a numerical integral. estimating ψ such as r_{n}, s_{n}, t_{n} or b_{n}. This estimate uses as Interval of Integration $[-l(n, x), l(n, x)]$ for some function l which normally diverges as n tends to ∞.

Series method based upon numerical integration

REPEAT

Generate a random variate X with density g.
Generate a uniform $[0,1]$ random variate U.
Compute $T \leftarrow U c g(X)$ (recall that $f \leq c g$).
$n \leftarrow a_{0} 2^{k}, a \leftarrow l(n, X)$ (prepare for integration)
REPEAT
$W \leftarrow f_{n}(X)\left(f_{n}\right.$ is an integral estimate of $f=\int \psi$ with parameter n on interval $[-a, a]$; the number of evaluations of ϕ required is proportional to n)
Compute an upper bound on the error, E. (Use the bounds of Theorem 3.2 plus $h(a)$.)
$n \leftarrow 2 n$
UNTIL $|T-W|>E$
UNTLL $T<W$
RETURN X

The first issue is that of correctness of the algorlthm. This bolls down to verlfylng whether the algorlthm halts with probabllity one. We have:

Theorem 3.3.

The algorithm based upon the serles method given above is correct, 1.e. halts with probabllity one, when

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} l(n, x)=\infty \quad(\text { all } x) \\
& \lim _{a \rightarrow \infty} h(a)=\infty
\end{aligned}
$$

(this forces ϕ to be absolutely integrable), and one of the following conditions holds:
A. $\quad r_{n}$ is used, $\mu_{1}<\infty$, and $l(n, x)=0\left(n^{1 / 2}\right)$ for all x.
B. t_{n} is used, $\mu_{2}<\infty$, and $l(n, x)=0\left(n^{2 / 3}\right)$ for all x.
C. s_{n} is used, $\mu_{4}<\infty$, and $l(n, x)=o\left(n^{4 / 5}\right)$ for all x.
D. $\quad b_{n}$ is used, $\mu_{6}<\infty$, and $l(n, x)=o\left(n^{6 / 7}\right)$ for all x.

Here μ_{j} is the j-th absolute moment for f.

Proof of Theorem 3.3.

We need only verlfy that the error bound used in the algorlthm tends to 0 as $n \rightarrow \infty$ for all x. Theorem 3.3 is a direct corollary of Theorem 3.2.

Theorem 3.3 is reassuring. Under very mild conditions on the density, a valld algorlthm indeed exlsts. We have to know μ_{j} for some j and we need also an expllcit expression for the tall bound $h(a)$. The theorem just states that glven this information, we can choose a function $l(n, x)$ and an estimator f_{n} which guarantee the validity. Unfortunately, there is a snake in the grass. The function $l(n, x)$ has a profound impact on the tlme before halting. In many examples, the expected time is ∞. Thus, let us consider the expected number of evaluations of ψ (or ϕ) before halting. This can't possibly be glven without discussing how large $h($.$) is, and whlch function l(.,$.$) is plcked. Perhaps the best$ thing to do at this stage is to offer a helpful lemma, and then to llustrate it on a few examples.

Lemma 3.3.

Consider the serles method glven above, and assume that for the glven functlons h and l, we have an Inequallty of the type

$$
\left|f(x)-f_{n}(x)\right| \leq C(x) n^{-\alpha} \quad(n \geq 1, \text { all } x)
$$

where C is a positive function and $\alpha>1$ is a constant. If $a_{0}=1$ and f_{n} requires $\beta n+1$ evaluations of ψ for some constant β (for $t_{n}, \beta=1$, and for $s_{n}, \beta=2$), then the expected number of evaluations of ψ before halting does not exceed

$$
\begin{aligned}
& \leq c(\beta+1)+2^{\gamma} c c^{1-\gamma} \int C^{\gamma} g{ }^{1-\gamma} \frac{2 \beta+1}{1-2^{1-\gamma \alpha}} \\
& \leq c(\beta+1)+2^{\gamma} c c^{1-\gamma} \frac{2 \beta+1}{1-2^{1-\gamma \alpha}}\left(\int C g\right)^{1-\gamma}\left(\int C^{2-\frac{1}{\gamma}}\right)^{\gamma}
\end{aligned}
$$

where γ is a number satisfying

$$
\alpha \gamma>1, \gamma \leq 1
$$

Proof of Lemma 3.3.

By Wald's equation, our expected number is equal to c tlmes the expected number of evaluations in the flrst iteration (regardless of acceptance or rejection). Let us first condition on $X=x$ with density g. For f_{1}, we use up $\beta+1$ evaluatlons in all cases. The probablilty of having to evaluate f_{2} does not exceed $2 C(x) 1^{-\alpha} / c g(x)$. Continuing in this fashion, it is easily seen that the expected number of evaluations of ψ is not greater than

$$
\sum_{k=0}^{\infty}\left(\left(\beta 2^{k+1}+1\right) \min \left(\frac{2 C(x)\left(2^{k}\right)^{-\alpha}}{c g(x)}, 1\right)\right)+\beta+1
$$

Taking expectations with respect to $g(x) d x$ and multiplying with c gives the unconditional upper bound

$$
\begin{aligned}
& c(\beta+1)+\sum_{k=0}^{\infty}\left(\left(\beta 2^{k+1}+1\right) \int \min \left(2 C(x)\left(2^{k}\right)^{-\alpha}, c g(x)\right) d x\right) \\
& \leq c(\beta+1)+\sum_{k=0}^{\infty}\left(\left(\beta 2^{k+1}+1\right) \int \min \left(2 C(x)\left(2^{k}\right)^{-\alpha}, c g(x)\right) d x\right) \\
& \leq c(\beta+1)+\int(2 C(x))^{\gamma}(c g(x))^{1-\gamma} d x \sum_{k=0}^{\infty} 2^{-k \gamma \alpha}\left(\beta 2^{k+1}+1\right) \\
& =c(\beta+1)+2^{\gamma} c^{1-\gamma} \int C^{\gamma} g^{1-\gamma}\left(\frac{2 \beta}{1-2^{1-\gamma \alpha}}+\frac{1}{1-2^{-\gamma \alpha}}\right) \\
& \leq c(\beta+1)+2^{\gamma} c^{1-\gamma} \int C^{\gamma} g^{1-\gamma} \frac{2 \beta+1}{1-2^{1-\gamma \alpha}},
\end{aligned}
$$

where γ is a number satisfying

$$
\alpha \gamma>1, \gamma \leq 1
$$

By Holder's inequallty, the Integral in the last expression does not exceed

$$
\left(\int C g\right)^{1-\gamma}\left(\int C^{2-\frac{1}{\gamma}}\right)^{\gamma}
$$

Lemma 3.3 reveals the extent to which the efflclency of the algorithm is affected by $c, C(x), g(x)$ and μ_{j}.

Example 3.5. Characteristic functions with compact support.

Assume that the characteristic function vanishes outside $[-A, A]$. If we take $l(n, x)=A$, then $h \equiv 0$ in the algorithm. Note that this cholce violates the consistency conditions of Theorem 3.3, but leads nevertheless to a consistent procedure. With t_{n}, we have $\beta=1, \alpha=2$ and an error

$$
E_{n} \leq C(x) n^{-\alpha}
$$

where

$$
C(x)=\frac{(2 A)^{3}}{24 \pi}\left(|x|+\sqrt{\mu_{2}}\right)^{2} .
$$

With s_{n}, we have $\beta=2, \alpha=4$ and

$$
C(x)=\frac{(2 A)^{5}}{360 \pi}\left(|x|+\mu_{4}^{\frac{1}{4}}\right)^{4}
$$

'With both error bounds, $\int C=\infty$, so we can't take $\gamma=1 \ln$ Lemma 3.3. Also,

$$
\int C^{2-\frac{1}{\gamma}}<\infty
$$

when $\frac{1}{\gamma}>2+\frac{1}{\alpha}$. Thus, for the bound of Lemma 3.3 to be useful, we need to choose

$$
\frac{1}{\alpha}<\gamma<\frac{\alpha}{2 \alpha+1}
$$

This yields the intervals $\left(\frac{1}{2}, \frac{2}{5}\right)$ and ($\frac{1}{4}, \frac{4}{9}$) respectively. Of course, the former Interval is empty. This is due to the fact that the last inequallty in Lemma 3.3 (combined with Theorem 3.2) never leads to a finite upper bound for the trapezoldal rule. Let us further concentrate therefore on s_{n}. Note that

$$
\begin{aligned}
& \int C g \leq \frac{(2 A)^{5}}{360 \pi} \int g(x)\left(|x|+\mu_{4}^{\frac{1}{4}}\right)^{4} d x \\
& \leq \frac{(2 A)^{5}}{360 \pi} 8 \int g(x)\left(|x|^{4}+\mu_{4}\right) d x \\
& =\frac{32 A^{5}\left(\mu{ }_{4}^{*}+\mu_{4}\right)}{45 \pi},
\end{aligned}
$$

where μ_{4}^{*} is the fourth absolute moment for g. Typlcally, when g is close to f, the fourth moment is close to that of f. We won't proceed here with the expllcit computation of the full bound of Lemma 3.3. It suffices to note that the bound is large when elther A or μ_{4} is large. In other words, it is large when the support of ϕ is large. (the density is less smooth) and/or the tall of the density is large. Let us conclude thls section by repeating the algorithm:

Series method based upon numerical integration

[NOTE: The characteristic function ϕ vanishes off $[-A, A]$, and the fourth absolute moment does not exceed μ_{4}.]
REPEAT
Generate a random variate X with density g.
Generate a uniform $[0,1]$ random variate U.
Compute $T \leftarrow U c g(X)$ (recall that $f \leq c g$).
$n \leftarrow a_{0}$ (prepare for integration)
REPEAT
$W \leftarrow \operatorname{Re}\left(s_{n}(X)\right)$ (s_{n} is Simpson's integral estimate of $f=\int \psi$ with parameter n on interval $[-A, A]$; the number of evaluations of ϕ required is $2 n+1$)
$E \leftarrow \frac{(2 A)^{5}}{360 \pi}\left(|X|+\mu_{4}^{\frac{1}{4}}\right)^{4} n^{-4}$
$n \leftarrow 2 n$
UNTIL $|T-W|>E$
UNTIL $T<W$
RETURN X

For dominating curves $c g$, there are numerous possibllitles. See for example Lemma 3.2. In Example 3.1, a dominating curve based upon an Inequallty for Llpschitz densitles (sectlon VII.3.4) was developed. The rejection constant c for that example is

$$
\frac{8}{\sqrt{\pi}} A \mu_{4}^{\frac{1}{4}}
$$

Example 3.6. Sums of iid uniform random variables.

This is a continuation of Example 3.4, where a good dominating density was found for use in the rejection algorlthm. What is left here is mainly the cholce of h and l for use in the algorithm. Let us start with the decision to estimate f by Simpson's rule s_{n}. This is based upon a quick prellminary analysis which shows that the trapezoldal rule for example just isn't good enough to obtain finlte expected time.

The function $h(a)$ can be chosen as

$$
h(a)=\frac{1}{\pi a^{m-1}(m-1)}
$$

where m is the number of uniform $[-1,1]$ random varlables that are summed. To see this, note that

$$
2 \int_{a}^{\infty} \frac{1}{2 \pi}\left|\frac{\sin (t)}{t}\right|^{m} d t \leq \frac{1}{\pi} \int_{a}^{\infty}|t|^{-m} d t=h(a)
$$

Given $X=x$ in the algorithm, we see that with s_{n}, the error E_{n} is not greater than

$$
E_{n} \leq h(a)+\frac{(2 a)^{5}\left(|x|+\mu_{4}^{1 / 4}\right)^{4}}{380 \pi n^{4}}
$$

where a determines the integration interval (Theorem 3.2). Optimization of the upper bound with respect to a is simple and leads to the value

$$
a=\left(\frac{9 n^{4}}{4\left(|x|+\mu_{4}^{1 / 4}\right)}\right)^{\frac{1}{m+4}}
$$

With this value for a (or $l(n, x)$), we obtaln

$$
E_{n} \leq C(x) n^{-\alpha}
$$

for $\alpha=4(m-1) /(m+4)$ and

$$
C(x)=\frac{m}{m-1} \frac{1}{\pi}\left(\frac{4}{9}\right)^{\frac{m-1}{m+4}}\left(|x|+\mu_{4}^{1 / 4}\right)^{\alpha}
$$

This is all the users need to implement the algorithm. We can now apply Lemma 3.3 to obtain an idea of the expected complexity of the algorlthm. We will show that the expected time is better than $O\left(m^{(5+\epsilon) / 8}\right)$ for all $\epsilon>0$. A brlef outllne of the proof should suffice at thls point. In Lemma 3.3, we need to plck a constant γ. The conditions $\alpha \gamma>1$ and $\int C^{2-\frac{1}{\gamma}}<\infty$ force us to impose the conditions

$$
\frac{m+4}{4 m-4}<\gamma<\frac{4 m-4}{9 m-4}
$$

