Chapter Four

SPECIALIZED ALGORITHMS

1. INTRODUCTION.

1.1. Motivation for the chapter.

The maln techniques for random varlate generation were developed in chapters II and III. These will be supplemented in thls chapter with a host of other techniques: these Include historlcally Important methods (such as the Forsythe-von Neumann method), methods based upon specifle properties of the unlform distribution (such as the polar method for the normal density), methods for denslties that are glven as convergent series (the serles method) and methods that have proven partlcularly successful for many distrlbutions (such as the ratio-of-unlforms method).

To start off, we insert a section of exerclses requiring techniques of chapters II and III.

1.2. Exercises.

1. Glve one or more reasonably efflcient methods for the generation of random varlates from the following densitles (which should be plotted too to gain some inslght):

Density	Range for x	Range for the parameter(s)
$\left(\pi \log \left(\frac{1}{x}\right)\right)^{-\frac{1}{2}}$	$0<x<1$	
$2 \sqrt{\frac{1}{\pi} \log \left(\frac{1}{x}\right)}$	$0<x<1$	
$\frac{4}{\pi^{2} x} \log \left(\frac{1+x}{1-x}\right)$	$0<x<1$	
$\frac{8}{\pi^{2}\left(1-x^{2}\right)} \log \left(\frac{1}{x}\right)$	$0<x<1$	
$\frac{2 e^{2 a}}{\sqrt{2 \pi}} e^{-x^{2}-\frac{a^{2}}{x^{2}}}$	$x>0$	
$\frac{4 x^{2}}{\sqrt{\pi}} e^{-x^{2}}$	$x \geq 0$	
$\sqrt{\frac{\theta \pi}{x}} e^{-\theta x}$	$x>0$	

2. Write short and fast programs for generating random varlates with the densitles glven in the table below. In the programs, use only unform [0,1] and/or unlform $[-1,1]$ random variates.

Density	Range for x	Range for the parameter(s)
$\frac{n}{n-1}\left(1-x^{n-1}\right)$	$0 \leq x \leq 1$	$n \geq 2, n$ integer
$\frac{1}{2 x^{4}} e^{-\frac{1}{x}}$	$x>0$	
$\frac{2}{e^{x x}+e^{-\pi x}}$	$x \in R$	
$\frac{4 \log (2 x-1)}{\pi^{2}(x-1) x}$	$x>1$	

3. Write one-line generators (i.e., assignment statements) for generating random varlates with densitles as described below. You can use log,exp,cos,atan,max,min and functions that generate unlform $[0,1]$ and normal random varlates.

Density	Range of x	Range of the parameter(s)
$\frac{(-\log x)^{n}}{n!}$	$0<x<1$	n positive integer
$\frac{1}{2} e^{-\|x\|}$	$x \in R$	
$\frac{2}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{n-1} e^{-\frac{x^{2}}{2}}$	$x>0$	n positive integer
$\frac{1}{2+e^{x}+e^{-x}}$	$x \in R$	
$a-(2 a-2) x$	$0 \leq x \leq 1$	$1 \leq a \leq 2$

In number 2 we recognize the Laplace density. Number 4 is the logistic denslty.
4. Show how one can generate a random varlate of one's cholce having a density f on $[0, \infty)$ with the property that $\lim _{x \downarrow 0} f(x)=\infty, f(x)>0$ for all x.
5. Glve random varlate generators for the following simple densitles:

Density	Range for x
$\frac{6}{\pi^{2}} \frac{x}{e^{x}-1}$	$x>0$
$\frac{12}{\pi^{2}} \frac{e^{x}+1}{e^{x}}$	$x>0$
$\frac{6}{\pi^{2}} \frac{\log \left(\frac{1}{x}\right)}{1-x}$	$0<x<1$
$\frac{12}{\pi^{2}} \frac{\log (1+x)}{x}$	$0<x<1$
$\frac{\arctan (x)}{G x}$	$0<x<1$
$\frac{\log \left(\frac{1}{x}\right)}{G\left(1+x^{2}\right)}$	$0<x<1$
$\frac{2 \tan (x)}{\pi x}$	$x \geq 0$
$\frac{2}{\pi}\left(\frac{\sin (x)}{x}\right)^{2}$	$x \geq 0$

Here G is Catalan's constant ($0.9159855941772100 . .$.).
B. Find a direct method (l.e., one not involving rejection of any kind) for generating random varlates with distribution function $F(x)=1-e^{-a x-b x^{2}-c x^{3}}$ ($x \geq 0$), where $a, b, c>0$ are parameters.
7. Someone shows you the rejection algorithm given below. Find the density of the generated random varlate. Find the dominating density used in the rejection method, and determine the rejection constant.

REPEAT

Generate iid uniform $[0,1]$ random variates U_{1}, U_{2}, U_{3}.
UNTIL $U_{3}\left(1+U_{1} U_{2}\right) \leq 1$
RETURN $X \leftarrow-\log \left(U_{1} U_{2}\right)$
8. Find a simple function of two lld unlform $[0,1]$ random varlates which has distribution function $F(x)=1-\frac{\log (1+x)}{x} \quad(x>0)$. This distribution function is important in the theory of records (see e.g. Shorrock, 1972).
9. Glve simple rejection algorithms with good rejection constants for generating discrete random varlates with distrlbutlons determined as follows:

p_{n}	Range for n
$\frac{4}{\pi} \arctan \left(\frac{1}{2 n^{2}}\right)$	$n \geq 1$
$\frac{8}{\pi} \frac{1}{(4 n+1)(4 n+3)}$	$n \geq 0$
$\frac{8}{\pi^{2}} \frac{1}{(2 n+1)^{2}}$	$n \geq 0$
$\frac{4}{\pi} \arctan \left(\frac{1}{n^{2}+n+1}\right)$	$n \geq 1$

10. The hypoexponential distribution. Glve a unlformly fast generator for the famlly of hypoexponential densittes given by

$$
f(x)=\frac{\lambda \mu}{\mu-\lambda}\left(e^{-\lambda x}-e^{-\mu x}\right) \quad(x>0),
$$

where $\mu>\lambda>0$ are the parameters of the distribution.

2. THE FORSYTHE-VON NEUMANN METHOD.

2.1. Description of the method.

In 1951, von Neumann presented an ingenlous method for generating exponentlal random varlates which requires only comparisons and a perfect unlform $[0,1]$ random variate generator. The exponentlal distribution is entirely obtalned by manlpulating the outcomes of the comparisons. Forsythe (1872) later generallzed the technique to other dlstributions, albelt at the expense of slmpllclty slnce the method requires more than just comparlsons. The method was then applled with a great deal of success in normal random varlate generation (Ahrens and Dleter, 1973; Brent, 1974) and even in beta and gamma generators (Atkinson and Pearce, 1976). Unfortunately, in the last decade, most of the algorithms based on the Forsythe-von Neumann method have been surpassed by other algorlthms partlally due to the discovery of the allas and acceptance-complement methods. The method is expensive in terms of unlform $[0,1]$ random varlates unless spectal "tricks" are used to reduce the number. In addition, for general distributlons, there is a tedlous set-up step which makes the algorithm virtually Inaccessible to the average user.

Just how comparisons can be manlpulated to create exponentlally distrlbuted random varlables is clear from the following Theorem.

Theorem 2.1.

Let X_{1}, X_{2}, \ldots be lld random varlables with distribution function F. Then:
(1) $P\left(x \geq X_{1} \geq \cdots \geq X_{k-1}<X_{k}\right)=\frac{F(x)^{k-1}}{(k-1)!}-\frac{F(x)^{k}}{k!} \quad$ (all x).
(ii) If the random varlable K is determined by the condition $x \geq X_{1} \geq \cdots \geq X_{K-1}<X_{K}$, then $P(K$ odd $)=e^{-F(x)}$, all x.
(i11) If Y has distribution function G and is independent of the X_{i} 's, and if K is defined by the condition $Y \geq X_{1} \geq \cdots \geq X_{K-1}<X_{K}$, then

$$
\left.P(Y \leq x \mid K \text { odd })=\frac{\int_{-\infty}^{x} e^{-F(y)} d G(y)}{\int_{-\infty}^{+\infty} e^{-F(y)} d G(y)} \quad \text { (all } x\right)
$$

Proof of Theorem 2.1.

For flxed x,

$$
P\left(x \geq X_{1} \geq \cdots \geq X_{k}\right)=\frac{1}{k!} P\left(\max _{i \leq k} X_{i} \leq x\right)=\frac{F(x)^{k}}{k!} .
$$

Thus,

$$
\begin{aligned}
& P\left(x \geq X_{1} \geq \cdots \geq X_{k-1}<X_{k}\right) \\
& =P\left(x \geq X_{1} \geq \cdots \geq X_{k-1}\right)-P\left(x \geq X_{1} \geq \cdots \geq X_{k}\right) \\
& =\frac{F(x)^{k-1}}{(k-1)!}-\frac{F(x)^{k}}{k!} .
\end{aligned}
$$

Also,

$$
P(K \text { odd })=\left(1-\frac{F(x)}{1!}\right)+\left(\frac{F(x)^{2}}{2!}-\frac{F(x)^{3}}{3!}\right)+\cdots=e^{-F(x)} .
$$

Part (iII) of the theorem finally follows from the following equalitles:

$$
\begin{aligned}
& P(Y \leq x, K \text { odd })=\int_{-\infty}^{x} P(K \text { odd } \mid Y=y) d G(y)=\int_{-\infty}^{x} e^{-F(y)} d G(y), \\
& P(K \text { odd })=\int_{-\infty}^{+\infty} e^{-F(y)} d G(y) .
\end{aligned}
$$

We can now describe Forsythe's method (Forsythe, 1972) for densitles f which can be written as follows:

$$
f(x)=c g(x) e^{-F(x)}
$$

where g is a density, $0 \leq F(x) \leq 1$ is some function (not necessarily a distribution function), and c is a normallzation constant.

Forsythe's method

REPEAT

Generate a random variate X with density g.
$W \leftarrow F(X)$
$K \leftarrow 1$
Stop - False (Stop is an auxiliary variable for getting out of the next loop.)
REPEAT
Generate a uniform $[0,1]$ random variate U.
IF $U>W$
THEN Stop \leftarrow True
ELSE $W \leftarrow U, K \leftarrow K+1$
UNTIL Stop'
UNTIL K odd
RETURN X

We will first verlfy with the help of Theorem 2.1 that thls algorithm is valld. First, for flxed $X=x$, we have for the first Iteration of the outer loop,

$$
P(K \text { odd })=e^{-F(x)}
$$

Thus, at the end of the first iteration,

$$
P(X \leq x, K \text { odd })=\int_{-\infty}^{x} e^{-F(y)} g(y) d y
$$

Arguing as in the proof of the properties of the rejectlon method, we deduce that:
(1) The returned random variate X satisfles

$$
P(X \leq x)=\int_{-\infty}^{x} c e^{-F(y)} g(y) d y
$$

Thus, it has density $c e^{-F(x)} g(x)$.
(11) The expected number of outer loops executed before halting is $\frac{1}{p}$ where p is the probability of exit, i.e. $p=P(K$ odd $)=\int_{-\infty}^{+\infty} e^{-F(y)} g(y) d y$.
(iii) In any single Iteration,

$$
\begin{aligned}
& E(K)=\int\left(1\left(1-\frac{F(x)}{1!}\right)+2\left(\frac{F(x)}{1!}-\frac{F(x)^{2}}{2!}\right)+\cdots\right) g(x) d x \\
& =\int\left(1+\frac{F(x)}{1!}+\frac{F(x)^{2}}{2!}+\cdots\right) g(x) d x \\
& =\int e^{F(x)} g(x) d x
\end{aligned}
$$

(iv) If N is the total number of uniform $[0,1]$ random varlates required, then (by Wald's equation)

$$
E(N)=\frac{1+E(K)}{p}=\frac{1+\int e^{F(x)} g(x) d x}{\int e^{-F(x)} g(x) d x}
$$

In addition to the N unlform random varlates, we also need on the average $\frac{1}{p}$ random varlates with density g. It should be mentioned though that g is often uniform on $[0,1]$ so that this causes no major drawbacks. In that case, the total expected number of unform random varlates needed is at least equal to $\left||f|_{\infty}\right.$ (thls follows from Letac's lower bound). From (iv) above, we deduce that

$$
2 \leq E(N) \leq \frac{1+e}{\frac{1}{e}}=e+e^{2}
$$

Observe that Forsythe's method does not require any exponentlation. There are of course about $\frac{1}{p}$ evaluations of F. If we were to use the rejection method with as dominating density g, then p would be exactly the same as here. Per iteration, we would also need a g-distributed random varlate, one unlform random varlate, and one computation of e^{-F}. In a nutshell, we have replaced the latter evaluation by a (usually) cheaper evaluation of F and some additional unlform random varlates. If exponential random varlates are cheap, then we can in the rejection method replace the e^{-F} evaluation by an evaluation of F if we replace also the uniform random varlate by the exponential random varlate. In such situations, it seems very unllkely that Forsythe's method will be faster.

One of the dlsadvantages of the algorithm shown above is that F must take values in $[0,1]$, yet many common densities such as the exponential and normal densitles when put in a form useful for Forsythe's method, have unbounded F such as $F(x)=x$ or $F(x)=\frac{x^{2}}{2}$. To get around this, the real line must be broken up into pleces, and each plece treated separately. This will be documented further on. It should be pointed out however that the rejection method for $f=c e^{-F} g$ puts no restrictions on the slze of F.

2.2. Von Neumann's exponential random variate generator.

A basic property of the exponentlal distrlbution is given in Lemma 2.1:

Lemma 2.1.

An exponentlai random varlable E is distributed as $(Z-1) \mu+Y$ where Z, Y are independent random variables and $\mu>0$ is an arbltrary positive number: Z is geometrically distributed with

$$
P(Z=i)=\int_{(i-1) \mu}^{i \mu} e^{-x} d x=e^{-(i-1) \mu-e^{-i \mu} \quad(i \geq 1), ~}
$$

and Y is a truncated exponential random variable with density

$$
f(x)=\frac{e^{-x}}{1-e^{-\mu}} \quad(0 \leq x \leq \mu)
$$

Proof of Lemma 2.1.

Stralghtforward.

If we choose $\mu=1$, then Forsythe's method can be used directly for the generation of Y. Since in this case $F(x)=x$, nothing but uniform random varlates are required:
von Neumann's exponential random variate generator
REPEAT
Generate a uniform $[0,1]$ random variate Y. Set $W \leftarrow Y$.
$K \leftarrow 1$
Stop \leftarrow False
REPEAT
Generate a uniform $[0,1]$ random variate U. IF $U>W$

THEN Stop - True
ELSE $W \leftarrow U, \dot{K} \leftarrow K+1$
UNTIL Stop
UNTIL K odd
Generate a geometric random variate Z with $P(Z=i)=\left(1-\frac{1}{e}\right)\left(\frac{1}{e}\right)^{i-1}(i \geq 1)$.
RETURN $X \leftarrow(Z-1)+Y$

The remarkable fact is that this method requires only comparisons, unlform random varlates, and a counter. A quick analysis shows that $p=P(K$ odd $)=\int_{0}^{1} e^{-x} d x=1-\frac{1}{e}$. Thus, the expected number of unform random variates needed is

$$
E(\dot{N})=\frac{1+\int_{0}^{1} e^{x} d x}{\int_{0}^{1} e^{-x} d x}=\frac{e^{2}}{e-1}
$$

Thls is a high bottom llne. Von Neumann has noted that to generate Z, we need not carry out a new experiment. It suffices to count the number of executions of the outer loop: this is geometrically distributed with the correct parameter, and turns out to be independent of Y.

2.3. Monahan's generalization.

Monahan (1979) generallzed the Forsythe-von Neumann method for generating random varlates X with distribution function

$$
F(x)=\frac{H(-G(x))}{H(-1)}
$$

where

$$
H(x)=\sum_{n=1}^{\infty} a_{n} x^{n}
$$

$1=a_{1} \geq a_{2} \geq \cdots \geq 0$ is a given sequence of constants, and G is a given distribution function.

Theorem 2.2. (Monahan, 1979)

The following algorithm generates a random varlate X with distribution function F :

Monahan's algorithm

REPEAT

Generate a random variate X with distribution function G.
$K \leftarrow 1$
Stop \leftarrow False
REPEAT
Generate a random variate U with distribution function G. Generate a uniform [0,1] random variate V.
IF $U \leq X$ AND $V \leq \frac{a_{K+1}}{a_{K}}$
THEN $K \leftarrow K+1$
ELSE Stop \leftarrow True
UNTIL Stop
UNTIL K odd
RETURN X

The expected number of random varlates with distribution function G is

$$
\frac{1+H(1)}{-H(-1)} .
$$

Proof of Theorem 2.2.

We deflne the event A_{n} by $\left[X=\max \left(X, U_{1}, \ldots, U_{n}\right), Z_{1}=\cdots=Z_{n}=1\right]$, where the U_{i} 's refer to the random variates U generated in the inner loop, and the Z_{i} 's are Bernoulll random varlables equal to consecutive values of I

$$
\left.\left\lvert\, V \leq \frac{a_{4}+1}{a_{1}}\right.\right]^{\circ}
$$

Thus,

$$
\begin{aligned}
& P\left(X \leq x, A_{n}\right)=a_{n} G(x)^{n} \\
& P\left(X \leq x, A_{n}, A_{n+1}{ }^{c}\right)=a_{n} G(x)^{n}-a_{n+1} G(x)^{n+1} .
\end{aligned}
$$

We will call the probabllity that X is accepted p_{0}. Then

$$
p_{0}=P(K \text { odd })=\sum_{n=1}^{\infty} a_{n}(-1)^{n+1}=H(-1)
$$

Thus, the returned X has distribution function

$$
F(x)=P(X \leq x)=\frac{\sum_{n=1}^{\infty} a_{n} G(x)^{n}(-1)^{n+1}}{p_{0}}=\frac{H(-G(x))}{H(-1)}
$$

The expected number of G-distrlbuted random varlates needed is $E(N)$ where

$$
\begin{aligned}
& E(N)=\frac{1}{p_{0}} \sum_{n=1}^{\infty}(n+1) P\left(A_{n} A_{n+1}^{c}\right) \\
& =\sum_{n=1}^{\infty}(n+1) \frac{a_{n}-a_{n+1}}{p_{0}} \\
& =\frac{1+\sum_{n=1}^{\infty} a_{n}}{p_{0}} \\
& =\frac{1+H(1)}{-H(-1)}
\end{aligned}
$$

Example 2.1.

Consider the distribution function

$$
F(x)=1-\cos \left(\frac{\pi x}{2}\right) \quad(0 \leq x \leq 1)
$$

To put this in the form of Theorem 2.2, we choose another distribution function, $G(x)=x^{2} \quad(0 \leq x \leq 1)$, and note that

$$
F(x)=\frac{H(-G(x))}{H(-1)}
$$

where

$$
H(x)=x+\frac{\pi^{2}}{48} x^{2}+\frac{\pi^{4}}{5780} x^{3}+\cdots+\frac{\pi^{2 i-2}}{2^{2 i-3}(2 i)!} x^{i}+\cdots
$$

One can easlly show that $p_{0}=H(-1)=\frac{8}{\pi^{2}}$, whlle $E(N)$ is approximately 2.74 . Also, all the conditlons of Theorem 2.2 are satlsfled. Random varlates with thls distribution function can of course be obtalned by the inversion method too, as $\frac{2}{\pi} \arccos (U)$ where U is a unlform [0,1] random varlate. Monahan's algorithm avolds of course any evaluation of a transcendental functlon. The complete algorithm can be summarized as follows, after we have noted that

$$
\frac{a_{n+1}}{a_{n}}=\left(\frac{\pi}{2}\right)^{2} \frac{1}{(2 n+2)(2 n+1)}:
$$

REPEAT

Generate $X \leftarrow \max \left(U_{1}, U_{2}\right)$ where U_{1}, U_{2} are iid uniform $[0,1]$ random variates.
$K \leftarrow 1$
Stop \leftarrow False
REPEAT
Generate U, distributed as X.
Generate a uniform $[0,1]$ random variate V.
IF $U \leq X$ AND $V \leq \frac{\left(\frac{\pi}{2}\right)^{2}}{4 K^{2}+6 K+2}$
THEN $K \leftarrow K+1$ ELSE Stop \leftarrow True
UNTIL Stop
UNTIL K odd
RETURN X

2.4. An example: Vaduva's gamma generator.

We will apply the Forsythe-von Neumann method to develop a gamma generator when the parameter a is $\ln (0,1]$. Vaduva (1977) suggests handling the part of the gamma density on $[0,1]$ separately. This part is

$$
f(x)=c\left(a x^{a-1}\right) e^{-x} \quad(0<x \leq 1),
$$

where c is a normalization constant. This is in the form $c g(x) e^{-F(x)}$ for a density g and a $[0,1]$-valued function F. Random varlates with density $g(x)=a x^{a-1}$ can be generated as $U^{\frac{1}{a}}$ where U is a uniform $[0,1]$ random varlate. Thus, we can proceed as follows:

Vadura's generator for the left part of the gamma density
repeat
Generate a uniform $[0,1]$ random variate U. Set $X \leftarrow U^{\frac{1}{a}}$.
$W \leftarrow X$
$K \curvearrowleft 1$
Stop \leftarrow False
REPEAT
Generate a uniform $[0,1]$ random variate U.
IF $U>W$
THEN Stop \leftarrow True
ELSE $W \leftarrow U, K \leftarrow K+1$
UNTIL Stop
UNTIL K odd
RETURN X

Let N be the number of unlform [0,1] random varlates required by this method. Then, as we have seen,

$$
E(N)=\frac{1+\int_{0}^{1} a x^{a-1} e^{x} d x}{\int_{0}^{1} a x^{a-1} e^{-x} d x}
$$

Lemma 2.2.

For Vaduva's partial gamma generator shown above, we have

$$
2 \leq E(N) \leq(2+a(e-1)) e^{\frac{a}{a+1}} \leq \sqrt{e}(e+1)
$$

and

$$
\lim _{a \downarrow 0} E(N)=2
$$

Proof of Lemma 2.2.

Flrst, we have

$$
\begin{aligned}
& 1=\int_{0}^{1} a x^{a-1} d x \geq \int_{0}^{1} a x^{a-1} e^{-x} d x \\
& =E\left(e^{-Y}\right) \quad \text { (where } Y \text { is a random variable with density } a x^{a-1} \text {) } \\
& \geq e^{-E(Y) \quad \text { (by Jensen's inequallty) }} \\
& =e^{\frac{-a}{a+1}}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& 1 \leq \int_{0}^{1} a x^{a-1} e^{x} d x \\
& \left.=1+\frac{a}{a+1}+\frac{a}{2!(a+2)}+\cdots \quad \text { (by expansion of } e^{x}\right) \\
& \leq 1+a\left(1+\frac{1}{2!}+\frac{1}{3!}+\cdots\right) \\
& =1+a(e-1)
\end{aligned}
$$

Putting all of this together gives us the first Inequallty. Note that the supremum of the upper bound for $E(N)$ is obtained for $a=1$. Also, the llmit as $a \downarrow 0$ follows from the inequality.

What is Important here is that the expected time taken by the algorithm remalns unlformly bounded in a. We have also established that the algorithm seems most efflctent when a is near 0 . Nevertheless, the algorithm seems less efflcient than the rejection method with dominating density g developed in Example II.3.3. There the reJectlon constant was

$$
c=\frac{1}{\int_{0}^{1} a x^{a-1} e^{-x} d x}
$$

which is known to lle between 1 and $e^{\frac{a}{a+1}}$. Purely on the basis of expected number of unlform random varlates required, we see that the rejection method has $2 \leq E(N) \leq 2 e^{\frac{a}{a+1}} \leq 2 \sqrt{e}$. Thls is better than for Forsythe's method for all values of a. See also exercise 2.2 .

2.5. Exercises.

1. Apply Monahan's theorem to the exponential distribution where $H(x)=e^{x}-1, G(x)=x, 0<x<1, \quad$ and $\quad F(x)=\frac{\left(1-e^{-x}\right)}{1-\frac{1}{e}}$. Prove that $p_{0}=1-\frac{1}{e}$ and that $E(N)=\frac{e}{e-1}$ (Monahan, 1879).
2. We can use decomposition to generate gamma random varlates with parameter $a \leq 1$. The restriction of the gamma density to $[0,1]$ is dealt with in the text. For the gamma denslty restricted to $[1, \infty)$ rejection can be used based upon the dominating denslty $g(x)=e^{1-x} \quad(x \geq 1)$. Show that thls leads to the following algorithm:

REPEAT

Generate an exponential random variate E. Set $X \longleftarrow 1+E$.
Generate a uniform $[0,1]$ random variate U. Set $Y \leftarrow U^{-\frac{1}{1-a}}$.
UNTIL $X \leq Y$ RETURN X

Show that the expected number of iterations is $\frac{1}{\infty}$, and that this

$$
\int e^{1-x} x^{a-1} d x
$$

varles monotonically from 1 (for $a=1$) to $\frac{1^{1}}{\infty e^{1-x}}$ (as $a \downarrow 0$).

$$
\int_{1}^{\infty} \frac{e^{1-x}}{x} d x
$$

3. Complicated densities are often cut up into pleces, and each plece is treated separately. This usually ylelds problems of the following type: $f(x)=c e^{-F(x)}(a \leq x \leq b)$, where $0 \leq F(x) \leq F * \leq 1$, and $F *$ is usually much smaller than 1 . This is another way of putting that f varles very litthe on $[a, b]$. Show that the expected number of unform random varlates
needed In Forsythe's algorithm does not exceed $e^{F *}+e^{2 F *}$. In other words, thls approaches 2 very quickly as $F * \downarrow$.

3. ALMOST-EXACT INVERSION.

3.1. Definition.

A random varlate with absolutely continuous distribution function F can be generated as $F^{-1}(U)$ where U is a unlform $[0,1]$ random varlate. Often, F^{-1} is not feasible to compute, but can be well approximated by an easy-to-compute strictly Increasing absolutely continuous function ψ. Of course, $\psi(U)$ does not have the desired distribution unless $\psi=F^{-1}$. But it is true that $\psi(Y)$ has distribution function F where Y is a random varlate with a nearly unlform density. The density h of Y is given by

$$
h(y)=f(\psi(y)) \psi^{\prime}(y),
$$

where f is the density corresponding to F. The almost-exact inversion method can be summarized as follows:

Almost-exact inversion

Generate a random variate Y with density h.
RETURN $\psi(Y)$

The point is that we gain if two conditions are satisfled: (1) ψ is easy to compute; (II) random varlates with density h are easy to generate. But because we can choose ψ from among wide classes of transformations, it should be obvlous that thls freedom can be explolted to make generation with density h easler. Marsaglla (1977, 1980, 1984) has made the almost-exact inversion method into an art. His contrlbutlons are best explained in a serles of examples and exerclses, including generators for the gamma and t distributions.

Just how one measures the goodness of a certaln transformation ψ depends upon how one wants to generate Y. For example, if stralghtforward rejection from a uniform density is used, then the smallness of the rejection constant

$$
c=\sup _{y} h(y)
$$

would be a good measure. On the other hand, if h is treated via the mixture method and h is decomposed as

$$
h(y)=p I_{[0,1]}(y)+(1-p) r(y),
$$

then the probability p is a good measure, since the residual density r is normally difficult. A value close to 1 is highly desirable here. Note that in any case,

$$
p \leq \operatorname{lnf}_{y \in[0,1]} h(y)
$$

Thus, ψ will often be chosen so as to minimize c or to maximize p, depending upon the generator for h.

All of the above can be repeated if we take a convenient non-unlform distribution as our starting polnt. In particular, the normal density seems a useful cholce when the target densitles are the gamma or t densities. This generallzation too will be discussed in this section.

3.2. Monotone densities on $[0, \infty)$.

Nonincreasing densitles f on the positive real line have sometimes a shape that is similar to that of $\frac{\theta}{(1+\theta x)^{2}}$ where $\theta>0$ is a parameter. Since this is the density of the distribution function $\frac{\theta x}{1+\theta x}$, we could look at transformations ψ deflned by

$$
\psi(y)=\frac{y}{\theta(1-y)}
$$

In this case, h becomes:

$$
h(y)=f\left(\frac{y}{\theta(1-y)}\right) \frac{1}{\theta(1-y)^{2}} \quad(0 \leq y \leq 1)
$$

For example, for the exponential denslty, we obtaln

$$
h(y)=e^{-\frac{y}{\theta(1-y)}} \frac{1}{\theta(1-y)^{2}} \quad(0 \leq y \leq 1)
$$

Assume that we use rejection from the uniform density for generation of random varlates with density h. This suggests that we should try to minimize sup h. By elementary computations, one can see that h is maximal for $1-y=\frac{1}{2 \theta}$, and that the maximal value is

$$
4 \theta e^{\frac{1}{\theta}-2}
$$

which is minimal for $\theta=1$. The minimal value is $\frac{4}{e}=1.4715177 \ldots$. The rejection algorithm for h requires the evaluation of an exponent in every iteration, and is therefore not competitive. For this reason, the composition approach is much more llkely to produce good results.

3.3. Polya's approximation for the normal distribution.

In this section, we will lllustrate the composition approach. The example is due to Marsaglla (1984). For the inverse F^{-1} of the absolute normal distribution functlon F, Polya (1949) suggested the approximation

$$
\psi(y)=\sqrt{-\theta \log \left(1-y^{2}\right)} \quad(0 \leq y \leq 1),
$$

where he took $\theta=\frac{\pi}{2}$. Let us keep θ free for the time belng. For thls transformatlon, the density $h(y)$ of Y is

$$
h(y)=\frac{1}{\sqrt{2 \pi}} \frac{\theta y\left(1-y^{2}\right)^{\frac{\theta}{2}-1}}{\sqrt{-\theta \log \left(1-y^{2}\right)}} \quad(0 \leq y \leq 1)
$$

Let us now choose θ so that $\operatorname{lin}_{\{0,1]} h(y)$ is maximal. This occurs for $\theta \approx 1.553$ (which is close to but not equal to Polya's constant, because our criterion for closeness is different). The corresponding value p of the inflmum is about 0.985 . Thus, random varlates with density h can be generated as shown in the next algorlthm:

Normal generator based on Polya's approximation

Generate a uniform $[0,1]$ random variate U.
IF $U \leq p$ (p is about 0.985 for the optimal choice of θ)
THEN RETURN $\psi\left(\frac{U}{p}\right)\left(\right.$ where $\left.\psi(y)=\sqrt{-\theta \log \left(1-y^{2}\right)}\right)$
ELSE
Generate a random variate Y with residual density $\frac{(h(y)-p)}{(1-p)}(0 \leq y \leq 1)$. RETURN $\psi(Y)$

The detalls, such as a generator for the residual density, are delegated to exercise 3.5. It is worth pointing out however that the unlform random variate U is used In the selection of a mixture denslty and in the returned variate $\psi\left(\frac{U}{p}\right)$. For this reason, it is "almost" true that we have one normal random varlate per uniform random varlate.

3.4. Approximations by simple functions of normal random variates.

In analogy with the development for the unlform distribution, we can look at other common distributions such as the normal distribution. The question now is to find an easy to compute function ψ such that $\psi(Y)$ has the desired density, where now Y is nearly normally distributed. In fact, Y should have density h given in the introduction:

$$
h(y)=f(\psi(y)) \psi^{\prime}(y) \quad(y \in R)
$$

Usually, the purpose is to maximize p in the decomposition

$$
h(y)=p\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}}\right)+(1-p) r(y)
$$

where r is a residual density. Then, the following algorlthm suggested by Marsaglia (1984) can be used:

Marsaglia's almost-exact inversion algorithm

Generate a uniform $[0,1]$ random variate U.
IF $U \leq p$
THEN Generate a normal random variate Y.
ELSE Generate a random variate Y with residual density r.
RETURN $\psi(Y)$

For the selection of ψ, one can elther look at large classes of simple functions or scan the literature for transformations. For popular distributions, the latter route is often surprisingly efficient. Let us Illustrate this for the gamma (a) density. In the table shown below, several choices for ψ are given that transform normal random varlates in nearly gamma random varlates (and hopefully nearly normal random varlates into exact gamma random varlates).

Method	$\psi(y)$	Reference
	$a+y \sqrt{a}$	Central limit theorem
Freeman-Tukey	$\frac{(y+\sqrt{4 a})^{2}}{4}$	Freeman and Tukey (1950)
Fisher	$\frac{(y+\sqrt{4 a-1})^{2}}{4}$	
Wilson-Hilferty	$a\left(\frac{y}{\sqrt{9 a}}+1-\frac{1}{9 a}\right)^{3}$	Wilson and Hilferty (1931)
Marsaglia	$a-\frac{1}{3}+p y \sqrt{a}+\frac{y^{2}}{3}, p=1-\frac{0.16}{a}$	Marsaglia (1984)

In this table we omitted on purpose more complicated and often better approximations such as those of Cornish-Fisher, Severo-Zelen and Pelzer-Pratt. For a comparative study and a blbllography of such approximations, the reader should consult Narula and Ll (1977). Bolshev $(1959,1963)$ glves a good account of how
one can obtaln normallzing transformations in general. Note that our table contalns only stmple polynomlal transformatlons. For example, Marsaglia's quadratic transformation is such that

$$
h(y)=p\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}}\right)+(1-p) r(y),
$$

where $p=1-\frac{0.16}{a}$. For example, when $a=16$, we have $p=0.99$. See exerclse 3.1 for more information.

The Wilson-Hllferty transformation was flrst used by Greenwood (1974) and later by Marsaglia (1877). We first verlfy that h now is

$$
h(y)=c z^{3 a-1} e^{-a z^{3}} \quad\left(z=\frac{y}{\sqrt{9 a}}+1-\frac{1}{9 a} \geq 0\right),
$$

where c is a normallzation constant. The algorithm now becomes:

Gamma generator based upon the Wilson-Hilferty approximation

Generate a random variate Y with density h.
RETURN $X \leftarrow \psi(Y)=a\left(\frac{Y}{\sqrt{9 a}}+1-\frac{1}{9 a}\right)^{3}$

Generation from h is done now by rejection from a normal denslty. The detalls require careful analysis, and it is worthwhile to do this once. The normal density used for the rejection differs sllghtly from that used by Marsaglla (1977). The story is told in terms of inequallties. We have

Lemma 3.1.

Assume that $a>\frac{1}{3}$. Define $z=\frac{y}{\sqrt{9 a}}+1-\frac{1}{9 a}$, and $z_{0}=\left(\frac{3 a-1}{3 a}\right)^{\frac{1}{3}}$. Deffne the density $h(y)=c z^{3 a-1} e^{-a z^{3}}, z \geq 0$ (note: this 1 s a density $\ln y$, not $\ln z$), where c is a normallzation constant. Then, the following Inequallty is valld for $z \geq 0$:

$$
\frac{z^{3 a-1} e^{-a z^{3}}}{z_{0}^{3 a-1} e^{-a z_{0}^{3}}} \leq e^{-\frac{\left(z-z_{0}\right)^{2}}{2 \sigma^{2}}}
$$

where $\sigma^{2}=\frac{1}{8 a\left(1-\frac{1}{3 a}\right)^{\frac{1}{3}}}$.

Proof of Lemma 3.1.

The proof is based upon the Taylor serles expanslon. We will write $e^{g(z)}$ instead of $h(y)$ for notational convenlence. Thus,

$$
g(z)=-a z^{3}+(3 a-1) \log z+\log c
$$

This function is majorized by a quadratic polynomial in z for thls will give us a normal dominating density. In such situations, it helps to expand the function about a point z_{0}. This polnt should be picked in such a way that it corresponds to the peak of g because dolng so will ellminate the linear term in Taylor's serles expanslon. Note that

$$
\begin{aligned}
& g^{\prime}(z)=-3 a z^{2}+\frac{3 a-1}{z}, \\
& g^{\prime \prime}(z)=-8 a z-\frac{3 a-1}{z^{2}}, \\
& g^{\prime \prime \prime}(z)=-8 a+\frac{8 a-2}{z^{3}} .
\end{aligned}
$$

We see that $g^{\prime}(z)=0$ for $z=z_{0}$. Thus, by Taylor's serles expansion,

$$
g(z)=g\left(z_{0}\right)+\frac{1}{2}\left(z-z_{0}\right)^{2} g^{\prime \prime}(\xi),
$$

where ξ is \ln the interval $\left[z, z_{0}\right]$ (or $\left[z_{0}, z\right]$). We obtain our result if we can show that

$$
\sup _{\xi \geq 0} g^{\prime \prime}(\xi) \leq-\frac{1}{\sigma^{2}}
$$

But when we look at $g^{\prime \prime \prime}$, we notice that it is zero for $z=\left(\frac{3 a-1}{3 a}\right)^{\frac{1}{3}}$. It is not difficult to verify that for this value, $g^{\prime \prime}$ attalns a maximum on the positive half of the real llne. Thus,

$$
\sup _{\xi \geq 0} g^{\prime \prime}(\xi) \leq-9 a\left(1-\frac{1}{3 a}\right)^{\frac{1}{3}}
$$

This concludes the proof of Lemma 3.1.

The first version of the rejection algorithm is given below.

First version of the Wilson-Hilferty based gamma generator

[SET-UP]
Set $\sigma^{2} \leftarrow \frac{1}{9 a\left(1-\frac{1}{3 a}\right)^{\frac{1}{3}}}, z_{0}=\left(\frac{3 a-1}{3 a}\right)^{\frac{1}{3}}$.
[GENERATOR]
REPEAT
Generate a normal random variate N and a uniform $[0,1]$ random variate U.
Set $Z-z_{0}+\sigma N$
UNTIL $Z \geq 0$ AND $U e^{-\frac{(Z-z)^{2}}{2 \sigma^{2}}} \leq\left(\frac{Z}{z_{0}}\right)^{3 a-1} e^{-a\left(Z^{3}-z_{0}{ }^{3}\right)}$
RETURN $X \leftarrow a Z^{3}$

Note that we have used here the fact that $z=\frac{y}{\sqrt{9 a}}+1-\frac{1}{9 a}$. There are two things left to the designer. First, we need to check how efficlent the algorithm is. This in effect bolls down to verifying what the rejection constant is. Then, we need to streamllne the algorlthm. This can be done in several ways. For example, the acceptance condltion can be replaced by

UNTIL $Z \geq 0$ AND $-E-\frac{\left(Z-z_{0}\right)^{2}}{2 \sigma^{2}} \leq(3 a-1) \log \left(\frac{Z}{z_{0}}\right)-a\left(Z^{3}-z_{0}{ }^{3}\right)$
where E is an exponential random varlate. Also, $\frac{\left(Z-z_{0}\right)^{2}}{2 \sigma^{2}}$ is nothing but $\frac{N^{2}}{2}$. Additlonally, we could add a squeeze step by using sharp inequalitles for the logarithm. Note that $\frac{Z}{z_{0}}=1+\frac{\sigma N}{z_{0}}$, so that for large values of a, Z is close to z_{0} which in turn is close to 1 . Thus, inequalities for the logarithm should be sharp near 1. Such Inequallties are given for example in the next Lemma.

Lemma 3.2.

Let $x \in[0,1)$. Then the following serles expansion is valld:

$$
\log (1-x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\cdots
$$

Thus, for $k \geq 1$,

$$
-\sum_{i=1}^{k} \frac{1}{i} x^{i} \geq \log (1-x) \geq-\sum_{i<k} \frac{1}{i} x^{i}-\frac{1}{k} \frac{x^{k}}{1-x}
$$

Furthermore, for $x \leq 0$, and k odd,

$$
-\sum_{i=1}^{k+1} \frac{1}{i} x^{i} \leq \log (1-x) \leq-\sum_{i=1}^{k} \frac{1}{i} x^{i}
$$

Proof of Lemma 3.2.

We note that in all cases,

$$
-\log (1-x)=\sum_{i=1}^{k} \frac{1}{i} x^{i}+\frac{x^{k}}{k(1-\xi)^{k}}
$$

where ξ is between 0 and x. The bounds are obtained by looking at the $k-\mathrm{th}$ term in the sums. Consider first $0 \leq \xi \leq x<1$. Then, the k-th term is at least equal to $\frac{x^{k}}{k}$. If $x \leq \xi \leq 0$ and k is odd, then the same is true. If however k is even, then the k-th term is majorized by $\frac{x^{k}}{k}$.

We also note that for $0 \leq x<1$,

$$
\begin{aligned}
& -\log (1-x)=x+\frac{1}{2} x^{2}+\cdots \leq x+\cdots+\frac{1}{k} x^{k}\left(1+x+x^{2}+x^{3}+\cdots\right) \\
& =\sum_{i=1}^{k} \frac{1}{k} \frac{x^{i}}{1-x}
\end{aligned}
$$

Let us return now to the algorithm, and use these Inequallties to avold computing the logarithm most of the time by introducing a quick acceptance step.

Second version of the Wilson-Hilferty based gamma generator

[SET-UP]
Set $\sigma^{2} \leftarrow \frac{1}{9 a\left(1-\frac{1}{3 a}\right)^{\frac{1}{3}}}, z_{0}=\left(\frac{3 a-1}{3 a}\right)^{\frac{1}{3}}, z_{1} \leftarrow a-\frac{1}{3}$.
[GENERATOR]
REPEAT
Generate a normal random variate N and an exponential random variate E.
Set $Z \leftarrow z_{0}+\sigma N$ (auxiliary variate)
Set $X \leftarrow a Z^{3}$ (variate to be returned)
$W \leftarrow \frac{\sigma N}{Z}$ (note that $W=1-\frac{z_{0}}{Z}$)
Set $S \leftarrow-E-\frac{N^{2}}{2}+\left(X-z_{1}\right)$
Accept $\leftarrow\left[S \leq(3 a-1)\left(W+\frac{1}{2} W^{2}+\frac{1}{3} W^{3}\right)\right]$ AND $[Z \geq 0]$
IF NOT Accept
THEN Accept $\leftarrow[S \leq-(3 a-1) \log (1-W)]$ AND $[Z \geq 0]$
UNTIL Accept
RETURN X

In this second verslon, we have Implemented most of the suggested improvements. The algorithm is only applicable for $a>\frac{1}{3}$ and differs slightly from the algorlthms proposed in Greenwood (1974) and Marsaglla (1977). Obvious things such as the observation that ($W+\frac{1}{2} W^{2}+\frac{1}{3} W^{3}$) should be evaluated by Horner's rule, are not usually shown in our algorithms. There are two quantlties that should be analyzed:
(1) The expected number of iterations before halting.
(11) The expected number of computations of the logarithm in the acceptance step (a comparlson with (l) wlll show us how efflclent the squeeze step is).

Lemma 3.3.

The expected number of iterations of the algorithm given above (or its rejectlon constant) is

$$
\left(\frac{\sqrt{a} a^{a-1}}{\Gamma(a)}\right)\left(\frac{3 a-1}{3 a}\right)^{a-\frac{1}{2}} e^{-a+\frac{1}{3}} \sqrt{2 \pi} .
$$

For $a \geq \frac{1}{2}$, this is less than $e^{\frac{1}{6 a}}$. It tends to 1 as $a \rightarrow \infty$ and to ∞ as $a \downarrow \frac{1}{3}$.

Proof of Lemma 3.3.

The area under the dominating curve for h is

$$
\int_{-\infty}^{\infty} h\left(z_{0}\right) e^{-\frac{\left(z-z_{0}\right)^{2}}{2 \sigma^{2}}} d y
$$

where we recall that $z=\frac{y}{\sqrt{8 a}}+1-\frac{1}{8 a}, z_{0}=\left(\frac{3 a-1}{3 a}\right)^{\frac{1}{3}}$. Since $d y=\sqrt{\theta a} d z$, we see that this equals

$$
\begin{aligned}
& h\left(z_{0}\right) \sqrt{2 \pi} \sqrt{8 a} \sigma \\
& =c z_{0}^{3 a-1} e^{-a z 0_{0}^{3}} \sqrt{2 \pi} \frac{1}{\left(1-\frac{1}{3 a}\right)^{\frac{1}{6}}} \\
& =\left(\frac{\sqrt{a} a^{a-1}}{\Gamma(a)}\right)\left(\frac{3 a-1}{3 a}\right)^{a-\frac{1}{3}} e^{-a+\frac{1}{3}} \sqrt{2 \pi\left(\frac{3 a}{3 a-1}\right)^{\frac{1}{6}} .}
\end{aligned}
$$

Here we used the fact that the normalization constant c in the definition of h is $\frac{\sqrt{a} a^{a-1}}{\Gamma(a)}$, which is verlfied by noting that

$$
\int_{z \geq 0} z^{3 a-1} e^{-a z^{3}} d y=\frac{\Gamma(a)}{\sqrt{a} a^{a-1}}
$$

The remalnder of the proof is based upon simple facts about the Γ function: for example, the function stays bounded away from 0 on $[0, \infty)$. Also, for $a>0$,

$$
\Gamma(a)=\left(\frac{a}{e}\right)^{a} \sqrt{\frac{2 \pi}{a}} e^{\frac{\theta}{12 a}}
$$

where $0 \leq \theta \leq 1$. We will also need the elementary exponential inequalitles

$$
e^{-p x} \geq(1-x)^{p} \geq e^{-\frac{p x}{1-x}} \quad(p \geq 0,0 \leq x \leq 1)
$$

Using this in our expression for the rejection constant glves an upper bound

$$
\begin{aligned}
& \frac{\sqrt{a} a^{a-1} e^{a} \sqrt{2 \pi a} e^{-a+\frac{1}{3}}}{a^{a} \sqrt{2 \pi}}\left(\frac{3 a-1}{3 a}\right)^{a-\frac{1}{2}} \\
& =e^{\frac{1}{3}}\left(1-\frac{1}{3 a}\right)^{a-\frac{1}{2}} \\
& \leq e^{\frac{1}{3}-\left(a-\frac{1}{2}\right)(3 a)^{-1}} \\
& =e^{\frac{1}{6 a}}
\end{aligned}
$$

which is $1+\frac{1}{8 a}+O\left(\frac{1}{a^{2}}\right)$ as $a \rightarrow \infty$.

From Lemma 3.3, we conclude that the algorithm is not unlformly fast for $a \in\left(\frac{1}{3}, \infty\right)$. On the other hand, since the rejection constant is $1+\frac{1}{8 a}+O\left(\frac{1}{a^{2}}\right)$ as $a \rightarrow \infty$, it should be very efficient for large values of a. Because of thls good fit, it does not pay to introduce a quick rejection step. The quick acceptance step on the other hand is very effective, slnce asymptotically, the expected number of computations of a logarthm is o (1) (exercise 3.1). In fact, thls example is one of the most beautlful applications of the effectlve use of the squeeze princlple.

3.5. Exercises.

1. Conslder the Wilson-Hilferty based gamma generator developed in the text. Prove that the expected number of logarithm calls is o (1) as $a \rightarrow \infty$.
2. For the same generator, glve all the detalls of the proof that the expected number of Iterations tends to ∞ as $a \downarrow \frac{1}{3}$.
3. For Marsaglia's quadratic gamma-normal transformation, develop the entire comparison-based algorthm. Prove the valldity of hls claims about the value of p as a function of a. Develop a flxed residual density generator based upon rejection for

$$
r *(x)=\sup _{a \geq a_{0}} r(x)
$$

Here a_{o} is a real number. Thls helps because it avolds setting up constants each time. See Marsaglla (1984) for graphs of the residual densitles r.
4. Student's t-distribution. Consider the t-density

$$
f(x)=\frac{1}{\sqrt{\pi a}} \frac{\Gamma\left(\frac{a+1}{2}\right)}{\Gamma\left(\frac{a}{2}\right)} \frac{1}{\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}} .
$$

Find the best constant p if f is to be decomposed into a mixture of a normal and a residual density (p is the welght of the normal density). Repeat the same thing for $h(y)$ if we use almost-exact inversion with transformatlon

$$
\psi(y)=y+\frac{y+y^{3}}{4 a}
$$

Compare both values of p as a function of a. (This transformation was suggested by Marsaglla (1984).)
5. Work out all the detalls of the normal generator based on Polya's approximation.
8. Bolshev (1959,1963) suggests the following transformations which are supposed to produce nearly normally distributed random variables based upon sums of Ild uniform [0,1] random varlates. If X_{n} is $\sqrt{\frac{3}{n}} \sum_{i=1}^{n} U_{i}$ where the U_{i} 's are ind uniform $[0,1]$ random varlates, then

$$
Y_{n}=X_{n}-\frac{1}{20 n}\left(3 X_{n}-X_{n}^{3}\right)
$$

and

$$
Z_{n}=X_{n}-\frac{41}{13440 n^{2}}\left(X_{n}^{5}-10 X_{n}^{3}+15 X_{n}\right)
$$

are nearly normally distributed. Use thls to generate normal random varlates. Take $n=1,2,3$.
7. Show that the rejection constant of Lemma 3.3 is at most $\left(\frac{e^{2}}{3 a-1}\right)^{\frac{1}{6}}$ when $\frac{1}{3}<a \leq \frac{1}{2}$.
8. For the gamma density, the quadratic transformations lead to very simple rejection algorithms. As an example, take $s=a-\frac{1}{2}, t=\sqrt{\frac{s}{2}}$. Prove the following:
A. The density of $X=s\left(\sqrt{\frac{Z}{s}}-1\right)$ (where Z is gamma (a) distributed) is

$$
f(x)=c\left(1+\frac{x}{s}\right)^{2 a-1} e^{-2 x} e^{-\frac{x^{2}}{s}} \quad(x \geq-s)
$$

where $c=2 s^{a-1} e^{-s^{2}} / \Gamma(a)$.
B. We have

$$
f(x) \leq c e^{-\frac{x^{2}}{s}}
$$

C. If this inequality is used to generate random varlates with density f, then the rejection constant, $c \sqrt{\pi s}$, is $\sqrt{\frac{2 \pi}{e}}$ at $a=1$, and tends to
$\sqrt{2}$ as $a \nmid \infty$. Prove also that for all values $a>\frac{1}{2}$, the rejection constant Is bounded from above by $\sqrt{2} e^{\frac{1}{4 a}}$.
D. The raw almost-exact Inversion algorithm is:

Almost-exact inversion algorithm for gamma variates

REPEAT

Generate a normal random variate N and an exponential random variate E.

$$
X \leftarrow t N
$$

UNTIL $X \geq s$ AND $E-2 X+2 s \log \left(1+\frac{X}{s}\right) \geq 0$
RETURN $s\left(1+\frac{X}{s}\right)^{2}$
E. Introduce quick acceptance and rejection steps in the algorithm that are so accurate that the expected number of evaluations of the logarithm is o (1) as $a \uparrow \infty$. Prove the clalm.
Remark: for a very efficient implementation based upon another quadratic transformation, see Ahrens and Dieter (1982).

4. MANY-TO-ONE TRANSFORMATIONS.

4.1. The principle.

Sometimes it is possible to exploit some distributional propertles of random varlables. Assume for example that $\psi(X)$ has an easy denslty h, where X has density f. When ψ is a one-to-one transformation, X can then be generated as $\psi^{-1}(Y)$ where Y is a random varlate with the easy density h. A point in case is the inversion method of course where the easy density is the uniform density. There are important examples in which the transformation ψ is many-to-one, so that the inverse is not unlquely deflned. In that case, if there are k solutions X_{1}, \ldots, X_{k} of the equation $\psi(X)=Y$, it sufflces to choose among the $X_{i} \cdot \mathrm{~s}$. The probabllitles however depend upon Y. The usefulness of thls approach was first reallzed by Mlchael, Schucany and Hass (1976), who gave a comprehensive description and discussion of the method. They were motlvated by a simple fast algorlthm for the Inverse gausslan famlly based upon thls approach.

By far the most Important case is $k=2$, which is the one that we shall deal with here. Several Important examples are developed in subsections.

Assume that there exists a point t such that ψ^{\prime} is of one sign on $(-\infty, t)$ and on (t, ∞). For example, if $\psi(x)=x^{2}$, then $\psi^{\prime}(x)=2 x$ is nonpositive on $(-\infty, 0)$ and nonnegative on $(0, \infty)$, so that we can take $t=0$. We will use the notation

$$
x=l(y), x=r(y)
$$

for the two solutions of $y=\psi(x)$: here, l is the solution $\ln (-\infty, t)$, and r is the solution in (t, ∞). If ψ satisfles the conditions of Theorem I.4.1 on each interval, and X has denslty f, then $\psi(X)$ has density

$$
h(y)=\left|l^{\prime}(y)\right| f(l(y))+\left|r^{\prime}(y)\right| f(r(y))
$$

This is quickly verlfied by computing the distribution function of $\psi(X)$ and then taking the derlvative. Vice versa, glven a random varlate Y with density h, we can obtaln a random variate X with density f by choosing $X=l(Y)$ with probabllity

$$
\frac{\perp l^{\prime}(Y) \mid f(l(Y))}{h(Y)},
$$

and choosing $X=r(Y)$ otherwise. Note that $\left|l^{\prime}(y)\right|=1 /\left|\psi^{\prime}(l(y))\right|$. This, the method of Mlchael, Schucany and Haas (1876), can be summarized as follows:

Inversion of a many-to-one transformation

Generate a random variate Y with density h.
Generate a uniform $[0,1]$ random variate U.
Set $X_{1} \leftarrow l(Y), X_{2} \leftarrow r(Y)$
IF $U \leq \frac{1}{1+\frac{f\left(X_{2}\right)}{f\left(X_{1}\right)}\left|\frac{\psi^{\prime}\left(X_{1}\right)}{\psi^{\prime}\left(X_{2}\right)}\right|}$

THEN RETURN $X \leftarrow X_{1}$
ELSE RETURN $X \leftarrow X_{2}$

It will be clear from the examples that in many cases the expression in the selection step takes a stmple form.

4.2. The absolute value transformation.

The transformation $y=|x-t|$ for fixed t satisfles the conditions of the previous sectlon. Here we have $l(y)=t-y, r(y)=t+y$. Since $\left|\psi^{\prime}\right|$ remains constant, the decision is extremely simple. Thus, we have

Generate a random variate Y with density $h(y)=f(t-y)+f(t+y)$.
Generate a uniform $[0,1]$ random variate U.

$$
\begin{aligned}
& \text { IF } U \leq \frac{f(t-Y)}{f(t-Y)+f(t+Y)} \\
& \text { THEN RETURN } X \leftarrow t-Y \\
& \text { ELSE RETURN } X \leftarrow t+Y
\end{aligned}
$$

If f is symmetric about t, then the decisions $t-Y$ and $t+Y$ are equally llkely. Another Interesting case occurs when h is the unlform density. For example, consider the density

$$
f(x)=\frac{1+\cos x}{\pi} \quad(0 \leq x \leq \pi)
$$

Then, taking $t=\frac{\pi}{2}$, we see that

$$
h(y)=f(t-y)+f(t+y)=\frac{2}{\pi} \quad\left(0 \leq y \leq \frac{\pi}{2}\right) .
$$

Thus, we can generate random varlates with thls denslty as follows:

Generate two ild uniform $[0,1]$ random variates U, V.
Set $Y \leftarrow \frac{\pi V}{2}$.
IF $U \leq \frac{1+\cos Y}{2}$
THEN RETURN $X \leftarrow Y$
ELSE RETURN $X \leftarrow \pi-Y$

Here we have made use of additlonal symmetry in the problem. It should be noted that the evaluation of the cos can be avolded altogether by application of the serles method (see section 5.4).

4.3. The inverse gaussian distribution.

Mlchael, Schucany and Haas (1978) have successfully applled the many-toone transformation method to the inverse gaussian distribution. Before we proceed with the detalls of their algorithm, it is necessary to glve a short introductory tour of the distribution (see Folks and Chhikara (1878) for a survey).

A random varlable $X \geq 0$ with density

$$
f(x)=\sqrt{\frac{\lambda}{2 \pi x^{3}}} e^{-\frac{\lambda(x-\mu)^{2}}{2 \mu^{2} x}} \quad(x \geq 0)
$$

is said to have the inverse gausslan distribution with parameters $\mu>0$ and $\lambda>0$. We will say that a random varlate X is $I(\mu, \lambda)$. Sometimes, the distribution is also called Wald's distribution, or the first passage time distribution of Brownlan motion with positive drlft.

The densities are unimodal and have the appearance of gamma densitles. The mode is at

$$
\mu\left(\sqrt{1+\frac{9 \mu^{2}}{4 \lambda^{2}}}-\frac{3 \mu}{2 \lambda}\right)
$$

The densitles are very flat near the origin and have exponential talls. For this reason, all positive and negative moments exist. For example, $E\left(X^{-a}\right)=E\left(X^{a+1}\right) / \mu^{2 a+1}$, all $a \in R$. The mean is μ and the varlance is $\frac{\mu^{3}}{\lambda}$. The maln distributional property is captured in the following Lemma:

Lemma 4.1. (Shuster, 1988)
When X is $I(\mu, \lambda)$, then

$$
\frac{\lambda(X-\mu)^{2}}{\mu^{2} X}
$$

Is distributed as the square of a normal random variable, i.e. It is chi-square with one degree of freedom.

Proof of Lemma 4.1.

Straightforward.

Based upon Lemma 4.1, we can apply a many-to-one transformation

$$
\psi(x)=\frac{\lambda(x-\mu)^{2}}{\mu^{2} x}
$$

Here, the Inverse has two solutions, one on each side of μ. The solutions of $\psi(X)=Y$ are

$$
\begin{aligned}
& X_{1}=\mu+\frac{\mu^{2} Y}{2 \lambda}-\frac{\mu}{2 \lambda} \sqrt{4 \mu \lambda Y+\mu^{2} Y^{2}} \\
& X_{2}=\frac{\mu^{2}}{X_{1}}
\end{aligned}
$$

One can verlfy that

$$
\begin{aligned}
& \frac{f\left(X_{2}\right)}{f\left(X_{1}\right)}=\left(\frac{X_{1}}{\mu}\right)^{3} \\
& \frac{\psi^{\prime}\left(X_{1}\right)}{\psi^{\prime}\left(X_{2}\right)}=-\left(\frac{\mu}{X_{1}}\right)^{2}
\end{aligned}
$$

Thus, X_{1} should be selected with probabllity $\frac{\mu}{\mu+X_{1}}$. This leads to the following algorithm:

Inverse gaussian distribution generator of Michael, Schucany and Haas

Generate a normal random variate N.
Set $Y \leftarrow N^{2}$
Set $X_{1} \leftarrow \mu+\frac{\mu^{2} Y}{2 \lambda}-\frac{\mu}{2 \lambda} \sqrt{4 \mu \lambda Y+\mu^{2} Y^{2}}$
Generate a uniform [0,1] random variate U.
IF $U \leq \frac{\mu}{\mu+X_{1}}$
THEN RETURN $X-X_{1}$
ELSE RETURN $X \leftarrow \frac{\mu^{2}}{X_{1}}$

Thls algorlthm was later redlscovered by Padgett (1978). The time-consuming components of the algorthm are the square root and the normal random varlate generation. There are a few shortcuts: a few multiplications can be saved if we replace Y by μY at the outset, for example. There are several exerclses about the inverse gaussian distribution following thls sub-section.

4.4. Exercises.

1. First passage time distribution of drift-free Brownian motion. Show that as $\mu \rightarrow \infty$ whlle λ remalns flxed, the $I(\mu, \lambda)$ density tends to the density

$$
f(x)=\sqrt{\frac{\lambda}{2 \pi x^{3}}} e^{-\frac{\lambda}{2 x}} \quad(x \geq 0)
$$

which is the one-sided stable density with exponent $\frac{1}{2}$, or the denslty for the first passage time of drlft-free Brownlan motion. Show that this is the denslty of the inverse of a gamma ($\frac{1}{2}, \frac{2}{\lambda}$) random variable (Wasan and Roy, 1887). This is equivalent to showing that it is the density of $\frac{\lambda}{N^{2}}$ where N is a normal random variable.
2. This is a further exercise about the propertles of the inverse gaussian distribution. Show the following:
(1) If X is $I(\mu, \lambda)$, then $c X$ is $I(c \mu, c \lambda)$.
(II) The characteristic function of X is $e^{\frac{\lambda}{\mu}\left(1-\sqrt{\left.1-\frac{2 i \mu^{2} t}{\lambda}\right)}\right.}$.
(iii) If $X_{i}, 1 \leq i \leq n$, are independent $I\left(\mu_{i}, c \mu_{i}{ }^{2}\right)$ random varlables, then $\sum_{i=1}^{n} X_{i}$ is $I\left(\sum \mu_{i}, c\left(\sum \mu_{i}\right)^{2}\right)$. Thus, if the X_{i}^{\prime} s are Ild $I(\mu, \lambda)$, then $\sum X_{i}$ is $I\left(n \mu, n^{2} \lambda\right)$.
(iv) Show that when N_{1}, N_{2} are independent normal random varlables with varlances $\sigma_{1}{ }^{2}$ and $\sigma_{2}{ }^{2}$, then $\frac{N_{1} N_{2}}{\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}}$ is normal with varlance $\sigma_{3}{ }^{2}$ determined by the relation $\frac{1}{\sigma_{3}}=\frac{1}{\sigma_{1}}+\frac{1}{\sigma_{2}}$.
(v) The distribution function of X is

$$
F(x)=\Phi\left(\sqrt{\frac{\lambda}{x}}\left(\frac{x}{\mu}-1\right)\right)+e^{\frac{2 \lambda}{\mu}} \Phi\left(-\sqrt{\frac{\lambda}{x}}\left(1+\frac{x}{\mu}\right)\right),
$$

where Φ is the standard normal distribution function (Ziganglrov, 1982).

5. THE SERIES METHOD.

5.1. Description.

In this section, we consider the problem of the computer generation of a random varlable X with density f where f can be approximated from above and below by sequences of functlons f_{n} and g_{n}. In particular, we assume that:
(1) $\lim _{n \rightarrow \infty} f_{n}=f$;

$$
\lim _{n \rightarrow \infty} g_{n}=f
$$

(II) $f_{n} \leq f \leq g_{n}$.
(III) $f \leq c h$ for some constant $c \geq 1$ and some easy denslty h.

The sequences f_{n} and g_{n} should be easy to evaluate, while the dominating denslty h should be easy to sample from. Note that f_{n} need not be positive, and that g_{n} need not be integrable. This setting is common: often f is only known as a serles, as \ln the case of the Kolmogorov-Smlrnov distribution or the stable distributions, so that random varlate generation has to be based upon this serles. But even if f is expllittly known, it can often be expanded in a fast converging series such as in the case of a normal or exponential density. The serles method described below actually avolds the exact evaluation of f all the time. It can be thought of as a rejection method with an infinite number of acceptance and rejectlon conditions for squeezing. Nearly everything in thls section was first developed In Devroye (1980).

The series method

REPEAT

Generate a random variate X with density h.
Generate a uniform $[0,1]$ random variate U.
$W \leftarrow U$ ch (X)
$n \leftarrow 0$
REPEAT

$$
n \leftarrow n+1
$$

$$
\text { FF } W \leq f_{n}(X) \text { THEN RETURN } X
$$

UNTIL $W>g_{n}(X)$
UNTIL False

The fact that the outer loop in this algorithm is an Infinite loop does not matter, because with probabllity one we wlll exit in the inner loop (in view of $f_{n} \rightarrow f, g_{n} \rightarrow f$). We have here a true rejection algorlthm because we exit when $W \leq U c h(X)$. Thus, the expected number of outer loops is c, and the choice of the dominating density h is important. Notice however that the time should be
measured in terms of the number of f_{n} and g_{n} evaluations. Such analysis will be given further on. Whlle in many cases, the convergence to f is so fast that the expected number of f_{n} evaluations is barely larger than c, it is true that there are examples in which this expected number is ∞. It is also worth observing that the squeeze steps are essentlal here for the correctness of the algorthm. They actually form the algorlthm.

In the remainder of this section, we will give three important special cases of approximating serles. The serles method and its varlants will be illustrated with the ald of the exponentlal, Raab-Green and Kolmogorov-Smirnov distributions further on.

Assume first that f can be written as a convergent serles

$$
f(x)=\sum_{n=1}^{\infty} s_{n}(x) \leq c h(x)
$$

where

$$
\left|\sum_{i=n+1}^{\infty} s_{i}(x)\right| \leq R_{n+1}(x)
$$

Is a known estimate of the remalnder, and h is a glven density. In this special instance, we can rewrite the serles method in the following form:

The convergent series method

REPEAT
Generate a random variate X with density h.
Generate a uniform $[0,1]$ random variate U.
$W \leftarrow U$ ch (X)
$S \leftarrow 0$
$n \leftarrow 0$
REPEAT
$n \leftarrow n+1$
$S \leftarrow S+s_{n}(X)$
UNTIL $|S-W|>R_{n+1}(X)$
UNTLL $S \leq W$
RETURN X

Assume next that f can be written as an alternating serles

$$
f(x)=\operatorname{ch}(x)\left(1-a_{1}(x)+a_{2}(x)-a_{3}(x)+\cdots\right)
$$

where a_{n} is a sequence of functions satisfying the condition that $a_{n}(x) \downarrow 0$ as $n \rightarrow \infty$, for all x, c is a constant, and h is an easy density. Then, the serles method can be written as follows:

The alternating series method

REPEAT
Generate a random variate X with density h.
Generate a uniform $[0, c]$ random variate U.
$n \leftarrow 0, W \leftarrow 0$
REPEAT
$n \leftarrow n+1$
$W \leftarrow W+a_{n}(X)$
IF $U \geq W$ THEN RETURN X
$n \leftarrow n+1$
$W \leftarrow W-a_{n}(X)$
UNTLL $U<W$
UNTIL False

This algorithm is valld because f is bounded from above and below by two converging sequences:

$$
1+\sum_{j=1}^{k}(-1)^{j} a_{j}(x) \leq \frac{f(x)}{c h(x)} \leq 1+\sum_{j=1}^{k+1}(-1)^{j} a_{j}(x), k \text { odd }
$$

That thls is indeed a valld inequality follows from the monotonlcity of the terms (conslder the terms pairwise). As in the ordinary serles method, f is never fully computed. In addition, h is never evaluated either.

A second important special case occurs when

$$
f(x)=\operatorname{ch}(x) e^{-a_{1}(x)+a_{2}(x)-\cdots}
$$

where c, h, a_{n} are as for the alternating serles method. Then, the alternating serles method is equivalent to:

The alternating series method; exponential version
REPEAT
Generate a random variate X with density h.
Generate an exponential random variate E.
$n \leftarrow 0, W \leftarrow 0$
REPEAT
$n \leftarrow n+1$
$W \leftarrow W+a_{n}(X)$
IF $E \geq W$ THEN RETURN X
$n \leftarrow n+1$
$W \leftarrow W-\mathfrak{a}_{n}(X)$
UNTIL $E<W$
UNTIL False

5.2. Analysis of the alternating series algorithm.

For the four versions of the serles method deflned above, we know that the expected number of Iterations is equal to the rejection constant, c. In addition, there is a hidden contribution to the time complexity due to the fact that the Inner loop, needed to decide whether $\operatorname{Uch}(X) \leq f(X)$, requires a random number of computations of a_{n}. The computations of a_{n} are assumed to take a constant time Independent of n - If they do not, Just modify the analysis given in this sectlon sllghtly. In all the examples that will follow, the a_{n} computations take a constant tlme.

In Theorem 5.1, we will give a precise answer for the alternating serles method.

Theorem 5.1.

Conslder the alternating serles method for a density f decomposed as follows:

$$
f(x)=\operatorname{ch}(x)\left(1-a_{1}(x)+a_{2}(x)-\cdots\right),
$$

where $c \geq 1$ is a normallzation constant, h is a density, and $a_{0} \equiv 1 \geq a_{1} \geq a_{2} \geq \cdots \geq 0$. Let N be the total number of computations of a factor a_{n} before the algorithm halts. Then,

$$
E(N)=c \int_{0}^{\infty}\left[\sum_{i=0}^{\infty} a_{i}(x)\right] h(x) d x
$$

Proof of Theorem 5.1.

By Wald's equation, $E(N)$ is equal to c tlmes the expected number of a_{n} computations in the first iteration. In the first iteration, we fix $X=x$ with density h. Then, dropping the dependence on x, we see that for the odd terms a_{n}, we require

1	with probabllity $1-a_{1}$
2	with probabllity $a_{1}-a_{2}$
3	wlth probabllity $a_{2}-a_{3}$
4	with probabillty $a_{3}-a_{4}$
\ldots	

computations of a_{n}. The expected value of this is

$$
\sum_{i=1}^{\infty} i\left(a_{i-1}-a_{i}\right)=\sum_{i=0}^{\infty} a_{i}
$$

Collecting these results gives us Theorem 5.1.

Theorem 5.1 shows that the expected time complexity Is equal to the oscillatlon In the serles. Fast converging serles lead to fast algorithms.

5.3. Analysis of the convergent series algorithm.

As in the prevlous section, we will let N be the number of computations of terms s_{n}. before the algorlthm halts. We have:

Theorem 5.2.

For the convergent serles algorithm of section 5.1 ,

$$
E(N) \leq 2 \int\left(\sum_{n=1}^{\infty} R_{n}(x)\right) d x
$$

Proof of Theorem 5.2.

By Wald's equation, $E(N)$ is equal to c times the expected number of s_{n} computations in the first global iteration. If we fix X with density h, then if N Is the number of s_{n} computations in the first iteration alone,

$$
P(N>n \mid X) \leq \frac{2 R_{n+1}(X)}{c h(X)}
$$

Thus,

$$
\begin{aligned}
& E(N \mid X)=\sum_{n=0}^{\infty} P(N>n \mid X) \\
& \leq \sum_{n=0}^{\infty} \frac{2 R_{n+1}(X)}{\operatorname{ch}(X)}
\end{aligned}
$$

Hence, turning to the overall number of s_{n} computations,

$$
\begin{aligned}
& E(N) \leq c \sum_{n=1}^{\infty} \int h(x) \frac{2 R_{n}(x)}{c h(x)} d x \\
& =2 \int\left(\sum_{n=1}^{\infty} R_{n}(x)\right) d x
\end{aligned}
$$

It is important to note that a serles converging at the rate $\frac{1}{n}$ or slower cannot yleld finite expected time. Luckily, many important series, such as those of all the remalning subsections on the serles method converge at an exponential rather than a polynomial rate. In vlew of Theorem 5.2, this virtually insures the finiteness of their expected time. It is still necessary however to verlfy whether the expected tlme statements are not upset in an indirect way through the dependence of $R_{n}(x)$ upon x : for example, the bound of Theorem 5.2 is Infinite when $\int R_{n}(x) d x=\infty$ for some n.

5.4. The exponential distribution.

It is known that for all odd k and all $x>0$,

$$
\sum_{j=0}^{k-1}(-1)^{j} \frac{x^{j}}{j!} \geq e^{-x} \geq \sum_{j=0}^{k}(-1)^{j} \frac{x^{j}}{j!}
$$

We will apply the alternating serles method to the truncated exponentlal density

$$
f(x)=\frac{e^{-x}}{1-e^{-\mu}} \quad(0 \leq x \leq \mu)
$$

where $1 \geq \mu>0$ is the truncation point. As dominating curve, we can use the unlform density (called h) on $[0, \mu]$. Thus, in the decomposition needed for the alternating serles method, we use

$$
\begin{aligned}
& c=\frac{\mu}{1-e^{-\mu}} \\
& h(x)=\frac{1}{\mu} I_{[0, \mu]}(x), \\
& a_{n}(x)=\frac{x^{n}}{n!}
\end{aligned}
$$

The monotonicity of the a_{n} 's is insured when $|x| \leq 1$. This forces us to choose $\mu \leq 1$. The expected number of a_{n} computations is

$$
\begin{aligned}
& E(N)=c \int_{0}^{\mu} \sum_{j=0}^{\infty} \frac{x^{j}}{j!} \frac{1}{\mu} d x \\
& =c \frac{e^{\mu}-1}{\mu} \\
& =\frac{e^{\mu}-1}{1-e^{-\mu}}
\end{aligned}
$$

For example, for $\mu=1$, the value e is obtalned. But interestingly, $E(N) \downarrow 1$ as $\mu \downarrow 0$. The truncated exponentlal density is Important, because standard exponentlal random varlates can be obtalned by adding an independent properly scaled geometric random varlate (see for example section IV.2.2 on the Forsythe-von Neumann method or section IX. 2 about exponential random variates). The algorithm for the truncated exponentlal density is glven below:

A truncated exponential generator via the alternating series method

REPEAT

Generate a uniform $[0, \mu]$ random variate X.
Generate a uniform $[0,1]$ random variate U.
$n \longleftarrow 0, W \longleftarrow 0, V \longleftarrow 1$ (V is used to facilitate evaluation of consecutive terms in the alternating series.)
REPEAT
$n \leftarrow n+1$
$V \leftarrow \frac{V X}{n}$
$W-W+V$
IF $U \geq W$ THEN RETURN X
$n \leftarrow n+1$
$V \leftarrow \frac{V X}{n}$
$W \leftarrow W-V$
UNTIL $U<W$
UNTIL False

The alternating serles method based upon Taylor's serles is not applicable to the exponential distribution on $[0, \infty)$ because of the impossibility of finding a dominating density h based upon this serles. In the exercise section, the ordinary serles method is applled with a family of dominating densitles, but the squeezing is still based upon the Taylor serles for the exponential density.

5.5. The Raab-Green distribution.

The denslty

$$
\begin{aligned}
& f(x)=\frac{1+\cos (x)}{2 \pi} \quad(|x| \leq \pi) \\
& =\frac{1}{\pi}\left(1-\frac{1}{2} \frac{x^{2}}{2!}+\frac{1}{2} \frac{x^{4}}{4!}-\cdots\right)
\end{aligned}
$$

was suggested by Raab and Green (1981) as an approximation for the normal density. The serles expansion is very slmilar to that of the exponential function. Agaln, we are in a position to apply the alternating serles method, but now with $h(x)=\frac{1}{2 \pi}(|x| \leq \pi), c=2$ and $a_{n}(x)=\frac{1}{2} \frac{x^{2 n}}{2 n!}$. It is easy to verlify that $a_{n} \downarrow 0$ as $n \rightarrow \infty$ for all x in the range:

$$
\frac{a_{n+1}(x)}{a_{n}(x)}=\frac{x^{2}}{(2 n+2)(2 n+1)} \leq \frac{\pi^{2}}{12} \quad(n \geq 1)
$$

Note however that a_{1} is not smaller than 1 , which was a condition necessary for the appllcation of Theorem 5.1. Nevertheless, the alternating serles method remalns formally valld, and we have:

```
A Raab-Green density generator via the alternating series method
REPEAT
    Generate a uniform [-\pi,\pi] random variate X
    Generate a uniform [0,1] random variate U.
    n\curvearrowleft0,W\multimap0,V\multimap1 (V is used to facilitate evaluation of consecutive terms in the al-
    ternating series.)
    REPEAT
        n\leftarrown+1
        V}\frac{V\mp@subsup{X}{}{2}}{(2n)(2n-1)
        W\leftarrowW+V
        IF U}\geqW\mathrm{ THEN RETURN }
        n\leftarrown+1
        V}-\frac{V\mp@subsup{X}{}{2}}{(2n)(2n-1)
        W\leftarrowW-V
    UNTIL U<W
UNTIL False
```

The drawback with this algorithm is that c, the rejection constant, is 2 . But thls can be avolded by the use of a many-to-one transformation described in section IV.4. The princlple is this: If (X, U) is unlformly distributed $\ln \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[0,2]$, then we can exlt with X when $U \leq 1+\cos (X)$ and with $\pi \operatorname{sign} X-X$ otherwise, thereby avolding rejections altogether. With this improvement, we obtaln:

An improved Raab-Green density generator based on the alternating series method

Generate a uniform $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ random variate X.
Generate a uniform $[0,1]$ random variate U.
$n \leftarrow 0, W \leftarrow 0, V-1$ (V is used to facilitate evaluation of consecutive terms in the alternating series.)
REPEAT
$n \leftarrow n+1$
$V \leftarrow \frac{V X^{2}}{(2 n)(2 n-1)}$
$W \leftarrow W+V$
IF $U \geq W$ THEN RETURN X
$n \leftarrow n+1$
$V+\frac{V X^{2}}{(2 n)(2 n-1)}$
$W \leftarrow W-V$
IF $U \leq W$ THEN RETURN $\pi \operatorname{sign} X-X$
UNTIL False

This algorlthm improves over the algorithm of section IV. 4 for the same distributlon in which the cos was evaluated once per random varlate. We won't give a detalled time analysis here. It is perhaps worth noting that the probability that the UNTIL step is reached, l.e. the probabllity that one iteration is completed, is about 2.54%. This can be seen as follows: if $N *$ is the number of completed Iterations, then

$$
P\left(N^{*}>i\right)=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \frac{x^{4 i}}{(4 i)!} d x=\frac{1}{\pi} \frac{\left(\frac{\pi}{2}\right)^{4 i+1}}{(4 i+1)!}
$$

and thus

$$
E(N *)=\sum_{i=0}^{\infty} \frac{1}{\pi} \frac{\left(\frac{\pi}{2}\right)^{4 i+1}}{(4 i+1)!}
$$

In partlcular, $P(N *>1)=\frac{\pi^{4}}{3840} \approx 0.0254$. Also, $E(N *)$ is about equal to $1+2 P(N *>1) \approx 1.0254$ because $P(N *>2)$ is extremely small.

5.6. The Kolmogorov-Smirnov distribution.

The Kolmogorov-Smirnov distribution function

$$
F(x)=\sum_{n=-\infty}^{\infty}(-1)^{n} e^{-2 n^{2} x^{2}} \quad(x \geq 0)
$$

appears as the limlt distrlbution of the Kolmogorov-Smlrnov test statistlc (Kolmogorov (1933); Smlrnov (1939); Feller (1948)). No slmple procedure for inverting F is known, hence the Inversion method is llkely to be slow. Also, both the distribution function and the corresponding density are only known as infinite series. Thus, exact evaluation of these functions is not possible in finlte time. Yet, by using the serles method, we can generate random varlates with this distribution extremely efficlently. This illustrates once more that generating random variates is slmpler than computing a distribution function.

First, it is necessary to obtain convenlent serles expansions for the density. Taking the derivative of F, we obtaln the density

$$
f(x)=8 \sum_{n=1}^{\infty}(-1)^{n+1} n^{2} x e^{-2 n^{2} x^{2}} \quad(x \geq 0)
$$

which is in the format of the alternating serles method if we take

$$
\begin{aligned}
& \operatorname{ch}(x)=8 x e^{-2 x^{2}} \\
& a_{n}(x)=(n+1)^{2} e^{-2 x^{2}\left((n+1)^{2}-1\right)} \quad(n \geq 0) .
\end{aligned}
$$

There is another serles for F and f which can be obtalned from the first serles by the theory of theta functions (see e.g. Whittaker and Watson, 1927):

$$
\begin{aligned}
& F(x)=\frac{\sqrt{2 \pi}}{x} \sum_{n=1}^{\infty} e^{-\frac{(2 n-1)^{2} \pi^{2}}{8 x^{2}}} \quad(x>0) ; \\
& f(x)=\frac{\sqrt{2 \pi}}{x} \sum_{n=1}^{\infty}\left[\frac{(2 n-1)^{2} \pi^{2}}{4 x^{3}}-\frac{1}{x}\right] e^{-\frac{(2 n-1)^{2} \pi^{2}}{8 x^{2}}} \quad(x>0) .
\end{aligned}
$$

Again, we have the format needed for the alternating serles method, but now with

$$
\begin{aligned}
& c h(x)=\frac{\sqrt{2 \pi} \pi^{2}}{4 x^{4}} e^{-\frac{\pi^{2}}{8 x^{2}}} \quad(x>0), \\
& a_{n}(x)= \begin{cases}\frac{4 x^{2}}{\pi^{2}} e^{-\frac{\left(n^{2}-1\right) \pi^{2}}{8 x^{2}}} & (n \text { odd }, x>0) \\
(n+1)^{2} e^{-\frac{\left((n+1)^{2}-1\right) \pi^{2}}{8 x^{2}}} & (n \text { even }, x>0)\end{cases}
\end{aligned}
$$

We will refer to this serles expansion as the second serles expansion. In order for the alternating serles method to be applicable, we must verify that the a_{n} 's satisfy the monotonicity condition. This is done in Lemma 5.1:

Lemma 5.1.

The terms a_{n} in the first serles expansion are monotone \downarrow for $x>\sqrt{\frac{1}{3}}$. For the second series expansion, they are monotone \downarrow when $x<\frac{\pi}{2}$.

Proof of Lemma 5.1.

In the first serles expansion, we have

$$
\begin{aligned}
& \log \left(\frac{a_{n-1}(x)}{a_{n}(x)}\right)=-2 \log \left(1+\frac{1}{n}\right)+2(2 n+1) x^{2} \\
& \geq-\frac{2}{n}+2(2 n+1) x^{2} \geq-2+8 x^{2}>0
\end{aligned}
$$

For the second serles expansion, when n is even,

$$
\frac{a_{n}(x)}{a_{n+1}(x)}=\frac{(n+1)^{2} \pi^{2}}{4 x^{2}} \geq \frac{\pi^{2}}{4 x^{2}}>1
$$

Also,

$$
\log \left(\frac{a_{n-1}(x)}{a_{n}(x)}\right)=-\log \left(\frac{(n+1)^{2} \pi^{2}}{4 x^{2}}\right)+\frac{n \pi^{2}}{2 x^{2}}=y-2 \log (n+1)-\log \left(\frac{y}{2}\right)
$$

where $y=\frac{\pi^{2}}{2 x^{2}}$. The last expression is lnc ceasing $\ln y$ for $y \geq 2$ and all $n \geq 2$. Thus, it is not smaller than $2 n-2 \log (n+1) \geq 0$.

We now glve the algorithm of Devrove (1980). It uses the mlxture method because one serles by ltself does not yleld easlly Identifiable upper and lower bounds for f on the entlre real line. We are fortunate that the monotonlity conditions are satisfled on $\left(\sqrt{\frac{1}{3}}, \infty\right)$ and on ($0, \frac{\pi}{2}$) for the two serles respectively. Had these intervals been disjolnt, then we would have been forced to look for yet another approximation. We define the breakpoint for the mixture method by $t \in\left(\sqrt{\frac{1}{3}}, \frac{\pi}{2}\right)$. The value 0.75 is suggested. Define also $p=F(t)$.

Generate a uniform $[0,1]$ random variate U. IF $U<p$

> THEN RETURN a random variate X with density $\frac{f}{p}, 0<x<t$.
> ELSE RETURN a random variate X with density $\frac{f}{1-p}, t<x$.

For generation in the two intervals, the two serles expansions are used. Another constant needed in the algorithm is $t^{\prime}=\frac{\pi^{2}}{8 t^{2}}$. We have:

Generator for the leftmost interval

REPEAT

REPEAT
Generate two iid exponential random variates, E_{0}, E_{1}.
$E_{0} \leftarrow \frac{E_{0}}{1-\frac{1}{2 t^{\prime}}}$
$E_{1} \leftarrow 2 E_{1}$
$G \leftarrow t^{\prime}+E_{0}$
Accept $\leftarrow\left[\left(E_{0}\right)^{2} \leq t^{\prime} E_{1}\left(G+t^{\prime}\right)\right]$
IF NOT Accept
THEN Accept $\leftarrow\left[\frac{G}{t^{\prime}}-1-\log \left(\frac{G}{t^{\prime}}\right) \leq E_{1}\right]$
UNTIL Accept

$$
\begin{aligned}
& X \leftarrow \frac{\pi}{\sqrt{8 G}} \\
& W \leftarrow 0 \\
& Z \leftarrow \frac{1}{2 G} \\
& P \leftarrow e^{-G} \\
& n \leftarrow 1 \\
& Q \leftarrow 1
\end{aligned}
$$

Generate a uniform $[0,1]$ random variate U.
REPEAT
$W \leftarrow W+Z Q$
IF $U \geq W$ THEN RETURN X
$n \leftarrow n+2$
$Q \leq P^{n^{2}-1}$
$W \leftarrow W-n^{2} Q$
UNTIL $U<W$
UNTIL False

Generator for the rightmost interval

REPEAT

Generate an exponential random variate E.
Generate a uniform $[0,1]$ random variate U.
$X \leftarrow \sqrt{t^{2}+\frac{E}{2}}$
$W \leftarrow 0$
$n \leftarrow 1$
$Z \leftarrow e^{-2 X^{2}}$
REPEAT

$$
\begin{aligned}
& n \leftarrow n+1 \\
& W \leftarrow W+n^{2} Z^{n^{2}-1}
\end{aligned}
$$

IF $U \geq W$ THEN RETURN X
$n \longleftarrow n+1$
$W \leftarrow W-n^{2} Z^{n^{2-1}}$
UNTIL $U \leq W$
UNTIL False

The algorithms are both stralghtforward applicatlons of the alternating serles method, but perhaps a few words of explanation are in order regarding the algorithms used for the dominating densities. This is done In two lemmas.

Lemma 5.2.

The random varlable $\sqrt{t^{2}+\frac{E}{2}}$ (where E is an exponential random varlable and $t>0$) has denslty

$$
c x e^{-2 x^{2}} \quad(x \geq t)
$$

where $c>0$ is a normalization constant.

Proof of Lemma 5.2.

Verlfy that the distribution function of the random varlable is $1-e^{-2\left(x^{2}-t^{2}\right)}(x \geq t)$. Taking the derlvative of this distribution function ylelds the destred result.

Lemma 5.3.

If G is a random varlable with truncated gamma $\left(\frac{3}{2}\right)$ density $c \sqrt{y} e^{-y} \quad\left(y \geq t^{\prime}=\frac{\pi^{2}}{8 t^{2}}\right)$, then $\frac{\pi}{\sqrt{8 G}}$ has density

$$
\frac{c}{x^{4}} e^{-\frac{\pi^{2}}{8 x^{2}}} \quad(0<x \leq t)
$$

where the c 's stand for (possibly different) normallzation constants, and $t>0$ is a constant. A truncated gamma $\left(\frac{3}{2}\right)$ random varlate can be generated by the algorlthm:

Truncated gamma generator

REPEAT

Generate two iid exponential random variates, E_{0}, E_{1}.
$E_{0} \leftarrow \frac{E_{0}}{1-\frac{1}{2 t^{\prime}}}$
$E_{1} \leftarrow 2 E_{1}$
$G \leftarrow t^{\prime}+E_{0}$
Accept $-\left[\left(E_{0}\right)^{2} \leq t^{\prime} E_{1}\left(G+t^{\prime}\right)\right]$
IF NOT Accept

$$
\text { THEN Accept } \leftarrow\left[\frac{G}{t^{\prime}}-1-\log \left(\frac{G}{t^{\prime}}\right) \leq E_{1}\right]
$$

UNTII Accept
RETURN G

Proof of Lemma 5.3.

The Jacobian of the transformation $y=\frac{\pi^{2}}{8 x^{2}}$ is $\frac{4 \pi}{{ }^{\frac{3}{2}}}$. This glves the dis$(8 y)^{\frac{3}{2}}$
tributional result without further work if we argue backwards. The validity of the rejection algorithm with squeezing requires a little work. First, we start from the Inequallty

$$
y \leq e^{\frac{y}{t^{\prime}}} \frac{t^{\prime}}{e} \quad\left(y \geq t^{\prime}\right)
$$

which can be obtalned by maximizing $y e^{\frac{-y}{t^{\prime}}}$ in the sald interval. Thus,

$$
\sqrt{y} e^{-y} \leq \sqrt{\frac{t^{\prime}}{e}} e^{-\left(1-\frac{1}{2 t^{\prime}}\right) y} \quad\left(y \geq t^{\prime}\right)
$$

The upper bound is proportlonal to the density of $t^{\prime}+\frac{E}{1-\frac{1}{2 t^{\prime}}}$ where E is an exponential random varlate. This random varlate is called G in the algorthm. Thus, if U is a unlform random varlate, we can proceed by generating couples G, U until

$$
e^{\frac{G}{2 t^{\prime}}} \sqrt{\frac{t^{\prime}}{e}} U \leq \sqrt{G} .
$$

This condition is equivalent to

$$
\frac{G}{t^{\prime}}-1-\log \left(\frac{G}{t^{\prime}}\right) \leq 2 E_{1}
$$

where E_{1} is another exponential random varlable. A squeeze step can be added by noting that $\log (1+u) \geq \frac{2 u}{2+u} \quad(u \geq 0)$ (exerclse 5.1).

All the prevlous algorithms can now be collected into one long (but fast) algorithm. For generallties on good generators for the tall of the gamma density, we refer to the section on gamma variate generation. In the implementation of Devroye (1980), two further squeeze steps were added. For the rightmost interval, we can return X when $U \geq 4 e^{-6 t^{2}}$ (whlch is a constant). For the leftmost interval, the same can be done when $U \geq \frac{4 t^{2}}{\pi^{2}}$. For $t=0.75$, we have $p \approx 0.373$, and the quick acceptance probabilitles are respectively ≈ 0.86 and ≈ 0.77 for the latter squeeze steps.

Related distributions.

The empirical distribution function $F_{n}(x)$ for a sample X_{1}, \ldots, X_{n} of lld random varlables is defined by

$$
F_{n}(x)=\sum_{i=1}^{n} \frac{1}{n} I_{\left[X_{i} \leq x \mid\right.}
$$

where I is the indicator function. If X_{i} has distribution function $F(x)$, then the following goodness-of-fit statistlcs have been proposed by varlous authors:
(1) The asymmetrical Kolmogorov-Smirnov statistics $K_{n}+=\sqrt{n} \sup \left(F_{n}-F\right), K_{n}{ }^{-}=\sqrt{n} \sup \left(F-F_{n}\right)$.
(11) The Kolmogorov-Smirnov statistlc $K_{n}=\max \left(K_{n}{ }^{+}, K_{n}{ }^{-}\right)$.
(iii) Kuiper's statistic $V_{n}=K_{n}{ }^{+}+K_{n}{ }^{-}$.
(iv). von Mises' statistic $W_{n}^{2}=n \int\left(F_{n}-F\right)^{2} d F$.
(v) Watson's statistic $U_{n}=n \cdot \int\left(F_{n}-F-\left(\int\left(F_{n}-F\right) d F\right)\right)^{2} d F$.
(vi) The Anderson-Darling statistic $A_{n}{ }^{2}=n \int \frac{\left(F_{n}-F\right)^{2}}{F(1-F)} d F$.

For surveys of the propertles and appllcatlons of these and other statistics, see Darllng (1955), Barton and Mallows (1965), and Sahler (1988). The limlt random variables (as $n \rightarrow \infty$) are denoted with the subscripts ∞. The limit distributions have characterlstic functions that are infinlte products of characteristic functions of gamma distrlbuted random varlables except in the case of A_{∞}. From this, we note several relations between the limit distributions. First, $2 K_{\infty}{ }^{+2}$ and $2 K_{\infty}{ }^{-2}$ are exponentlally distrlbuted (Smlrnov, 1938; Feller, 1948). K_{∞} has the Kolmogorov-Smlrnov distrlbution function discussed in thls sectlon (Kolmogorov, 1933; Smlrnov, 1938; Feller, 1948). Interestingly, V_{∞} is distributed as the sum of two independent random varlables distributed as K_{∞} (Kulper, 1980). Also, as shown by Watson (1981, 1982), U_{∞} is distributed as $\frac{1}{\pi} \sqrt{K_{\infty}}$. Thus, generation for all these llmit distributions poses no problems. Unfortunately, the same cannot be sald for A_{∞} (Anderson and Darllng, 1852) and W_{∞} (Smlrnov, 1937; Anderson and Darling, 1952).

5.7. Exercises.

1. Prove the following Inequality needed in Lemma 5.3: $\log (1+u) \geq \frac{2 u}{2+u} \quad(u>0)$.
2. The exponential distribution. For the exponential density, choose a dominating density h from the family of densities

$$
\frac{n a^{n}}{(x+a)^{n+1}} \quad(x>0),
$$

where $n \geq 1$ and $a>0$ are design parameters. Show the following:
(1) h is the density of $a\left(U^{-\frac{1}{n}}-1\right)$ where U is a unlform $[0,1]$ random varlable. It is also the density of $a\left(\max ^{-1}\left(U_{1}, \ldots, U_{n}\right)-1\right)$ where the U_{i} 's are $11 d$ unlform $[0,1]$ random varlables.
(i1) Show that the rejection constant is $c=\left(\frac{n+1}{e}\right)^{n+1} \frac{e^{a} a^{-n}}{n}$, and show that this is minimal when $a=n$.
(iv) Show that with $a=n$, we have $c=\frac{1}{e}\left(1+\frac{1}{n}\right)^{n+1} \rightarrow 1$ as $n \rightarrow \infty$.
(v) Give the serles method based upon rejection from h (where $a=n$ and $n \geq 1$ is an Integer). Use quick acceptance and rejection steps based upon the Taylor serles expanston.
(vi) Show that the expected time of the algorithm is ∞ when $n=1$ (thls shows the danger Inherent in the use of the serles method). Show also that the expected time is finite when $n \geq 2$.
(Devroye, 1980)
3. Apply the serles method for the normal denslty truncated to $[-a, a]$ with rejection from a unlform density. SInce the expected number of iterations is

$$
\frac{2 a}{\sqrt{2 \pi}(F(a)-F(-a))}
$$

where F is the normal distribution function, we see that it is important that a be small. How would you handle the talls of the distribution? How would you choose a for the combined algorithm?
4. In the study of spectral phenomena, the following densitles are important:
(1) $f_{1}(x)=\frac{1}{\pi}\left(\frac{\sin (x)}{x}\right)^{2}$ (the Fejer-de la Vallee Poussin density);
(i1) $f_{2}(x)=\frac{3}{\pi}\left(\frac{\sin (x)}{x}\right)^{4}$ (the Jackson-de la Vallee Poussin density).
These densitles have osclllating talls. Using the fact that

$$
\frac{\sin (x)}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots
$$

and that $\frac{\sin (x)}{x}$ falls between consecutive partial sums in this series, derive a good serles algorithm for random varlate generation for f_{1} and f_{2}. Compare the expected time complexity with that of the obvious rejection algorithms.
5. The normal distribution. Consider the serles method for the normal density based upon the dominating density $h(x)=\min \left(a, \frac{1}{18 a x^{2}}\right)$ where $a>0$ is a parameter. Show the following:
(1) If (U, V) are ild unlform $[-1,1]$ random varlates, then $\frac{V}{4 a U}$ has density h.
(i1) Show that
$e^{-\frac{x^{2}}{2}} \leq \max \left(\frac{1}{a}, \frac{32 a}{e}\right) h(x)$
and deduce that the best constant a is $\sqrt{\frac{e}{32}}$.
(iii) Prove that the following algorithm is valid:

Normal generator via the series method

REPEAT

Generate two iid uniform $[-1,1]$ random variates V_{1}, V_{2} and a uniform $[0,1]$ random variate U.
$X \leftarrow \sqrt{\frac{2}{e}} \frac{V_{1}}{V_{2}}$
IF $|X| \leq \sqrt{\frac{2}{e}}$
THEN $W \leftarrow \sqrt{\frac{32}{e}} U-1$
ELSE $W \leftarrow \frac{U}{\sqrt{8 e} X^{2}}-1$
$n \leftarrow 0, Y \leftarrow \frac{X^{2}}{2}, P \leftarrow-1$
REPEAT

$$
\begin{aligned}
& n \leftarrow n+1 \\
& P \leftarrow \frac{P Y}{n} \\
& W \leftarrow W+P \\
& \text { IF } W \leq 0 \text { THEN RETURN } X \\
& n \leftarrow n+1 \\
& P \leftarrow \frac{P Y}{n} \\
& W \leftarrow W+P
\end{aligned}
$$

$$
\text { UNTIL } W>0
$$

UNTIL False
(lv) Show that in this algorithm, the expected number of iterations is $\frac{4}{\sqrt{\pi e}}$. (An Iteration is defined as a check of the UNTIL False statement or a permanent return.)
6. Erdos and Kac (1846) encountered the following distribution function on $[0, \infty)$:

$$
F(x)=\frac{4}{\pi} \sum_{j=0}^{\infty}(-1)^{j} \frac{1}{2 j+1} e^{-(2 j+1)^{2} \pi^{2} /\left(8 x^{2}\right)} \quad(x>0)
$$

This shows some resemblance to the Kolmogorov-Smirnov distribution functlon. Apply the serles method to obtain an efflclent algorithm for generating random variates with thls distribution function. Furthermore, show the identlty

$$
F(x)=\sum_{j=-\infty}^{\infty}(-1)^{j}(\Phi((2 j+1) x)-\Phi((2 j-1) x))
$$

where Φ is the normal distrlbution function (Grenander and Rosenblatt, 1953), which can be of some help in the development of your algorithm.

6. REPRESENTATIONS OF DENSITIES AS INTEGRALS.

6.1. Introduction.

For most densitles, one usually flrst trles the inversion, rejection and mixture methods. When elther an ultra fast generator or an ultra universal algorithm is needed, we mlght consider looking at some other methods. But before we go through thls trouble, we should verlfy whether we do not already have a generator for the density without knowing it. Thls occurs when there exists a special distributional property that we do not know about, which would provide a vital link to other better known distributions. Thus, it is Important to be able to declde which distributional propertles we can or should look for. Lucklly, there are some general rules that just require knowledge of the shape of the density. For example, by Khlnchine's theorem (glven in thls section), we know that a random varlable with a unimodal density can be written as the product of a unlform random varlable and another random variable, which turns out to be quite simple in some cases. Khinchine's theorem follows from the representation of the unimodal denslty as an Integral. Other representations as integrals will be discussed too. These include a representation that will be useful for generating stable random varlates, and a representation for random varlables possessing a Polya type characterlstlc functlon. There are some general theorems about such representatlons which will also be discussed. It should be mentloned though that thls sectlon has no direct link with random varlate generation, since only probabllistlc propertles are explotted to obtain a convenlent reduction to simpler problems. We also need quite a lot of information about the density In question. Thus, were it not for the fact that several key reductions will follow for important densitles, we would not have included this section in the book. Also, representing a density as an Integral really bolls down to defining a continuous mixture. The only novelty here is that we will actually show how to track down and invent useful mixtures for random varlate generation.

6.2. Khinchine's and related theorems.

By far the most important class of densities is the class of unimodal densitles. Thus, it is useful to have some integral representations for such densities. Formally, a distribution is called convex on a set A of the real line if for all $x, y \in A$,

$$
F(\lambda x+(1-\lambda) y) \leq \lambda F(x)+(1-\lambda) F(y) \quad(0 \leq \lambda \leq 1)
$$

It is concave if the inequality is reversed. It is unimodal if it is convex on $(-\infty, 0)$ and concave on $[0, \infty)$, and in that case the point 0 is called a mode of the distribution. The rationale for this deflnition becomes obvlous when translated to the density (if it exists). We will not consider other possible locations for the mode to keep the notation simple.

Theorem 6.1. Khinchine's theorem.

A random variable X is unimodal if and only if X is distributed as $U Y$ where U, Y are independent random variables: U is unlformly distributed on $[0,1]$ and Y is another random varlable not necessarlly possessing a density. If Y has distribution function G on $[0, \infty)$, then $U Y$ has distribution function

$$
F(x)=\int_{0}^{1} G\left(\frac{x}{u}\right) d u
$$

Proof of Theorem 6.1.

We refer to Feller (1971 , p. 158) for the only if part. For the if part we observe that $P(U Y \leq x \mid U=u)=\frac{G(x / u)}{u}$, and thus, integrating over $[0,1]$ with respect to $d u$ gives us the result.

To handle the corollarles of Khinchine's theorem correctly, we need to recall the definition of an absolutely continuous function f on an interval $[a, b]$: for all $\epsilon>0$, there exists a $\delta>0$ such that for all nonoverlapping intervals $\left(x_{i}, y_{i}\right), 1 \leq i \leq n$, and all integers n,

$$
\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|<\delta
$$

Implies

$$
\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(y_{i}\right)\right|<\epsilon
$$

When f is absolutely continuous on $[a, b]$, its derivative f^{\prime} is defined almost everywhere on $[a, b]$. Also, it is the indefinite integral of its derivative:

$$
f(x)-f(a)=\int_{a}^{x} f^{\prime}(u) d u \quad(a \leq x \leq b)
$$

See for example Royden (1988). Thus, Lipschitz functions are absolutely continuous. And if f is a denslty on $[0, \infty)$ with distribution function F, then F is absolutely continuous,

$$
F(x)=\int_{0}^{x} f(u) d u
$$

and

$$
F^{\prime}(x)=f(x) \text { almost everywhere }
$$

A density f is called monotone on $[0, \infty)$ (or, in short, monotone) when f is nonincreasing on $[0, \infty)$ and f vanishes on ($-\infty, 0$). However, it is posslble that $\lim _{x \downarrow 0} f(x)=\infty$.

Theorem 6.2.

Let X be a random varlable with a monotone density f. Then

$$
\lim _{x \rightarrow \infty} x f(x)=\lim _{x \downarrow 0} x f(x)=0 .
$$

If f is absolutely contlnuous on all closed Intervals of $(0, \infty)$, then f^{\prime} exists almost everywhere,

$$
f(x)=-\int_{x}^{\infty} f^{\prime}(u) d u,
$$

and X is distributed as $U Y$ where U is a unlform $[0,1]$ random variable, and Y is independent of U and has density

$$
g(x)=-x f^{\prime}(x) \quad(x>0)
$$

Proof of Theorem 6.2.

Assume that $\underset{x \rightarrow \infty}{\lim \sup } x f(x) \geq 2 a>0$. Then there exists a subsequence $x_{1}<x_{2}<\cdots$ such that $x_{i+1} \geq 2 x_{i}$ and $x_{i} f\left(x_{i}\right) \geq a>0$ for all i. But

$$
1=\int_{0}^{\infty} f(x) d x \geq \sum_{i=1}^{\infty}\left(x_{i+1}-x_{i}\right) f\left(x_{i+1}\right) \geq \sum_{i=1}^{\infty} \frac{1}{2} x_{i+1} f\left(x_{i+1}\right)=\infty
$$

which is a contradiction. Thus, $\lim _{x \rightarrow \infty} x f(x)=0$.
Assume next that $\underset{x \nmid 0}{\operatorname{llm}} \sup x f(x) \geq 2 a>0$. Then we can find $x_{1}>x_{2}>\cdots$ such that $x_{i+1} \leq \frac{x_{i}}{2}$ and $x_{i} f\left(x_{i}\right) \geq a>0$ for all i. Agaln, a contradiction is obtained:

$$
1=\int_{0}^{\infty} f(x) d x \geq \sum_{i=1}^{\infty}\left(x_{i}-x_{i+1}\right) f\left(x_{i}\right) \geq \sum_{i=1}^{\infty} \frac{1}{2} x_{i} f\left(x_{i}\right)=\infty .
$$

Thus, $\lim _{x \not 0} x f(x)=0$. Thls brings us to the last part of the Theorem. The first two statements are trivlally true by the propertles of absolutely contlnuous functlons. Next we show that g is a density. Clearly, $f^{\prime} \leq 0$ almost everywhere. Also, $x f$ is absolutely continuous on all closed intervals of ($0, \infty$). Thus, for $0<a<b<\infty$, we have

$$
b f(b)-a f(a)=\int_{a}^{b} f(x) d x+\int_{a}^{b} x f^{\prime}(x) d x
$$

By the first part of thls Theorem, the left-hand-side of this equation tends to 0 as $a \downarrow 0, b \rightarrow \infty$. By the monotone convergence theorem, the right-hand side tends to $1+\int_{0} x f^{\prime}(x) d x$, which proves that g is indeed a density. Finally, if Y has density g, then $U Y$ has density

$$
\int_{x}^{\infty} \frac{g(u)}{u} d u=-\int_{x}^{\infty} f^{\prime}(u) d u=f(x)
$$

Thls proves the last part of the Theorem.

The extra condition on f in Theorem 6.2 is needed because some monotone densitles have $f^{\prime}=0$ almost everywhere (think of stalrcase functions). The extra condition in Theorem 6.2 not present in Khinchine's theorem essentially guarantees that the mixing Y varlable has a density too. In general, Y needs to have distribution function

$$
1-x f(x)-\int_{x}^{\infty} f(u) d u \quad(x>0)
$$

(exerclse 8.8). We also note that Theorem 6.2 has an obvious extension to unlmodal densitles.

For monotone f that are absolutely continuous on all closed intervals of $(0, \infty)$, the following generator is thus valld:

Generator for monotone densities based on Khinchine's theorem

Generate a uniform $[0,1]$ random variate U.
Generate a random variate Y with density $g(x)=-x f^{\prime}(x), x>0$.
RETURN $X \leftarrow U Y$

Example 6.1. The exponential power distribution (EPD).
Subbotin (1923) introduced the following symmetric unimodal densitles:

$$
f(x)=\left(2 \Gamma\left(1+\frac{1}{\tau}\right)\right)^{-1} e^{-|x|^{\tau}},
$$

where $\tau>0$ is a parameter. This class contains the normal ($\tau=2$) and Laplace ($\tau=1$) densitles, and has the unlform density as a limlt ($\tau \rightarrow \infty$). By Theorem 6.2, and the symmetry in f, it is easlly seen that

$$
X \leftarrow V Y^{\frac{1}{\tau}}
$$

has the given density where V is uniformly distributed on $[-1,1]$ and Y is gamma $\left(1+\frac{1}{\tau}, 1\right)$ distributed. In particular, a normal random varlate can be obtalned as $V \sqrt{2 Y}$ where Y is gamma $\left(\frac{3}{2}\right)$ distributed, and a Laplace random varlate can be obtalned as $V\left(E_{1}+E_{2}\right)$ where E_{1}, E_{2} are lid exponential random varlates. Note also that X can be generated as $S Y^{1 / \tau}$ where Y is gamma $\left(\frac{1}{\tau}\right)$ distributed. For direct generation from the EPD distribution by rejection, we refer to Johnson (1979).

Example 6.2. The Johnson-Tietjen-Beckman family of densities.

Another stlll more flexible famlly of symmetric unimodal densitles was proposed by Johnson, Tletjen and Beckman (1980):

$$
f(x)=\frac{1}{2 \Gamma(\alpha)} \int_{x^{\frac{1}{\tau}}}^{\infty} u^{\alpha-\tau-1} e^{-u} d u
$$

where $\alpha>0$ and $\tau>0$ are shape parameters. An inflnite peak at 0 is obtained whenever $\alpha \leq \tau$. The EPD distribution is obtalned for $\alpha=\tau+1$, and another distribution derived by Johnson and Johnson (1978) is obtalned for $\tau=\frac{1}{2}$. By Theorem 6.2 and the symmetry $\ln f$, we observe that the random vartable

$$
X \leftarrow V Y^{\tau}
$$

has density f whenever V is unlformly distributed on $[-1,1]$ and Y is gamma (α) distributed. For the special case $\tau=1$, the gamma-Integral distribution is obtalned which is discussed in exercise 6.1.

Example 6.3. Simple relations between densities.

In the table below, a variety of distributional results are given that can help for the generation of some of them.

Density of Y	Density of $U Y(U$ is uniform on $[0,1])$
Exponential	Exponential-integral $\left(\int_{z}^{\infty} \frac{e^{-u}}{u} d u\right)$
Gamma (2)	Exponential
Beta $(2, b)$	Beta(1,b+1)
Rayleigh $\left(x e^{-x^{2} / 2}\right)$	$\int_{x}^{\infty} e^{-x^{2} / 2} d u$
Uniform $[0,1]$	$-\log (x)$
$(1+a) x^{a}(x \in[0,1])(a>0)$	$\frac{a+1}{a}\left(1-x^{a}\right)$
Maxwell $\left(\frac{x^{2}}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}\right)$	Normal

There are a few other representation theorems in the spirlt of Khinchine's theorem. For partlcular forms, one could consult Lux (1978) and Mikhallov (1985). For the stable distribution discussed in this section, we will need:

Theorem 6.3.

Let U be a unform $[0,1]$ random varlable, let E be an exponentlal random variable, and let $g:[0,1] \rightarrow[0, \infty)$ be a given function. Then $\frac{E}{g(U)}$ has distribution function

$$
F(x)=1-\int_{0}^{1} e^{-x g(u)} d u
$$

and density

$$
f(x)=\int_{0}^{1} g(u) e^{-x g(u)} d u
$$

Proof of Theorem 6.3.

For $x>0$,

$$
P\left(\frac{E}{g(U)}>x\right)=P(E>x g(U))=E\left(e^{-x g(U)}\right)=\int_{0}^{1} e^{-x g(u)} d u
$$

The derivative with respect to x is $-f(x)$ where f is defined above.

Finally, we mention a useful theorem of Mikhallov's about convolutions with exponentlal random varlables:

Thẹorem 6.4. (Mikhailov, 1965)

If Y has density f and E is an exponential random varlable independent of Y, then $E+Y$ has density

$$
h(x)=\int_{0}^{\infty} e^{-u} f(x+u) d u=\int_{-\infty}^{x} f(u) e^{u-x} d u
$$

Furthermore, if g is an absolutely continuous density on $[0, \infty)$ with $g(0)=0$ and $g+g^{\prime} \geq 0$, then $X \leftarrow E+Y$ has density g where now Y has density $g+g^{\prime}$, and E is stlll exponentially distrlbuted.

Proof of Theorem 6.4.

The first statement is trivial. For part two, we note that $g+g^{\prime}$ is indeed a density since $g+g^{\prime} \geq 0$ and $\int_{0}^{\infty}\left(g+g^{\prime}\right)=1$. (This follows from the fact that g is absolutely continuous and has $g(0)=0$.) But then, by partial Integration, X has density

$$
\int_{-\infty}^{x}\left(h(u)+h^{\prime}(u)\right) e^{u-x} d u=h(x)
$$

6.3. The inverse-of-f method for monotone densities.

Assume that f is monotone on $[0, \infty)$ and continuous, and that its inverse f^{-1} can be computed relatively easily. Since f^{-1} itself is a monotone denslty, we can use the following method for generating a random varlate with density f :

The inverse-of-f method for monotone densities
Generate a random variate Y with density f^{-1}.
Generate a uniform $[0,1]$ random variate U.
RETURN $X-U f^{-1}(Y)$

The correctness of the algorithm follows from the fact that (Y, X) is unlformly distributed under the curve of f^{-1}, and thus that (X, Y) is unlformly distributed under the curve of f.

Example 6.4.

If Y is exponentially distributed, then $U e^{-Y}$ has density $-\log (x)(0<x \leq 1)$ where U is uniformly distributed on $[0,1]$. But by the well-known connection between exponentlal and unlform distrlbutlons, we see that the product of two lld uniform $[0,1]$ random variables has denslty $-\log (x)(0<x \leq 1)$.

Example 6.5.

If Y has denslty

$$
f^{-1}(y)=\left(\log \left(\frac{2}{\pi y^{2}}\right)\right)^{\frac{1}{2}} \quad\left(0 \leq y \leq \sqrt{\frac{\pi}{2}}\right)
$$

and U is unlformly distributed on $[0,1]$, then $X \leftarrow U f^{-1}(Y)$ has the halfnormal distribution.

6.4. Convex densities.

The more we know about a density, the easler it is to generate random variates with thls density. There are for example a multitude of tools avallable for monotone densitles, ranging from very specific methods based upon Khinchine's theorem to black box or universal methods. In thls section we look at an even smaller class of densitles, the convex densitles. We will consider the class C_{+}of convex densities on $[0, \infty)$, and the class C of densitles that are convex on $[0, \infty)$ and on $(-\infty, 0)$. Thus, C_{+}is a subclass of the monotone densltles dealt with in the prevlous sectlon.

Convex densitles are absolutely continuous on all closed subintervals of $(0, \infty)$, and possess monotone rlght and left derlvatives everywhere that are equal except possibly on a countable set. If the second derlvative $f^{\prime \prime}$ exists, then f is convex if $f^{\prime \prime} \geq 0$. We will give one useful representation for convex densitles.

Theorem 6.5. (Mixture of triangles)

For every $f \in C_{+}$, we have

$$
f(x)=\int_{0}^{\infty} \frac{2}{u}\left(1-\frac{x}{u}\right)_{+} d F(u),
$$

where F is a distribution function with $F(0)=0$ defined by:

$$
F(u)=1+\frac{u^{2}}{2} f^{\prime}(u)-\left(u f(u)+\int_{u}^{\infty} f\right) \quad(u>0),
$$

where f^{\prime} is the right-hand derivative of f (which exists on $[0, \infty)$). If F is absolutely contInuous, then it has density

$$
g(u)=\frac{1}{2} u f^{\prime \prime}(u) \quad(u>0)
$$

Proof of Theorem 6.5.

We have to show first that If V, Y are independent random variables, where V has a trlangular denstty $2(1-x)_{+}$and Y has distribution function F, then $X \leftarrow V Y$ has density f. But for $x>0$,

$$
\begin{aligned}
& \int_{x}^{\infty} f=\int_{x}^{\infty}\left(1-\frac{x}{u}\right)^{2} d F(u) \\
& =\int_{x}^{\infty} d F(u)-2 x \int_{x}^{\infty} \frac{d F(u)}{u}+x^{2} \int_{x}^{\infty} \frac{d F(u)}{u^{2}}, \\
& f(x)=\int_{x}^{\infty} \frac{2}{u}\left(1-\frac{x}{u}\right) d F(u)=2 \int_{x}^{\infty} \frac{d F(u)}{u}-2 x \int_{x}^{\infty} \frac{d F(u)}{u^{2}},
\end{aligned}
$$

and

$$
-f^{\prime}(x)=2 \int_{x}^{\infty} \frac{d F(u)}{u^{2}}
$$

In our case, it can be verlfled that the interchange of integrals and derivatives is allowed. Substitute the value of f^{\prime} in the right-hand sides of the equalitles for f and $\int_{x}^{\infty} f$. Then check that

$$
x f(x)+\int_{x}^{\infty} f(u) d u=\int_{x}^{\infty} d F(u)+\frac{x^{2}}{2} f^{\prime}(x)
$$

and this gives us the first result. If F is absolutely continuous, then taking the derivative gives its density, $\frac{x^{2}}{2} f^{\prime \prime}(x)$.

Thls theorem states that for $f \in C_{+}$, we can use the following algorlthm:

Generator for convex densities

Generate a triangular random variate V (this can be done as $\min \left(U_{1}, U_{2}\right)$ where the U_{i} 's are iid uniform $[0,1]$ random variates).
Generate a random varlate Y with distribution function $F(u)=1+\frac{u^{2}}{2} f^{\prime}(u)-\left(u f(u)+\int_{u}^{\infty} f\right) \quad(u>0)$. (If F is absolutely continuous, then Y has density $\frac{x^{2}}{2} f^{\prime \prime}(x)$.)
RETURN $X \leftarrow V Y$

6.5. Recursive methods based upon representations.

Representations of densitles as integrals lead sometimes to properties of the following kind: assume that three random varlables X, Y, Z have densities f, g, h which are related by the decomposition

$$
g(x)=p h(x)+(1-p) f(x) .
$$

Assume that X is distributed as $\psi(Y, U)$ for some function ψ and a unlform $[0,1]$ random variable U independent of Y (thls is always the case). Then, we have
with probabllity $p, X \approx \psi(Z, U)$ and with probabllty $1-p, X \approx \psi\left(\psi\left(Y^{\prime}, U^{\prime}\right), U\right)$ where $\left(Y^{\prime}, U^{\prime}\right)$ is another palr distributed as (Y, U). (The notation \approx is ued for "Is distributed as".) This process can be repeated untll we reach a substitution by Z. We assume that Z has an easy denslty h. Notlce that we never need to actually generate from g ! Formally, we have, starting with Z :

Recursive generator

Generate a random variate Z with density h, and a uniform $[0,1]$ random variate U.
$X \leftarrow \psi(Z, U)$
REPEAT
Generate a uniform $[0,1]$ random variate V.
IF $V \leq p$
THEN RETURN X
ELSE
Generate a uniform [0,1] random variate U.
$X \leftharpoondown \psi(X, U)$
UNTIL False

The expected number of iterations in the REPEAT loop is $\frac{1}{p}$ because the number of V-varlates needed is geometrically distributed with parameter p. This algorlthm can be flne-tuned in most applications by discovering how uniform varlates can be re-used.

Let us illustrate how this can help us. We know that for the gamma density with parameter $a \in(0,1)$,

$$
\begin{aligned}
& f(x)=\frac{x^{a-1} e^{-x}}{\Gamma(a)} \quad(x>0): \\
& g(x)=-x f^{\prime}(x)=a h(x)+(1-a) f(x),
\end{aligned}
$$

where h is the gamma $(a+1)$ density. This is a convenlent decomposition since the parameter of h is greater than one. Also, we know that a gamma (a) random varlate is distributed as $U Y$ where U is a unlform $[0,1]$ random varlate and Y has density $-x f^{\prime}(x)$ (apply Theorem 8.2). Recall that we have seen several fast gamma generators for $a \geq 1$ but none that was unformly fast over all a. The previous recursive algorithm would boll down to generating X as

$$
Z \prod_{i=1}^{L} U_{i}
$$

where Z is gamma ($a+1$) distributed, L is geometric with parameter a, and the U_{i} 's are ild unlform [0,1] random variates. Note that this in turn is distributed as $Z e^{-G_{L}}$ where G_{L} is a gamma (L) random variate. But the density of G_{L} is

$$
\sum_{i=1}^{\infty} a(1-a)^{i-1} \frac{x^{i-1} e^{-x}}{(i-1)!}=e^{-a x} \quad(x>0)
$$

Thus, we have shown that the following generator is valld:

A gamma generator for a <1

Generate a gamma ($a+1$) random variate Z.
Generate an exponential random variate E.
RETURN $X-Z e^{-\frac{E}{a}}$

The recursive algorithm does not require exponentiation, but the expected number of iterations before halting is $\frac{1}{a}$, and this is not uniformly bounded over $(0,1)$. The algorithm based upon the decomposition as $Z e^{-\frac{E}{a}}$ on the other hand is unlformly fast.

Example 6.6. Stuart's theorem.

Without knowing it, we have proved a special case of a theorem of Stuart's (Stuart, 1962): If Z is gamma (a) distributed, and Y is beta ($b, a-b$) distributed and independent of Z, then $Z Y, Z(1-Y)$ are independent gamma (b) and gamma $(a-b)$ random varlables. If we put $b=1$, and formally replace a by $a+1$ then it is clear that $Z U^{\frac{1}{a}}$ is gamma (a) distributed, where U is a unlform $[0,1]$ random varlable.

There are other simple examples. The von Neumann exponentlal generator is also based upon a recursive relationship. It is true that an exponential random varlate E is with probabllity $1-\frac{1}{e}$ distributed as a truncated exponentlal random varlate (on $[0,1]$), and that E is with probability $\frac{1}{e}$ distributed as $1+E$. This recursive rule leads precisely to the exponentlal generator of section IV.2.

6. $\dot{6}$. A representation for the stable distribution.

The standardized stable distribution is best deflned in terms of its characterlstlc function ϕ :

$$
\log \phi(t)=\left\{\begin{array}{lc}
-|t| e^{-i \frac{\pi}{2} \bar{\alpha} \delta \operatorname{sgn}(t)} & (\alpha \neq 1) \\
-|t|\left(1+i \delta \frac{2}{\pi} \operatorname{sgn}(t) \log (|t|)\right) \quad(\alpha=1)
\end{array}\right.
$$

Here $\delta \in[-1,1]$ and $\alpha \in(0,2]$ are the shape parameters of the stable distribution, and $\bar{\alpha}$ is defined by $\min (\alpha, 2-\alpha)$. We omit the location and scale parameters in thls standard form. To save space, we will say that X is stable (α, δ) when it has the above mentloned characteristlc function. This form of the characteristic function is due to Zolotarev (1959). By far the most important subclass is the class of symmetric stable distributions which have $\delta=0$: their characteristic function is simply

$$
\phi(t)=e^{-|t|^{\alpha}}
$$

Despite the simplicity of this characteristic function, it is quite difflcult to obtain useful expressions for the corresponding density except perhaps in the spectal cases $\alpha=2$ (the normal density) and $\alpha=1$ (the Cauchy density). Thus, it would be convenient if we could generate stable random varlates without having to compute the density or distribution function at any point. There are two useful representations that will enable us to apply Theorem 8.4 with a sllght modiffcation. These will be glven below.

Theorem 6.6. (Ibragimov and Chernin, 1959; Kanter, 1975)

For $\alpha<1$, the density of a stable $(\alpha, 1)$ random varlable can be written as

$$
f(x)=\frac{\alpha x^{\frac{1}{\alpha-1}}}{(1-\alpha) \pi} \int_{0}^{\pi} g(u) e^{-g(u) x^{\frac{\alpha}{\alpha-1}}} d u
$$

where

$$
g(u)=\left(\frac{\sin (\alpha u)}{\sin (u)}\right)^{\frac{1}{1-\alpha}} \frac{\sin ((1-\alpha) u)}{\sin (\alpha u)}
$$

When U is unlformly distributed on $[0,1]$ and E is independent of U and exponentlally distrlbuted, then

$$
\left(\frac{g(\pi U)}{E}\right)^{\frac{1-\alpha}{\alpha}}
$$

is stable $(\alpha, 1)$ distributed.

Proof of Theorem 6.6.

For the first statement, we refer to Ibragimov and Chernin (1959). The latter statement is an observation of Kanter's (1975) which is quite easily verified by computing the distribution function of $\left(\frac{g(\pi U)}{E}\right)^{\frac{1-\alpha}{\alpha}}$, and noting that it is equal to

$$
\frac{1}{\pi} \int_{0}^{\pi} e^{-g(u) x^{\frac{\alpha}{\alpha-1}}} d u
$$

Taking the derivative glves us the density f.

The second part of the proof uses a slight extension of Theorem 6.4. This representation allows us to generate stable $(\alpha, 1)$ random varlates quite easily - in most computer languages, one line of computer code will suffice! There are two problems however. First, we are stuck with the evaluation of several trigonometric functlons and of two powers. We will see some methods of generating stable random varlates that do not require such costly operations, but they are much more compllcated. Our second problem is that Theorem 6.8 does not cover the case $\delta \neq 1$. But this is easlly taken care of by the following Lemma for which we refer to Feller (1971):

Lemma 6.1.

A. If X and Y are IId stable $(\alpha, 1)$, then $Z \leftarrow p X-q Y$ is stable (α, δ) where

$$
\begin{aligned}
& p^{\alpha}=\sin \left(\frac{\pi \bar{\alpha}(1+\delta)}{2}\right) / \sin (\pi \bar{\alpha}), \\
& q^{\alpha}=\sin \left(\frac{\pi \bar{\alpha}(1-\delta)}{2}\right) / \sin (\pi \bar{\alpha}) .
\end{aligned}
$$

B. If X is stable $\left(\frac{\alpha}{2}, 1\right)$ and N is independent of X and normally distributed, then $N \sqrt{2 X}$ is stable $(\alpha, 0)$, all $\alpha \in(0,2]$.

Using this Lemma and Theorem 6.6, we see that we can generate all stable random varlates with elther $\alpha<1$ or $\delta=0$. To fll the vold, Chambers, Mallows and Stuck (1978) proposed to use a representation of Zolotarev's (1968):

Theorem 6.7. (Zolotarev, 1966; Chambers, Mallows and Stuck,1976)
Let E be an exponential random varlable, and let U be a unlform $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ random variable independent of E. Let further $\gamma=-\frac{\pi \delta \bar{\alpha}}{2 \alpha}$. Then, for $\alpha \neq 1$,

$$
X \leftarrow \frac{\sin (\alpha(U-\gamma))}{(\cos U)^{\frac{1}{\alpha}}}\left(\frac{\cos (U-\alpha(U-\gamma))}{E}\right)^{\frac{1-\alpha}{\alpha}}
$$

is stable (α, δ) distributed. Also,

$$
X \leftarrow \frac{2}{\pi}\left(\left(\frac{\pi}{2}+\delta U\right) \tan (U)-\delta \log \left(\frac{\pi E \cos (U)}{\pi+2 \delta U}\right)\right)
$$

is stable $(1, \delta)$ distributed.

We leave the determination of the integral representation of f to the reader. It is noteworthy that Theorem 6.7 is a true extension of Theorem 6.6 (Just note that for $\alpha<1, \delta=1$, we obtaln $\gamma=-\frac{\pi}{2}$. There are three special cases worth noting:
(1) A stable(2,0) random varlate can be generated as $\sqrt{E} \frac{\sin (2 U)}{\cos (U)}=2 \sqrt{E} \sin (U)$. This is the well-known Box-Muller representatlon of $\sqrt{2}$ times a normal random varlate (see section V.4).
(11) A stable $(1,0)$ random varlate can be obtained as $\tan (U)$, whlch ylelds the inversion method for generating Cauchy random varlates.
(III) A $\operatorname{stable}\left(\frac{1}{2}, 1\right)$ random varlate can be obtalned as

$$
\frac{1}{4 E \sin ^{2}\left(\frac{U}{2}-\frac{\pi}{4}\right)}
$$

which is distributed in turn as

$$
\frac{1}{4 E \cos ^{2}(U)}
$$

which is in turn distributed as $\frac{1}{2 N^{2}}$ where N is normally distributed.

6.7. Densities with Polya type characteristic functions.

Thls section is added because it illustrates that representations offer unexpected help in many ways. It is frustrating to come across a distribution with a very simple characteristlc function in one's research, and not be able to generate random varlates with this characteristic function, at least not without a lot of work. But we do know of course how to generate random varlates with some characteristic functions such as normal, uniform and exponentlal random variates. Thus, if we can find a representation of the characteristlc function ϕ in terms of one of these simpler characteristlc functions, then there is hope of generating random varlates with characteristic function ϕ. By this process, we can take care of quite a few characterlstlc functions, even some for which the denslty is not known in a slmple analytic form. This will be illustrated now for the class of Polya characteristic functions, l.e. real even continuous functions ϕ with $\phi(0)=1, \lim _{t \rightarrow \infty} \phi(t)=0$, convex on $(0, \infty)$. This class is important both from a practical point of view (it contalns many important distributions) and from a didactical point of vlew. The examples that we will consider in this subsection are listed in the table below.

Characteristic function $\phi(t)$	Name
$e^{-\|t\|^{\alpha}, 0<\alpha \leq 1}$	Symmetric stable distribution
$\frac{1}{1+\|t\|^{\alpha}, 0<\alpha \leq 1}$	Linnik's distribution
$(1-\|t\|)^{\alpha},\|t\| \leq 1, \alpha \geq 1$	
$1-\|t\|^{\alpha},\|t\| \leq 1,0<\alpha \leq 1$	

The second entry in this table is the characteristic function of a unimodal density for $\alpha \in(0,2]$ (Linnik (1962), Lukacs (1970, pp. 96-97)), yet no slmple form for the density is known. We are now ready for the representation.

Theorem 6.8. (Girault, 1954; Dugue and Girault, 1955)

Every Polya characteristic function ϕ can be decomposed as follows:

$$
\begin{aligned}
\phi(t) & =\int_{0}^{\infty}\left(1-\left|\frac{t}{s}\right|\right)_{+} d F(s) \quad(t>0), \\
\phi(t) & =-\phi(-t) \quad(t<0)
\end{aligned}
$$

where F is a distribution function with $F(0)=0$ and deflned by

$$
F(s)=1-\phi(s)+s \phi^{\prime}(s) \quad(s>0)
$$

Here ϕ^{\prime} is the right-hand derivative of ϕ (which exists everywhere). If F is absolutely contlnuous, then it has density

$$
g(s)=s \phi^{\prime \prime}(s) \quad(s>0)
$$

From this, It is a minor step to conclude:

Theorem 6.9. (Devroye, 1984)

If ϕ is a Polya characterlstic function, then $X \leftarrow \frac{Y}{Z}$ has this characteristic function when Y, Z are independent random varlables: Z has the distribution function F of Theorem 6.8, and Y has the Fejer-de la Vallee Poussin (or: FVP) density

$$
\frac{1}{2 \pi}\left(\frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}}\right)^{2}
$$

Theorem 8.8 uses Theorem 8.8 and the fact that the FVP denslty has characteristlc function $(1-|t|)_{+}$. There are but two things left to do now: first, we need to obtaln a fast FVP generator because it is used for all Polya type distributions. Second, it is important to demonstrate that the distribution function F in the varlous examples is often quite slmple and easy to handle.

Remark 6.1. A generator for the Fejer-de la Vallee Poussin density.

Notice that if X has density

$$
\frac{1}{\pi}\left(\frac{\sin (x)}{x}\right)^{2}
$$

then $2 X$ has the FVP density. In view of the osclllating behavior of thls density, It is best to proceed by the refection method or the serles method We note first that $\sin (x)$ is bounded from above and below by consecutlve terms in the serles expansion

$$
\sin (x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots,
$$

and that it s bounded in absolute value by 1 . Thus, the density f of X is bounded as follows:

$$
f(x) \leq \frac{4}{\pi} h(x),
$$

where $h(x)=\min \left(\frac{1}{4}, \frac{1}{4 x^{2}}\right)$, which is the density of V^{B}, where V is a unlform $[-1,1]$ random varlable, and B is ± 1 with equal probabllity. The rejection
constant of $\frac{4}{\pi} \ln$ thls inequallty is usually quite acceptable. Thus, we have:

FVP generator based upon rejection
REPEAT
Generate iid uniform $[-1,1]$ random variates U, X.
IF $U<0$

```
        THEN
```

$$
X \leftarrow \frac{1}{X}
$$

$$
\text { Accept } \leftarrow\left[|U| \leq \sin ^{2}(X)\right]
$$

$$
\text { ELSE Accept } \leftarrow\left||U| X^{2} \leq \sin ^{2}(X)\right\}
$$

UNTIL Accept
RETURN $2 X$

The expected time can be reduced by the judiclous use of squeeze steps. First, if $|X|$ is outside the range $\left[0, \frac{\pi}{2}\right]$, it can always be reduced to a value within that range (as far as the value of $\sin ^{2}(X)$ is concerned). Then there are two cases:
(1) If $|X| \leq \frac{\pi}{4}$, we can use

$$
X-\frac{X^{3}}{6} \leq \sin (X) \leq X
$$

(11) If $|X| \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right]$, then we can use the fact that $\sin (X)=\cos \left(\frac{\pi}{2}-X\right)=\cos (Y)$, where Y now is in the range of (1). The following Inequalities will be helpful:

$$
1-\frac{Y^{2}}{2} \leq \sin (X) \leq 1-\frac{Y^{2}}{2}+\frac{Y^{4}}{24} .
$$

Example 6.7. The symmetric stable distribution.

In Theorem 6.9, Z has density g glven by

$$
g(s)=\left(\alpha^{2} s^{2 \alpha-1}+\alpha(1-\alpha) s^{\alpha-1}\right) e^{-s} \quad(s>0) .
$$

But we note that Z^{α} has density

$$
\alpha\left(s e^{-s}\right)+(1-\alpha)\left(e^{-s}\right) \quad(s>0),
$$

which is a mixture of a gamma (2) and an exponentlal density. Thus, Z is distributed as

$$
\left(E_{1}+E_{2} I_{[U<\alpha]}\right)^{\frac{1}{\alpha}}
$$

where E_{1}, E_{2} and U are Independent random varlables: E_{1} and E_{2} have an exponentlal density, and U is uniformly distributed on $[0,1]$. It is also worth observing that if we use U_{1}, \ldots for $11 d$ unlform [0,1] random variables, then Z is distributed as

$$
\left(E_{1}+\max \left(E_{2}+\log (\alpha), 0\right)\right)^{\frac{1}{\alpha}}
$$

and as

$$
\log ^{\frac{1}{\alpha}}\left(\max \left(\frac{\alpha}{U_{1} U_{2}}, \frac{1}{U_{1}}\right)\right)
$$

Example 6.8. Linnik's distribution

We verlfy that Z in Theorem 8.9 has density g given by

$$
g(s)=\left(\left(\alpha^{2}+\alpha\right) s^{2 \alpha-1}+\left(\alpha-\alpha^{2}\right) s^{\alpha-1}\right)\left(1+s^{\alpha}\right)^{-3} \quad(s>0) .
$$

It is perhaps easier to work with the density of Z^{α} :

$$
\frac{s(\alpha+1)+(1-\alpha)}{(1+s)^{3}} \quad(s>0)
$$

The latter density has distribution function $1-\frac{1+\alpha}{1+s}+\frac{\alpha}{(1+s)^{2}}$, and thls is easy to Invert. Thus, a random varlate Z can be generated as

$$
\left(\frac{\alpha+1-\sqrt{(\alpha+1)^{2}-4 \alpha U}}{2 U}-1\right)^{\frac{1}{\alpha}},
$$

where U is a unlform $[0,1]$ random varlate. If speed is extremely important, the square root can be avolded if we use the rejection method for the density of Z^{α}, with dominating density $(1+s)^{-2}$, which is the density of $\frac{1}{U}-1$. A little work shows that Z can be generated as follows:

REPEAT

Generate iid uniform $[0,1]$ random variates U, V.

$$
X \leftarrow \frac{1}{U}^{-1}
$$

UNTIL $2 \alpha U \leq V$ (Now, X is distributed as Z^{α}.)
RETURN $X^{\frac{1}{\alpha}}$

The expected number of iterations is $1+\alpha$.

Example 6.9. Other examples.

Assume that $\phi(t)=(1-|t|)_{+}^{\alpha}$ for $\alpha>1$. Then $\phi(s)-s \phi^{\prime}(s)$ is absolutely continuous. Thus, the random variable Z of Theorem 6.9 has beta ($2, \alpha-1$) density $g(s)=\alpha(\alpha-1) s(1-s)^{\alpha-2} \quad(0 \leq s \leq 1)$.

There are situations in which the distribution function F of Theorems 6.8 and 6.9 Is not absolutely continuous. To Illustrate thls, take $\phi(t)=\left(1-|t|^{\alpha}\right)_{+}$, and note that $F(s)=(1-\alpha) s^{\alpha}(0 \leq s \leq 1)$. Also, $F(1)=1$. Thus, F has an atom of welght α at 1, and it has an absolutely continuous part of welght $1-\alpha$ with support on (0,1). The absolutely continuous part has density $\alpha s^{\alpha-1}(0 \leq s \leq 1)$, which is the density of $U^{\frac{1}{\alpha}}$ where U is unlform on $[0,1]$. Thus,

$$
Z= \begin{cases}1 & \text { with probabllity } \alpha \\ U^{\frac{1}{\alpha}} & \text { with probabllity } 1-\alpha\end{cases}
$$

Here we can use the standard trick of recuperating part of the unlform $[0,1]$ random varlate used to make the "with probabillty α " cholce.
A. f is convex if and only if $a, b \geq 1$. It is concave if and only if $a, b \leq 1$.
B. Y^{b} has density f, where Y is beta $(b, a+1)$ distributed.
C. $\left(\frac{Y}{Y+Z}\right)^{b}$ has density f where Y is gamma (b) distributed, and Z is gamma ($a+1$) distrlbuted and Independent of Y.
6. Thls is a continuation of exercise 5 for the spectal case $b=1$. The density is $f(x)=(a+1)(1-x)^{a} \quad(0 \leq x \leq 1)$. From the prevlous exercise we recall that a random varlate with this distribution can be obtained as $1-U^{\frac{1}{a+1}}$ and as $\frac{E}{E+G_{a+1}}$ where U is a unform $[0,1]$ random varlate, E is an exponential random varlate, and G_{a+1} is a gamma ($a+1$) random varlate independent of E. Both these methods require costly operations. The following refection algorithms are usually faster:

Rejection method \#1, recommended for a >1
repeat
REPEAT
Generate two iid exponential random variates, E_{1}, E_{2}.

$$
X \leftarrow \frac{E_{1}}{a}
$$

UNTIL $X \leq 1$
Accept $\leftarrow\left[E_{2}(1-X)-a X^{2} \geq 0\right]$
IF NOT Accept THEN Accept $\leftarrow\left[a X+E_{2}+a \log (1-X) \geq 0\right]$
UNTIL Accept
RETURN X

Rejection method \#2, recommended for a < 1

repeat

Generate two ild uniform $[0,1]$ random variates, U, X.
UNTLL $U \leq(1-X)^{a}$
RETURN X

Show that the rejection algorthms are valld. Show furthermore that the expected number of Iterations is $\frac{a+1}{a}$ and $a+1$ respectively. (Thus, a uniformly fast algorlthm can be obtalned by using the first method for $a \geq 1$

6.8. Exercises.

1. The gamma-integral distribution. We say that X is $\operatorname{GI}(a)$ (has the gamma-Integral distribution with parameter $a>0$) when its density is

$$
f(x)=\int_{x}^{\infty} \frac{u^{a-2} e^{-u}}{\Gamma(a)} d u \quad(x>0)
$$

This distribution has a few remarkable propertles: it decreases monotonically on $[0, \infty)$. It has an infinite peak at 0 when $a \leq 1$. At $a=1$, we obtain the exponential-Integral density. When $a>1$, we have $f(0)=\frac{1}{a-1}$. For $a=2$, the exponential density is obtalned. When $a>2$, there is a point of inflection at $a \mathbf{- 2}$, and $f^{\prime}(0)=0$. For $a=3$, the distribution is very close to the normal distribution. In this exercise we are malnly interested in random variate generation. Show the following:
A. X can be generated as $U Y$ where U is uniformly distributed on $[0,1]$ and Y is gamma (a) distributed.
B. When a is integer, X is distributed as G_{Z} where Z is unlformly distributed on 1, .., a-1, and G_{Z} is a gamma (Z) random varlate. Note that X is distributed as $-\log \left(U_{1} \cdots U_{Z}\right)$ where the U_{i} 's are Ild unlform $[0,1]$ random varlates. Hint: use Induction on a.
C. As $a \rightarrow \infty, \frac{X}{a}$ tends in distribution to the uniform $[0,1]$ density.

D Compute all moments of the $\operatorname{GI}(a)$ distribution. (Hint: use Khinchine's theorem.)
2. The density of the energy spectrum of flssion neutrons is

$$
f(x)=\frac{1}{\sqrt{\pi a b}} e^{-(a+x) b} \sinh \left(\frac{2 \sqrt{a x}}{b}\right) \quad(x>0),
$$

where $a, b>0$ are parameters. Recall that $\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$. Apply Theorem 6.4 for designing a generator for thls distrlbution(Mikhallov, 1965).
3. How would you compute $f(x)$ with seven digits of accuracy for the exponentlal-Integral density of Example 6.3? Prove also that for the same distribution, $F(x)=\left(1-e^{-x}\right)+x f(x)$ where F is the distribution function.
4. If U, V are ild uniform $[0,1]$ random variables, then for $0<a<1, U V^{\frac{1}{1-a}}$ has density $x^{-a}-1 \quad(0<x<1)$.
5. In the next three exerclses, we consider the following class of monotone densities on $[0,1]$:

$$
f(x)=\frac{\Gamma(a+b+1)}{\Gamma(a+1) \Gamma(b+1)}\left(1-x^{\frac{1}{b}}\right)^{a} \quad(0 \leq x \leq 1),
$$

where $a, b>0$ are parameters. The coefflclent will be called B. The mode of the density occurs at $x=0$, and $f(0)=B$. Show the following:
and the second method for $a<1$.)
7. Continuation of exerclse 5 for $b=\frac{1}{2}$. The density we are considering here can be written as follows:

$$
f(x)=B\left(1-x^{2}\right)^{a} \quad(0 \leq x \leq 1)
$$

(Here $B=\frac{2}{\sqrt{\pi}} \frac{\Gamma\left(a+\frac{3}{2}\right)}{\Gamma(a+1)}$.) From exerclse 5 we recall that a random varlate with this density can be generated as $\frac{N}{\sqrt{N^{2}+2 G_{a+1}}}$ where N is a normal random varlate, and G_{a+1} is a gamma ($a+1$) random varlate independent of N.
A. Show that we can also use $|2 Y-1|$ where Y is beta $(a+1, a+1)$ distributed.
B. Show that if we keep generating ild uniform $[0,1]$ random varlates U, X untll $U \leq\left(1-X^{2}\right)^{a}$, then X has density f, the expected number of iterations is B, and B increases monotonically from $1(a=0)$ to $\infty(a \rightarrow \infty)$.
C. Show that the following rejection algorithm is valid and has refection $\Gamma\left(a+\frac{3}{2}\right)$
constant $\frac{2}{\sqrt{a} \Gamma(a+1)}$ (which tends monotonically to 1 as $a \rightarrow \infty$):

Rejection from a normal density

REPEAT

$$
\begin{aligned}
& \text { Generate independent normal and exponential random variates } \\
& N, E . \\
& X \leftarrow \frac{|N|}{\sqrt{2 a}}, Y \leftarrow X^{2} \\
& \text { Accept } \leftarrow[Y \leq 1] \text { AND }\left[1-Y\left(1+\frac{a Y}{E}\right) \geq 0\right] \\
& \text { IF NOT Accept . THEN Accept } \leftarrow[Y \leq 1] \text { AND } \\
& {[a Y+E+a \log (1-Y) \geq 0]} \\
& \text { UNTL Accept }
\end{aligned}
$$

RETURN X

Hint: use the Inequallties $-\frac{x}{1-x} \leq \log (1-x) \leq-x \quad(0<x<1)$.
8. The exponential power distribution. Show that if S is a random sign, and $G_{\frac{1}{\tau}}$ is a gamma $\left(\frac{1}{\tau}\right)$ random variate, then $S\left(G_{\frac{1}{\tau}}\right)^{\frac{1}{\tau}}$ has the exponential
power distribution with parameter τ, that is, its density is of the form $c e^{-|x|^{\top}}$ where c is a normallzation constant.
8. Extend Theorem 6.2 by showing that for all monotone densities, it suffices to take Y with distribution function

$$
F(x)=1-\int_{x}^{\infty} f(u) d u-x f(x) \quad(x \in R)
$$

10. Extend Theorem 6.5 to all convex densitles $\ln C$.
11. The Pareto distribution. Let E, Y be Independent random varlables, where E is exponentlally distributed, and Y has density g on $[0, \infty)$. Give an integral form for the density and distribution function of $X=E / Y$. Random varlables of this type are called exponential scale mixtures. Show that when Y is gamma (a), then $1+E / Y$ is Pareto with parameter a, i.e. $1+E / Y$ has denslty $a / x^{a+1} \quad(x>1)$ (see e.g. Harris, 1968).
12. Develop a unlformly fast generator for the family of densities

$$
f(x)=C_{n}\left(\frac{\sin (x)}{x}\right)^{n}
$$

where $n \geq 1$ is an integer parameter, and C_{n} is a constant depending upon n only.

7. THE RATIO-OF-UNIFORMS METHOD.

7.1. Introduction.

The rejection method has one blg drawback: densities with infinite talls have to be handled with care; often, talls have to be cut off and treated separately. In many cases, this can be avolded if the ratio-of-unlforms method is used. This method is particularly well sulted for bell-shaped densities with talls that decrease at least as fast as x^{-2}. The ratio-of-unlforms method was flrst proposed by Kinderman and Monahan (1977), and later applled to a varlety of distributhons such as the t distribution (Kinderman and Monahan,1979) and the gamma distrlbution (Cheng and Feast, 1879).

Because the resulting algorithms are short and often fast, and because we have yet another beautiful lllustration of the rejection and squeeze principles, we will devote quite a blt of space to thls method. The treatment will be systematlc and slmple: we are not looking for the most general form of algorlthm but for one that is easy to understand.

We begin with

Theorem 7.1. (Kinderman and Monahan, 1977)
Let $A=\left\{(u, v): 0 \leq u \leq \sqrt{f\left(\frac{v}{u}\right)}\right\}$ where $f \geq 0$ is an integrable function. If (U, V) is a random vector uniformly distributed over A, then $\frac{V}{U}$ has density $\frac{1}{c} f$ where $c=\int f=2$ area (A).

Proof of Theorem 7.1.

Define (X, Y) by $X=U, Y=\frac{V}{U}$. The Jacoblan of the transformation $u=x, v=x y$ is x. The density of (U, V) is $I_{A}(u, v) /(c / 2)$. Thus, the density of (X, Y) is x times $I_{A}(x, y x) /(c / 2)=x I_{[0, f(y))}(x) /(c / 2)$. The density of $Y=\frac{V}{U}$ is the marginal density computed as

$$
\int_{0}^{\sqrt{y}} \frac{x}{(c / 2)} d x=\frac{f(y)}{c}
$$

But we already know how to generate unloormly distributed random vectors: It suffices to enclose the area A by a slmple set such as a rectangle, In whlch we know how to generate unlform random vectors, and to apply the rejection princlple. Thus, it is important to verify what A looks like in general. First, A is a subset of $[0, \infty) \times R$. It is symmetric about the u-axis if f is symmetric about 0 . It vanishes in the negative v-quadrant when f is the density of a nonnegative random varlable. But what interests us more than anything else are conditions Insuring that $A \subseteq[0, b) \times\left[a_{-}, a_{+}\right]$for some finlte constants $b \geq 0, a_{-} \leq 0, a_{+} \geq 0$. It helps to note that the boundary of A can be found parametrically by $\{(u(x), v(x)): x \in R\}$ where

$$
\begin{aligned}
& u(x)=\sqrt{f(x)} \\
& v(x)=x \sqrt{f(x)}
\end{aligned}
$$

Thus, A can be enclosed in a rectangle if and only if
(1) $f(x)$ is bounded;
(11) $x^{2} f(x)$ is bounded.

Bastcally, this Includes all bounded densttles with subquadratic talls; such as the normal, gamma, beta, t and exponential densitles. From now on, the enclosing rectangle will be called $B=[0, b) \times\left[a_{-}, a_{+}\right]$. For the sake of slmpllcity, we will only treat densities satisfying (1) and (il) in this sectlon.

The ratio-of-uniforms method

[SET-UP]
Compute $\quad b, a_{-}, a_{+} \quad$ for \quad an enclosing rectangle. Note that
$b \geq \sup \sqrt{f(x)}, a_{-} \leq \inf x \sqrt{f(x)}, a_{+} \geq \sup x \sqrt{f(x) .}$
$[$ GENERATOR]
REPEAT
Generate U uniformly on $[0, b]$, and V uniformly on $\left[a_{-}, a_{+}\right]$.
$X \leftarrow \frac{V}{U}$
UNTIL $U^{2} \leq f(X)$
RETURN X

By Theorem II.3.2, (U, V) is unlformly distributed $\ln A$. Thus, the algorlthm is valld, l.e. X has density proportional to the function f. We can also replace f by cf for any constant c. This allows us to ellminate all annoying normallzation constants. In any case, the expected number of iterations is

$$
\frac{b\left(a_{+}-a_{-}\right)}{\operatorname{area} A}=\frac{2 b\left(a_{+}-a_{-}\right)}{\int_{-\infty}^{\infty} f(x) d x}
$$

Thls will be called the rejection constant. Good denslties are densitles in which A fills up most of its enclosing rectangle. As we will see from the examples, this is usually the case when f puts most of its mass near zero and has monotonically decreasing talls. Roughly speaking, most bell-shaped f are acceptable candldates.

The acceptance condition $U^{2} \leq f(X)$ cannot be simplified by using logarithmic transformations as we sometimes did in the rejection method - this is because U is explicitly needed in the definition of X. The next best thing is to make sure that we can avold computing f most of the time. This can be done by introducing one or more quick acceptance and quick rejection steps. Typically, the algorlthm takes the following form.

The ratio-of-uniforms method with two-sided squeezing

[SET-UP]
Compute b, a_{n}, a_{+}for an enclosing rectangle. Note that $b \geq \sup \sqrt{f(x)}, a_{-} \leq \inf x \sqrt{f(x)}, a_{+} \geq \sup x \sqrt{f(x)}$.
[GENERATOR]
REPEAT
Generate U uniformly on $[0, b]$, and V uniformly on $\left[a_{-}, a_{+}\right]$.
$X \leftarrow \frac{V}{U}$
IF [Quick acceptance condition]
THEN Accept \leftarrow True
ELSE IF [Quick rejection condition]
THEN Accept \leftarrow False
ELSE Accept $\leftarrow\left[\right.$ Acceptance condition $\left.\left(U^{2} \leq f(X)\right)\right]$
UNTIL Accept
RETURN X

In the next sub-section, we will give various quick acceptance and quick rejection conditions for the distributions listed in this introduction, and analyze the performance for these examples.

7.2. Several examples.

We will need varlous inequallties in the design of squeeze steps. The followIng Lemma can be useful in thls respect.

Lemma 7.1.
(1) $\quad-x \geq \log (1-x) \geq-\frac{x}{1-x} \quad(0 \leq x<1)$.
(ii) $-x-\frac{x^{2}}{2} \geq \log (1-x)$
$\geq-x-\frac{x^{2}}{2(1-x)} \quad(0 \leq x<1)$.
(iii) $\log (x) \leq x-1 \quad(x>0)$.
(iv) $x-\frac{x^{2}}{2} \leq \log (1+x)$
$\leq x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \leq x \quad(0<x<1)$.
(v) $\frac{2 x+3 x^{2}}{2(1+x)^{2}} \leq \log (1+x)$
$\leq \frac{2 x+3 x^{2}+x^{3}}{2(1+x)^{2}}$
$=x-\frac{x^{2}}{2(1+x)} \quad(x \geq 0)$.
(vi) Reverse the Inequallties $\ln (\mathrm{v})$ when $-1<x \leq 0$.

Proof of Lemma 7.1.

Parts (1) through (iv) were obtalned in Lemma IV.3.2. By the Taylor serles for $g(x)=(1+x) \log (1+x)$, we see that

$$
g(x)=g(0)+x g^{\prime}(0)+\frac{x^{2}}{2} g^{\prime \prime}(\xi)
$$

for some ξ between 0 and x. But $g(0)=0, g^{\prime}(x)=\log (1+x)-1, g^{\prime}(0)=1, g^{\prime \prime}(x)=\frac{1}{1+x}$. Thus, for $x>0$,

$$
x+\frac{x^{2}}{2(1+x)} \leq g(x) \leq x+\frac{x^{2}}{2} .
$$

This proves (v) and (vi).

For varlous densities, we list quick acceptance and rejection conditions in terms of u, v, x. When used in the algorithm, these running varlables should be replaced by the random variates U, V, X of course. Other useful quantitles such
as the rejectlon constant and values for b, a_{-}, a_{+}are 11 sted too.

Example 7.1. The normal density.

All of the above is summarized in the table glven below:

$f(x)$	$e^{-\frac{x^{2}}{2}}(x \in R)$
$b=\sup \sqrt{f(x)}$	1
$\begin{aligned} & a_{+}=\sup x \sqrt{f(x)}, a_{-}=\inf x \sqrt{f(x)} \\ & \operatorname{area}(A) \end{aligned}$	$\sqrt{\frac{2}{e}},-\sqrt{\frac{2}{e}}$
	$\sqrt{\frac{\pi}{2}}$
Rejection constant	$\frac{4}{\sqrt{\pi e}}$
Acceptance condition	$x^{2} \leq-4 \log u$
Quick acceptance condition	$x^{2} \leq 4(-c u+1+\log c) \quad(c>0)$
	$x^{2} \leq 4-4 u$
	$x^{2} \leq 6-8 u+2 u^{2}$
	$x^{2} \leq \frac{44}{6}-12 u+6 u^{2}-\frac{4}{3} u^{3}$
Quick rejection condition	$x^{2}>4\left(\frac{c}{u}-1-\log c\right)(c>0)$
	$x^{2} \geq \frac{4}{4}-4$
	$x^{2} \geq \frac{2}{u}-2 u$

The table is nearly self-explanatory. The quick acceptance and rejection conditlons were obtalned from the acceptance conditlon and Lemma 7.1. Most of these are rather stralghtforward. The fastest experimental results were obtalned with the third entrles in both lists. It is worth pointing out that the first quick acceptance and rejection conditions are valid for all constants $c>0$ introduced in the conditions, by using Inequalitles for $\log (u c)$ given In Lemma 7.1. The parameter c should be chosen so that the area under the quick acceptance curve is maximal, and the area under the quick rejection curve is minimal.

Example 7.2. The exponential density.

In analogy with the normal density, we present the following table.

$f(x)$	$e^{-x} \quad(x \in R)$
$b=\sup \sqrt{f(x)}$	$\frac{1}{2}$
$a_{+}=\sup x \sqrt{f(x)}, a_{-}=\inf x \sqrt{f(x)}$	$\frac{2}{e}, 0$
area (A)	$\frac{2}{e}$
Rejection constant	$\frac{4}{e}$
Acceptance condition	$x \leq-2 \log u$
Quick acceptance condition	$x \leq 2(1-u)$
Quick rejection condition	$x \geq \frac{2}{u}-2$

It is Insightful to draw A and to construct simple quick acceptance and rejection conditions by examining the shape of A. Since A is convex, several llnear functlons could be useful.

Example 7.3. The t distribution.

The ratlo-of-uniforms method has led to some of the fastest known algorithms for the t distrlbution. In thls section, we omlt, as we can, the normalizatlon constant of the t density with parameter a, which is

$$
\frac{\Gamma\left(\frac{a+1}{2}\right)}{\sqrt{\pi a} \Gamma\left(\frac{a}{2}\right)} .
$$

Since for large values of a, the t density is close to the normal denslty, we would expect that the performance of the algorithm would be slmilar too. This is indeed the case. For example, as $a \rightarrow \infty$, the rejection constant tends to $\frac{4}{\sqrt{\pi e}}$, which is
the value for the normal density.

$f(x)$	$\frac{1}{\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}}(x \in R)$
$b=\sup \sqrt{f(x)}$	1
$a_{+}=\sup x \sqrt{f(x)}, a_{-}=\inf x \sqrt{f(x)}$	$\frac{\sqrt{2 a}(a-1)^{\frac{a-1}{4}}}{(a+1)^{\frac{a+1}{4}}}, \frac{\sqrt{2 a}(a-1)^{\frac{a-1}{4}}}{n^{\frac{a+1}{4}}}$
area (A)	$2 \frac{\sqrt{2 a}(a-1)^{\frac{a-1}{4}}}{(a+1)^{\frac{a+1}{4}}}$
Rejection constant	$4 \frac{\sqrt{2 a}(a-1)^{\frac{a-1}{4}}}{\Gamma\left(\frac{a+1}{2}\right)}$
Acceptance condition	$x^{\frac{a+1)^{\frac{a+1}{4}}}{\sqrt{\pi a}} \Gamma\left(\frac{a}{2)}\right.}$
Quick acceptance condition	$x^{2} \leq 5-4 u\left(u^{-\frac{4}{a+1}}-1\right)$
Quick rejection condition $)^{\frac{a+1}{4}}$	

We observe that the ratio-of-unlforms method can only be useful when $a \geq 1$ for otherwise A would be unbounded. The quick acceptance and rejection steps follow from inequallties obtalned by Kinderman and Monahan (1979). The corresponding algorithm is known in the literature as algorithm TROU: one can show that the expected number of iterations is uniformly bounded over $a \geq 1$, and that it varles from $\frac{4}{\pi}$ at $a=1$ to $\frac{4}{\sqrt{\pi e}}$ as $a \rightarrow \infty$.

There are two important special cases. For the Cauchy density ($a=1$), the acceptance condition is $u^{2} \leq \frac{1}{1+x^{2}}$, or, put differently, $u^{2}+v^{2} \leq 1$. Thus, we obtaln the result that if (U, V) is unlformly distributed in the unit clrcle, then $\frac{V}{U}$ is Cauchy distributed. Without squeeze steps, we have:

A Cauchy generator based upon the ratio-of-uniforms method

REPEAT

Generate iid uniform $[-1,1]$ random variates U, V.
UNTIL $U^{2}+V^{2} \leq 1$
RETURN $X \leftarrow \frac{\bar{V}}{U}$

For the t density with 3 degrees of freedom $(a=3)$,

$$
\frac{2}{\pi \sqrt{3}} \frac{1}{\left(1+\frac{x^{2}}{3}\right)^{2}}
$$

the acceptance condition is $\frac{x^{2}}{3} \leq \frac{1}{u}-1$, or $v^{2} \leq 3 u(1-u)$. Thus, once again, the acceptance region A is ellipsoldal. The unadorned ratio-of-uniforms algorithm is:
t3 generator based upon ratio-of-uniforms method
REPEAT
Generate U uniformly on $[0,1]$.
Generate V uniformly on $\left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right]$.
UNTIL $V^{2} \leq 3 U(1-U)$
RETURN $X \leftarrow \frac{V}{U}$

This is equivalent to

t3 generator based upon ratio-of-uniforms method

REPEAT
Generate ild uniform $[-1,1]$ random variates U, V.
UNTIL $U^{2}+V^{2} \leq 1$
RETURN $X \leftarrow \sqrt{3} \frac{V}{1+U}$

Both the Cauchy and $t 3$ generators have obviously rejection constants of $\frac{4}{\pi}$, and should be accelerated by the judicious use of quick acceptance and rejection conditions that are linear in their arguments.

Example 7.4. The gamma density.

In thls example, we consider the centered gamma (a) denslty with mode at the origin,

$$
f(x)=c \frac{e^{a-1}}{(a-1)^{a-1}}(x+a-1)^{a-1} e^{-(x+a-1)} \quad(x+a-1 \geq 0)
$$

Here c is a normallzation constant equal to $\frac{(a-1)^{a-1}}{e^{a-1} \Gamma(a)}$ which will be dropped.The table with facts is given below. Notice that the expected number of Iterations is $\frac{4}{e}$ at $a=1$, and $\frac{4}{\sqrt{\pi e}}$ as $a \rightarrow \infty$, just as for the t density.

$f(x)$	$\frac{e^{a-1}}{(a-1)^{a-1}}(x+a-1)^{a-1} e^{-(x+a-1)} \quad(x+a-1 \geq 0)$
$b=\sup \sqrt{f(x)}$	1
$a_{+}=\sup x \sqrt{f(x)}, a_{-}=\operatorname{lnf} x \sqrt{f(x)}$	$z_{+} \sqrt{f\left(z_{+}\right)}$where $z_{+}=1+\sqrt{2 a-1}, z_{-} \sqrt{f(z-)}$ where $z_{-}=1-\sqrt{2 a-1}$
area (A)	$a_{+}-a_{-}$
Rejection constant	$2 c\left(a_{+}-a_{-}\right)$
Acceptance condition	$u \leq\left(\frac{e(x+a-1)}{a-1}\right)^{\frac{a-1}{2}} e^{-\frac{x+a-1}{2}}$
	$2 \log u+x \leq(a-1) \log \left(1+\frac{x}{a-1}\right)$
	$(x+a-1)^{2}\left(-2 u^{2}+8 u-6\right) \leq-x^{2}(2 x+a-1)(x \geq 0)$
	$(x+a-1)\left(-2 u^{2}+8 u-6\right) \leq-x^{2}(x \leq 0)$
Quick rejection condition	$(x+a-1)\left(2 u^{2}-2\right) \geq-u x^{2}(x \geq 0)$
	$(a-1)\left(2 u^{2}-2\right) \geq-u x^{2}(x \leq 0)$

We leave the verification of the inequalities implicit in the quick acceptance and rejectlon steps to the readers. All one needs here is Lemma 7.1. Timings with this algorlthm have shown that good speeds are obtalned for a greater than 5 . The algorlthm is uniformly fast for $a \in[1, \infty)$. The ratio-of-unlforms algorithms of Cheng and Feast (1979), Robertson and Walls (1980) and KInderman and Monahan (1979) are different in conception.

7.3. Exercises.

1. For the quick acceptance and rejection conditions for Student's t distributlon, the following Inequallty due to Kinderman and Monahan (1979) was used:

$$
5-4\left(1+\frac{1}{a}\right)^{\frac{a+1}{4}} u \leq a\left(u^{-\frac{4}{a+1}}-1\right) \leq-3+\frac{4\left(1+\frac{1}{a}\right)^{-\frac{a+1}{4}}}{u} \quad(u \geq 0)
$$

The upper bound is only valid for $a \geq 3$. Show this. Hint: first show that the middle expression $g(u)$ is convex $\ln u$. Thus,

$$
g(u) \geq g(z)+(u-z) g^{\prime}(z) .
$$

Here z is to be plcked later. Show that the area under the quick acceptance curve is maximal when $z=\left(1+\frac{1}{a}\right)^{-\frac{a+1}{4}}$, and substitute this value. For the lower bound, show that $g(u)$ as a function of $\frac{1}{u}$ is concave, and argue simllarly.
2. Barbu (1982) has pointed out that when (U, V) is unlformly distributed in $A=\{(u, v): 0 \leq u \leq f(u+v)\}$, then $U+V$ has a density which is proportlonal to f. Simllarly, if in the defintion of A, we replace $f(u+v)$ by $\left(f\left(\frac{v}{\sqrt{u}}\right)\right)^{\frac{2}{3}}$, then $\frac{V}{\sqrt{U}}$ has a density which is proportlonal to f. Show this.
3. Prove the following property. Let X have density f and define $Y=\sqrt{f(X)} \max \left(U_{1}, U_{2}\right)$ where U_{1}, U_{2} are IId unlform $[0,1]$ random varlables. Deflne also $U=Y, V \equiv X Y$. Then (U, V) is uniformly distributed in $A=\left\{(u, v): 0 \leq u \leq \sqrt{\left.f\left(\frac{v}{u}\right)\right\} \text {. Note that this can be useful for rejection in }}\right.$ the (u, v) plane when rectangular rejection is not feasible.
4. In this exercise, we study sufficient conditions for convergence of performances. Assume that f_{n} is a sequence of densities converging in some sense to a density f as $n \rightarrow \infty$. Let b_{n}, a_{+n}, a_{-n} be the deflning constants for the enclosing rectangles in the ratlo-of-uniforms method. Let b, a_{+}, a_{-}be the constants for f. Show that the rejection constants converge, I.e.

$$
\lim _{n \rightarrow \infty} b_{n}\left(a_{+n}-a_{-n}\right)=b\left(a_{+}-a_{-}\right)
$$

when

$$
\sup _{x}\left|\frac{f_{n}(x)}{f(x)}-1\right|=o(1),
$$

or when

$$
\sup _{x} x^{2}\left|f_{n}(x)-f(x)\right|=o(1)
$$

5. Glve an example of a bounded density on $[0, \infty)$ for which the region A is unbounded in the v-direction, i.e. $b=\infty$.
6. Let f be a mixture of nonoverlapping uniform densitles of varying widths and helghts. Draw the region A.
7. From general princlples (such as exercise 4), prove that the rejection constant for the t distribution tends to the rejection constant for the normal denslty as $a \rightarrow \infty$.
8. Prove that all the quick acceptance and rejection Inequalitles used for the gamma density are valld.
