
Chapter Five 
UNIFORM AND EXPONENTLAL SPACINGS 

1. MOTIVATION. 
The goal of thls book 1s to demonstrate that random varlates wlth varlous 

dlstrlbutlons can be obtalned by cleverly manlpulatlng lid unlform [0,1] random 
varlates. As we wlll see In thls chapter, normal, exponentlal, beta, gamma and t ” 

dlstrlbuted random varlates can be obtalned by manlpulatlon of the order statls- 
tlcs or spaclngs deflned by samples of lld unlform [0,1] random varlates. For 
example, the celebrated polar method or Box-Muller method for normal random 
varlates wlll be derlved In thls manner (Box and Muller, 1958). 

There 1s a strong relatlonshlp between these spaclngs and radlally symmetrlc 
dlstrlbutlons In R d ,  so that wlth a llttle extra effort we wlll be able to handle the 
problem of generatlng unlform random varlates In and on the unlt sphere of R d .  

The polar method can also be consldered as a speclal case of a more general 
method, the method of deconvolutlon. Because of thls close relatlonshlp I t  wlll 
also be presented In thls chapter. 

We start  wlth the fundamental propertles of unlform order statlstlcs and 
unlform spaclngs. Thls materlal 1s well-known and can be found in many books 
on probablllty theory and mathernatlcal statlstlcs. It 1s collected here for the con- 
venlence of the readers. In the other sectlons, we wlll develop varlous algorlthms 
for unlvarlate and inultlvarlate dlstrlbutlons. Because order statlstlcs and spac- 
lngs lnvolve sortlng random varlates, we wlll have a short section on fast  
expected tlme sortlng methods. Just as chapter W ,  thls chapter 1s hlghly speclal- 
ked,  and can be sklpped too. Nevertheless, I t  1s recommended for new students In 
the flelds of slmulatlon and mathernatlcal statlstlcs. 
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2. PROPERTIES OF UNIFORM AND EXPONENTIAL SPACINGS. 

2.1. Uniform spacings. 

U(l)< u(,)5 
Let u,, . . . , u, be lld unlform [O,l]  random varlables wlth order statlstlcs 

5 u(, ). The statlstlcs Si defined by 

sj = u(j)-u(j-l) (15i I n  +1) 
where by conventlon u(o)=O , u(,+,)=l, are called the unlform spaclngs for thls 
sample. 

Theorem 2.1. 
(s  ,, . . . , S, ) 1s unlformly dlstrlbuted over the slmplex 

n 

i =1  
A ,  = {(x,, . . . , 2,) : xi 20, xi 51) . 

Proof of Theorem 2.1. 
We know that u(,), . . . , u,,) 1s unlformly dlstrlbuted over the slmplex 

B, = {(x,, . . . ,x,) : OLzl< . * . <Z - n -  <I}. 

The transformatlon 
51 = u 1  

52 = U 2 - u l  

. . .  
6% = Un-Un-1  

has a s  lnverse 
u 1 =  $ 1  

u2  = S,+SQ 

and the Jacoblan of the transformatlon, 1.e. the determlnant of the matrlx formed 
85; 

du i 
by - 1s 1. Thls shows that the denslty of S,, . . . , S, 1s unlformly dlstrl- 

buted ;n the set A , .  
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Proofs of thls sort can often be obtained wlthout the cumbersome transfor- 
matlons. For example, when x has the unlform denslty on a set A C R  d ,  and B 
1s a h e a r  nonslngular transformatlon: R -tR d ,  then Y =BX 1s unlformly dls- 
trlbuted on BA as can be seen from the followlng argument: for all Bore1 sets 
C E R d ,  

- 

P ( Y € C )  = P ( B X E C )  = P(X€B- - ’C)  

s dx 
C n ( B A  ) - - 

s dx - (B-’ C ) n A  - 
s dx 
A 

s dx 
BA 

Theorem 2.2. 
S,, . . . , Sn+l 1s distributed as 

El En +l 

Ei C Ei 
n+1 ” * * ’  n + I  

i = 1  I =1 

where E,, . . . , E,+, 1s a sequence of lld exponentlal random variables. Further- 
more, If G,+, 1s lndependent of (s,, . . . , s,+,) and 1s gamma (n  +I) distrl- 
buted, then 

1s dlstrlbuted as &,,E,, . . . , En+,* 

The proof of Theorem 2.2 1s based upon Lemma 2.1: 

Lemma 2.1. 
For any sequence of nonnegatlve numbers x,, . . . , xn+,, we have 

Proof of Lemma 2.1. 
n + I  

i = l  
Assume wlthout loss of generallty that xi 51 (for otherwlse the lemma 1s 

obvlously true). We use Theorem 2.1. In the notatlon of Theorem 2.1, we start 
from the fact that S,, . . . , Sn 1s unlformly dlstrlbuted in A n .  Thus, our proba- 
blllty 1s equal to 

n 

i = l  
P(S ,>Z , ,  . . . , S, >xn 91-C Si > X n + 1 ) .  
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Thls 1s the probablllty of a set An* whlch 1s a slmplex just as A ,  except that its 
top 1s not at (O,O, . . . , 0) Put rather at ( x  1, . . . , x, ), and that Its sldes are not 

n + I  
of length 1 but rather of length 1- 

can be calculated as ratlos of areas. In thls case, we have 

xi. For unlform dlstrlbutlons, probabllltles 
i = i  

Proof of Theorem 2.2. 
n +I 

Part one. Let G =Gn+l be the random varlable E;.  Note that we need 

only show that 

En 
G ' "  " G 

- E l  - 

I =1 

1s taken care of by 1s unlformly dlstrlbuted In A n .  The last component - 
notlng that I t  equals 1 mlnus the sum of the flrst n components. Let us use the 

symbols ei ,y ,xi for the runnlng varlables correspondlng to Ei ,G ,-. We flrst 

En +1 

G 

Ei 
G 

compute the Jolnt denslty of E,,  . . . , En ,G : 
n 

i = I  
e+ , = n e-es , - i ~ - e l - . .  . - e n )  = f ( e  1' * . , en ,Y 

n 

i=1 
valld when ei 20, all i ,  and y 2 e i .  Here we used the fact that the Jolnt den- 

slty 1s the product of the denslty of the flrst n varlables and the denslty of G 
glven E l=e 

easlly seen that the jolnt denslty of - 
. . . , E, =en . Next, by a slmple transformatlon of varlables, I t  1s 

En - . ,  ,G 1s E l  
G ' "  

en , . * . , xn=--,y=y}. e 1  
Thls 1s easlly obtalned by the transformatlon { x l = y  

I I  Y J 

1s obtalned by lntegratlng the En - E l  
G Flnally, the marglnal denslty of - G'"" 

last denslty wlth respect to dy , whlch glves us 
co 
J y n  e-' dy IAn(x1, ... X ,  ) = n !  I A , ( x ~ ,  . . , Xn ) 
0 
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Thls concludes the proof of part one. 
Part two. Assume that zl>O, . . . , X ~ + ~ > O .  By Lemma 2.1, we have 

P ( G S , > x 1 ,  . . 7 GSn+1>zn+i) 

i= i  

A myrlad of results follow from Theorem 2.2. For example, if 
U,U,, . . . , U, are lld unlform [0,1] random varlables, E 1s an exponentlal ran- 
dom varlable, and G, 1s a gamma (n) random varlable, then the followlng ran- 
dom varlables have ldeptlcal dlstrlbutlons: 

mfn(U,, . . . , V,)  

1-u 

1-e ,I 

1 - 
E -- 

( E  ,Gn are lndependent ) E 
E -+G, 

(-)--(-) 1 E 2  +-(-) 1 E 3  - .  1 .  . E 
n 2! n 3! n 

Gn -1 max(Ul, . . . , U,) 
1s dlstrlbuted as l+- , that It 1s also easy t o  show that 

mln(Ul, . . . , U,) E 
'max( u,, . . . , un )-mln(U,, . . . , Vn ) 1s dlstrlbuted as i-,!31-Sn+l (1.e. as 

Gk where Gk and Gn+l-k 
Gn -1 

), and that U ( k )  1s dlstrlbuted as 
Gn-l+G* Gk + G, +1-k 

are lndependent. Since we already know from sectlon 1.4 that U ( k )  1s beta 
(k ,n +I-k ) dlstrlbuted, we have thus obtained a well-known relatlonshlp 
between the gamma and beta dlstrlbutlons. 
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2.2. Exponential spacings. 

lng to a sequence of Ild exponentlal random varlables E 1,E2, . . . , E,. 
In thls sectlon, E( , )5E( , )5  + S E ( , )  are the order statlstlcs correspond- 

Theorem 2.3. (Sukhatme, 1937) 
If we deflne E(o)=O, then the normallzed exponentlal spaclngs 

(n- i+l ) (E( i ) -E( i - l ) )  1 l i  < n ,  * 

are lld exponentlal random varlables. Also, 

E l  En , . . . , -+ - ,-+- * +- E l  El  E2 

n n n-1 n 1 

are dlstributed as . . . , E ( n ) .  I 
Proof of Theorem 2.3. 

random varlables of the flrst statement El,E2, . , . , E, and to note that 
The second statement follows from the flrst statement: I t  sutnces to call the 

To prove the Arst statement, we note that the Jolnt denslty of E( l ) ,  . . . , E,,, 1s 
n 

-E 2: 
n !  e '4 ( 0 5 z 1 5 x 2 5  * Fx, <m) 

n 
- ( n  -i + l)(z, - z l d  

= n !  e '--' (o<x15z25 . - * sx, <m) . 
Deflne now Yi =(n 4 +1)(E (i )-E ( i  -1)) , yi  =(n -i +l)(si -xi -l). Thus, we have 

Y1 

n 
x l = - ,  

._  

Y1 Y 2  
x 2  = -+- , 

n n-1 . . .  

dXi 1 The determlnant of the matrlx formed by - 1s - . Thus, Y, ,  . . . , Y, has 

de nsl t y 
dy j n !  
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Theorem 2.3 has an lmportant corollary: In a sample of two lld exponentlal 
random varlates, E (2)-E 1s agaln exponentlally dlstrlbuted. Thls 1s baslcaily 
due to the memoryless property of the exponentlal dlstrlbutlon: glven that  E Zz, 
E - x  1s agaln exponentlally dlstrlbuted. In fact, If we show the memoryless pro- 
perty (thls Is easy), and if we show that the mlnlmum of n lld exponentlal ran- 
dom varlables 1s dlstrlbuted as - (thls 1s easy too), then we can prove Theorem 

2.3 by lnductlon. 

E 
n 

Theorem 2.4. (Malmquist, 1950) 
Let 05 U(,)S - . . < - U ( n ) s l  be the order statlstlcs of U l , U z ,  . . . , Un , a 

sequence of lld unlform [0,1] random variables. Then , If U(n+ll=l,  

U ( i  1 ) , 15; sn) Is dlstrlbuted as U,,  . . . , U,. 

1 -  1 

1 

U(i+l )  
A* {( 

1 - 1 - 1 - - 
B. U, ,un unA1 n -I , . . . , Un * * - U l  1s dlstrlbuted as u(n),  . . . , U(l). 

Proof of Theorem 2.4. 
In Theorem 2.3, replace Vi by e-E’ and U ( i )  by Then, In the nota- 

tlon of Theorems 2.3 and 2.4 we see t h a t  the followlng sequences are ldentlcally 
dlstrlbuted: 

Thls proves part A. Par t  B follows wlthout work from part A. 
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2.3. Exercises. 
1. Glve an alternatlve proof of Theorem 2.3 based upon the memoryless pro- 

perty of the exponentlal dlstrlbution (see suggestion following the proof of 
that theorem). 
Prove that In a sample of n lid unlform [0,1] random varlates, the maxlmum 
minus the minlmum (l.e., the range) 1s dlstributed as 

2. 

1 1  - -  u n v n - i  

where U,v are ild unlform [O,l] random varlates. 
Show that the mlnlmum spaclng In a uniform sample of slze n Is distrlbuted 3. 

1 - 
(1-U " )  where U ltself is unlformly dlstrlbuted on [0,1]. 1 as- 

n +I 
1s unlformly dlstrlbuted on [O,l] when U , V are lld 4. Prove or dlsprove: - U 

u+v 
unlform [0,1] random varlables. 
Prove Whltworth's formula: If Si , 15 i 5 n +1 are unlform spaclngs, then 5 .  

P(max  Si Lx) = [ Tj (1-x )+- 12") (1-2x ' * . . 
i 

(Whltworth, 1897) 

Let E 1,E2,E3 be lld exponentlal random varlables. Show that the followlng 

random varlables are independent: 

Furthermore, show that thelr densities are the unlform [0,1] denslty, the trl- 
angular denslty on [O,l] and the gamma (3) denslty, respectlvely. 

6. 

9 El+E,+E3- 
E l  ( E  ,+E 2) 

E ,+E ' E ,+E 2+E 

3. GENERATION OF ORDERED SAMPLES. 
The flrst appllcatlon that one thlnks of when presented wlth Theorem 2.2 Is 

a method for generatlng the order statlstlcs Ucl,< . . . < - U,,) directly. By this 
we mean that I t  1s not necessary to generate U , ,  . . . , Un and then apply some 
sorting method. 

In thls sectlon we will descrlbe several problems whlch requlre such ordered 
samples. We wlll not be concerned here wlth the problem of the generation of one 
order statlstlc such as the maxlmum or the medlan. 
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3.1. Generating uniform [0,1] order statistics. 

st at lstl Cs : 
The prevlous sectlons all suggest methods for generatlng unlform [O,l]  order 

A. Sorting 

Generate iid uniform [OJ] random variates U,, . . . , U,, , 
Obtain U(l), . . . , U,,) by sorting the Ui 's. 

B. Via uniform spacings 

Generate lid exponential random variates E 1, . . . , E,, +1,  and compute their sum G . 
U(O)+--O 
FOR j:=l TO n DO 

C. Via exponential spacings 

U(n+I)+1 
FOR j:=n DOWNTO 1 DO 

Generate a uniform [0,1] random variate u. 
u(j)+u 'U(j+i) 

1 

Algorlthm A 1s the nalve approach. Sortlng methods usually found In computer 
llbrarles are cornparlson-based. Thls means that lnformatlon 1s moved around In 
tables based upon palrwlse comparlsons of elements only. It 1s known (see e.g. 
Knuth (1973) or Baase (1978)) that the worst-case and expected tlmes taken by 
these algorlthms are n(n logn ). Heapsort and mergesort have worst-case tlmes 
that are 0 (n  logn ). Quicksort has expected tlme 0 (n  logn ), but worst-case tlme 
both 0 (n 2, and n(n 2). For detalls, any standard textbook on data structures can 
be consulted (see e.g. Aho, Hopcroft and Ullman , 1983). What 1s dlfferent In the 
present case 1s that the Vi's are unlformly dlstrlbuted on [0,1]. Thus, we can 
hope to  take advantage of truncatlon. As we wlll see In the next sectlon, we can 
bucket sort the Vi's In expected tlme 0 (n  ). 
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Algorlthms B and C are o(n )  algorlthms In the worst-case. But only 
method C 1s a one-pass method. But because method C requlres the computatlon 
of a power In each lteratlon, it 1s usually slower than elther A or B. Storagewlse, 
method A 1s least emcient slnce addltlonal storage proportlonal t o  n 1s needed. 
Nevertheless, for large n , method A wlth bucket sortlng is recommended. Thls 1s 
due to the accumulatlon of round-off errors In algorlthms B and C. 

Algorlthms B and C were developed In a series of papers by Lurle and Hart- 
ley (1972), Schucany (1972) and Lurle and Mason (1973). Experlmental comparls- 
ons can be found In Rablnowltz and Berenson (1974), Gerontldes and Smlth 
(1982), and Bentley and Saxe (1980). Ramberg and Tadlkamalla (1978) conslder 
the case of the generatlon of U(k) ,U(k+l) ,  . . . , U(m) where 1 L k  s m  L n  . Thls 
requlres generatlng one of the extremes U ( k )  or U ( m ) ,  after whlch a sequentlal 
method slmllar to algorlthms B or C can be used, so that the total tlme 1s pro- 
portional to m-k +I. 

3.2. Bucket sorting. Bucket searching. 

ing n [0,1] valued elements X , ,  . . . , X ,  . 
We start wlth the descrlptlon of a data structure and an algorlthm for sort- 

Bucket sorting 

[SET-UP] 
We need two auxiliary tables of size n called Top and Next. Top [ i ]  gives the lndex of the 

i-1 i top element in bucket i (Le. [-,-)). A value of 0 indicates an empty bucket. Next [ i ]  
n n  

gives the index of the next element in the same bucket as xi. If there is no next element, 
its value is 0. 

FOR i:=1 T O  n DO Next [;]to 
FOR i :=0 T O  n -1 DO Top [ i ] t O  

FOR i:=1 TO n DO 

Bucket + \nx J 
Next [ i ] t T o p  [ Bucket ] 
Top [ Bucket ] t i  

[SORTING] 

, Sort all elements within the buckets by ordinary bubble sort or selection sort, and con- 
catenate the nonempty buckets. 

The set-up step takes tlme proportlonal to n In all cases. The sort step 1s 
where we notlce a dlfference between dlstrlbutlons. If each bucket contalns one 
element, then thls step too takes tlme proportlonal to n. If all elements on the  
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other hand fall In the same bucket, then the tlme taken grows as n 2  slnce selec- 
tlon sort for that one bucket takes tlme proportlonal t o  n2. Thus, for our 
analysls, we wlll have to  make some assumptions about the Xi 's. We wlll assume 
that the Xi ' s  are lld wlth denslty f on [0,1]. In Theorem 3.1 we show that the 
expected tlme 1s Q ( n  ) for nearly all densltles f . 

Theorem 3.1. (Devroye and Klincsek, 1981) 
The bucket sort glven above takes expected tlme 0 ( n  ) If and only if 

J f 2 ( z )  dx < 0 0 .  

I I 

Proof of Theorem 3.1. 

Ni 1s blnomlally dlstrlbuted wlth parameters n and p i  where 
Assume that the buckets recelve No,  . . . , Nn-l polnts. I t  1s clear that each 

i + I  
n 
- 

P i  = J f dz 
I - 
n 

By the properties of selectlon sort, we know that there exlst flnlte posltlve con- 
stants c c 2, such that the tlme Tn taken by the algorlthm satisfies: 

Tn 
c 1 -  < n -1 < c 2 *  

n + C N i 2  
i =O 

By Jensen's lnequallty for convex functlons, we have 
fl  -1 n -1 

E W E  (N; 2, = 'h-(npi ( l -p i  )+n 2pi  2, 

2 
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Thls proves one lmpllcatlon. The other lmpllcatlon requlres some flner tools, espe- 
cially 1f we want to  avold lmposlng smoothness condltlons on f . The key meas- 
ure theoretlcal result 'needed 1s the Lebesgue denslty theorem, whlch (phrased In 
a form sultable to  us) states among other thlngs that for any denslty f on R , 
we have 

Consult for example Wheeden and Zygmund (1977). 

If we deflne the denslty 
( o < k 2  <-<l) ,  i +1 

- n -  n f n  (x 1 =Pi 

then I t  1s clear that 
i +I - 

1 z +- n 

L n J I f ( Y ) - f ( x ) l  dY 9 

1 
X -- 

n 

and thls tends to 0 for for almost all I .  Thus, by Fatou's lemma, 
1 1 1 

Ilm lnfJfn 2 ( x )  dx 2 Jllm Inf f n  2 ( x )  dx = J f  2 ( x )  dx . 
0 0 0 

But 

n 1 1 n-1 n -1 n -1 - 01 C E ( N i 2 )  2 C n p i 2  = J f n 2 ( x )  dx = J f n 2 ( x )  dx . 
i =O i =O i=o i 0 - I *  

n 

T n  
Thus, J f  2=m lmplles ilm inf-=oo. 

n 

In selectlon sort, the number of comparlsons of two elements 1s 

. Thus, the total number of comparlsons needed n (n  -1) 
2 

( n  -l)+(n -2)+ * . 

In bucket sort Is, In the notatlon of the proof of Theorem 3.1, 

+I= 

n-1 Ni (Ni  -1) c 
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The expected number of comparlsons 1s thus 

1 
n -1 - < --Jf"a:) da: . 

2 0  

Thls upper bound Is, not unexpectedly, mlnlmlzed for the uniform denslty on 

[0,1], In whlch case we obtaln the upper bound - . In other words, the 
expected number of comparlsons 1s less than the total number of elements ! Thls 
1s of course due to  the fact that most of the sortlng 1s done In the set-up step. 

If selectlon sort 1s replaced by an 0 ( n  logn ) expected tlme comparlson-based 
sortlng algorlthm (such as qulcksort, mergesort or heapsort), then Theorem 3.1 
remalns valid provlded that the condltlon If 2<co 1s replaced by 

n -1 
2 

03 

J r  (a: )log+! (a: 1 da: < 
0 

See Devroye and Kllncsek (1981). The problem wlth extra space can be alleviated 
to some extent by clever programming trlcks. These tend to slow down the algo- 
rlthm and won't be dlscussed here. 

Let us now turn to  searchlng. The problem can be formulated as follows. 
[O,l]-valued data XI, . . . , X ,  are glven. We assume that thls 1s an lld sequence 
wlth common denslty f . Let Tn be the tlme taken to determlne whether Xz 1s 
In the structure where 1s a random lnteger taken from (1, . . . , n }  lndepen- 
dent of the Xi 's. Thls 1s called the successful search tlme. The tlme T,* taken to 
determlne whether Xn+l (a random varlable dlstrlbuted as XI but lndependent 
of the data sequence) 1s In the structure 1s called the unsuccessful search tlme. If 
we store the elements in an array, then llnear (or sequentlal search) yields 
expected search tlmes that are proportlonal to n . If we use blnary search and the 
array 1s sorted, then i t  1s proportlonal to log(n). Assume now that we use the 
bucket data structure, and that the elements wlthln buckets are not sorted. 
Then, wlth llnear search wlthln the buckets, the expected number of comparlsons 
of elements for successful search, glven No, . . . , N,-l, 1s 

n-1 Ni Ni+1 

i C - 7 - T .  =O 

For unsuccessful search, we have 

Argulng now as in Theorem 3.1, we have: 
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Theorem 3.2. 

If 2 < ~ .  Also, E(T,*)=O(l) of and only If [f 2 < ~ .  

When searchlng a bucket structure we have E (T, )=0 (1) If and only if 

I 

3.3. Generating exponential order statistics. 

algorlthms parallellng algorlthms A and C for the unlform dlstrlbutlon. 
To generate a sorted sample of exponentlal random varlables, there are two 

A. Bucket sorting 

Generate iid exponential random variates E ,, . . . , E,, . 
Obtain E(,,< <E(,) by bucket sorting. 

C. Via exponential spacings 

E (0)- 

FOR i:=1 TO n DO 
Generate an exponential random variate E .  

Method C uses the memoryless property of the exponentlal dlstrlbutlon. It 
takes tlme 0 (n ). Careless bucket sortlng applled to  algorlthm A could lead to a 
superllnear tlme algorlthm. For example, thls would be the case If we were to 
dlvlde the lnterval [O,max E ; ]  up into n equl-stzed Intervals. Thls can of course 
be avolded If we flrst generate 5 U ( f l )  for a unlform sample In 
expected tlme 0 (n), and then return -logU(,), . . . , -logU(,). Another posslbll- 
I t Y  1s to construct the bucket structure for ai mod 1 , 15; s n  , 1.e. for the frac- 
tlonal parts only, and t o  sort these elements. Slnce the fractlonal parts have a 
bounded denslty, 

U(l ,L 

e - x  40,1](T 1 
9 

1 
1-- 

e 
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we know from Theorem 3.1 that a sorted array can be obtalned In expected tlme 
0 ( n  ). But thls sorted array has many sorted sub-arrays. In one extra pass, we 
can untangle I t  provlded that we have kept track of the unused lnteger parts of 
the data, pi 1. Concatenatlon of the many sub-arrays requires another pass, 

but we stlll have linear behavlor. 

3.4. Generating order statistics with distribution function F . 
The order statlstlcs X ( l ) s  . . . Sx(.) that correspond to X , ,  . . . , X ,  , a 

sequence of lld random varlables wlth absolutely contlnuous dlstrlbutlon functlon 
F on R 1  can be generated as 

or as 

startlng from unlform or exponentlal order statlstlcs. The exponentlal order 
statfstlcs method based on C (see prevlous sectlon) was proposed by Newby 
(1979). In general, the cholce of one method over the other one largely depends 
upon the form of F . For example, for the Welbull dlstrlbutlon functlon 

z n  -(TI 
F (x) = 1-e (x 2 0 )  

1 - 1 - 
we have F-'(u )=b (-log(1-u )) a and F-'(l-e-" )=bu a ,  so that the exponentlal 
order statlstlcs method seems better sulted. 

In many cases, I t  Is much faster to Just sort x,, . . . , X ,  so that the costly 
lnverslons can be avolded. If bucket sortlng 1s used, one should make sure that 
the expected tlme Is O ( n ) .  Thls can be done for example by transformlng the 
data In a monotone manner for the purpose of sortlng to (0,1] and lnsurlng that 
the denslty f of the transformed data has a small value for s f '. Transforma- 

tlons that one mlght conslder should be slmple, e.g. - Is useful for transform- 
lng nonnegatlve data. The parameter u > O  Is a deslgn parameter whlch should be 
.picked such that the denslty after transformatlon has the smallest posslble value 
for J f '. 

X 

u +x 

The so-called grouplng method studled by Rabonowltz and Berenson (1974) 
and Gerontldes and Smlth (1982) Is a hybrld of the lnverslon method and the  
bucket sortlng method. The support of the dlstrlbutlon Is partltloned Into k 
Intervals, each havlng equal probablllty. Then one keeps for each lnterval a 
llnked Ilst. Intervals are selected wlth equal probablllty, and wlthln each lnterval, 
random polnts are generated dlrectiy. In a Anal pass, all llnked llsts are sorted 
and concatenated. The sortlng and concatenatlng take llnear expected tlme when 
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IC =n , because the lnterval cardlnalltles are as for the bucket method In case of a 
unlform dlstrlbutlon. There are two maJor dlfferences wlth the bucket sortlng 
method: Arst of all, the determlnatlon of the lntervals requlres IC-1 lmpllclt lnver- 
slons of the dlstrlbutlon functlon. Thls 1s only worthwhlle when I t  can be done In 
a set-up step and very many ordered samples are needed for the same dlstrlbu- 
tlon and the same n (recall that k 1s best taken proportlonal to n ). Secondly, we 
have to be able to generate random varlates wlth a dlstrlbutlon restrlcted to 
these Intervals. Candldates for thls include the rejectlon method. For monotone 
densltles or unlmodal densltles and large n , the reJectlon constant will be close to 
one for most lntervals If rejectlon from unlform densltles 1s used. 

But perhaps most promlslng of all 1s the rejection method ltself for gen- 
erating an ordered sample. Assume that our denslty f 1s domlnated by cg where 
g Is another denslty, and c > 1  1s the rejectlon constant. Then, exploltlng proper- 
tles of polnts unlformly dlstrlbuted under f , we can proceed as follows: 

Rejection method for generating an ordered sample 

[NOTE: n is the size of the ordered sample; m >n is an 
I 

recommended value is 1 nc + dnc -l)lOg [ zrr(:-l) ] 
nteger picked by the user. Its 

REPEAT 
Generate an ordered sample x,, . . . , xm with density g . 
Generate rn iid uniform [0,1] random variates U1, . . . , urn. 
Delete all .& 's for which > cg (Xi )/f (4. ). 

UNTIL the edited (but ordered) sample has N I n  elements 
Delete another N-n  randomly selected xi 's from this sample, and return the edited sam- 
ple. 

The maln loop of the algorlthm, when successful, glves an ordered sample of 
random slze N >n  . Thls sample 1s further edlted by one of the well-known 
methods of selectlng a random (un1for.m) sample of slze N - n  from a set of slze n 
(see chapter XI). The expected tlme taken by the latter procedure 1s 
E (N -n I N zn ) tlmes a constant not dependlng upon N or n . The expected 
tlme taken by the global algorlthm 1s m / P  (N L n )  + E ( N - n  I N > n  ) If con- 
stants are omltted, and a unlform ordered sample wlth denslty g can be gen- 
erated In llnear expected tlme. 
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Theorem 3.3. 

above. 
0 ( n  ). If In addltlon m -cn = o  ( n  ) and ( m  -cn )/& 400, then 

Let m ,n , N , f  ,c ,g keep thelr meanlng of the reJectlon algorlthm deflned 
Then, if m Z c n  and m = o ( n ) ,  the algorlthm takes expected time 

m 
+E(N-n  I N > n ) -  cn - 

Tn - P ( N 2 n )  

Proof of Theorem 3.3. 
In order to  analyze the success probablllty, we need some result about the 

closeness between the blnomlal and normal dlstrlbutlons. Flrst of all, slnce N 1s 
1 

C 
blnomlal ( m  ,-), we know from the central llmlt theorem that as m 300, 

m n -- 

where @ 1s the normal dlstrlbutlon functlon. If m z c n  at all tlmes, then we see 
that f ' ( N  < n )  stays bounded away from 1, and osclllates asyrnptotlcally 
between 0 and 1/2 .  I t  can have a llmlt. If (m-cn>/&-+oo, then we see that 
P ( N  < n )+o. 

We note that E ( N - n  I N z n . ) = E ( ( N - n ) + ) / P ( N z n ) .  Slnce 
N-n  Srn -n , we see that T,, s ( 2 m  -n ) / P  ( N  2 n ). The bound 1s 0 ( n  ) when 
m =O ( n  ) and P ( N  2 n ) 1s bounded away from zero. Also, T, -cn when 
P ( N  <n )+O and m -cn . I 

Remark 3.1. Optimal choice of m. 
The best posslble value for T, 1s cn because we cannot hope to accept n 

polnts wlth large enough probablllty of success unless the orlglnal sample 1s at 
least of slze cn.  I t  Is fortunate that we need not take m much larger than cn. 
Detalled cornputatlons are needed to obtaln the followlng recomrnendatlon for m : 
take m close to 
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Wlth thls cholce, T,, 1s cn +O ( d m ) .  See exerclse 3.7 for guldance wlth the 
derlvatlon. 

3.5. Generating exponential random variates in batches. 

erated as follows: 
By Theorem 2.2, lld exponentlal random varlates E, ,  . . . , E, can be gen- 

Exponential random variate generator 

Generate an ordered sample u,,,s * . . 5 U(,-l) of uniform [0,1] random variates. 
Generate a gamma (n ) random variate G, . 
RETURN (G, U(i),G, oJ(2)-u(i), 1 G, (1-u(n-i)))* 

Thus, one gamma varlate (whlch we are able to generate In expected tlme 
0 (1)) and a sorted uniform sample of slze n-1 are all that 1s needed to obtaln an 
lid sequence of n exponentlal random varlates. Thus, the contrlbutlon of the 
gamma generator to the total tlme 1s asyrnptotlcally negllglble. Also, the sortlng 
can be done extremely qulckly by bucket sort If we have a large number of buck- 
ets (exerclse 3.1), so that for good fmplementatlons of bucket sortlng, a super- 
efflclent exponentlal random varlate generator can be obtalned. Note however 
that by taking dlfferences of numbers that are close to each other, we loose some 
accuracy. For very large n , thls method 1s not recommended. 

One speclal case 1s worth mentlonlng here: UG, and (1-U)G2 are lld 
exponentlal random varlates. 

3.6. Exercises. 
1. In bucket sortlng, assume that lnstead of n buckets, we take kn buckets 

where k 21 1s an Integer. Analyze how the expected tlme 1s affected by the 
cholce of k. Note that there 1s a tlrne component for the set-up whlch 
lncreases as kn . The tlme component due to selectlon sort wlthln the buck- 
ets 1s a decreaslng functlon of k and f . Determlne the asymptotlcally 
optlmal value of k as a functlon of Jf and of the relatlve weights of the 
two tlme components. 
Prove the clalm that If an 0 (n logn ) expected tlme comparlson-based sort- 

lng algorlthm 1s used wlthln buckets, then Jf log+f <co lmplles that the 

2 .  
1 

0 
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3. 

4. 

5. 

6. 

7. 

expected tlme 1s 0 ( n  ). 
Show that If log+f <oo lmplles sf 2<oo for any denslty . Glve an 
example of a denslty f on [0,1] for whlch sf log+f <oo, yet sf 2=m. 
Glve also an example for whlch Sf log+f =oo. 
The randomness In the tlme taken by bucket sortlng and bucket searchlng 

can be approprlately measured by N i 2 ,  a quantlty that wk shall call T, . 
I t  1s often good to know that T, does not become very large wlth high pro- 
bablllty. For example, we may wlsh to  obtaln good upper bounds for 
P (T, >E(T,)+a), where a>O 1s a constant. For example, obtaln bounds 
that decrease exponentlally fast  In n for all bounded densltles on [OJ] and 
all a>O.  Hlnt: use an exponentlal verslon of Chebyshev's hequallty and a 
Polssonlzatlon trlck for the sample she. 
Glve an 0 (n  ) expected tlme generator for the maxlmal unlform spacing In a 
sample of slze n . Then give an 0 (1) expected tlme generator for the same 
problem. 
If a denslty f can be decomposed as pf l+(l-p )f are densl- 
tles and p E[O,l] 1s a constant, then an ordered sample x(l,s * 

f can be generated as follows: 

n -1 

I =o 

where f l,f 
< X ( n )  of . 

Generate a binomial (n , p  ) random variate N . 
Generate the order statistics Y(,)< 
densities and f respectively. 
Merge the sorted tables into a sorted table X,, ,s  * 

s Y ( N )  and Zcl,< * - <_Z,,,,, for 

<X(n). 

The acceleratlon 1s due to the fact that the method based upon lnverslon of 
F 1s sometlmes slmple for f but not for f ; and that n coln fllps 
needed for selectlon In the mlxture are avolded. Of course, we need a blno- 
mlal random varlate. Here 1s the questlon: based upon thls decomposltlon 
method, derlve an efflclent algorlthm for generatlng an ordered sample from 
any monotone denslty on [O,co). 
Thls 1s about the optlmal cholce for m In Theorem 3.3 (the reJectlon method 
for generatlng an ordered sample). The purpose 1s t o  And an m such that 
for that cholce of m , T, -cn -1nf (T, -cn ) as n --too. Proceed as follows: 

Arst show that I t  sufflces t o  consider only those m for whlch T, -cn . Thls 
lmplles that E ( (N-n  )+)=o ( m  -cn ), P ( N  < n )+O, and ( m  -cn )/& --roo. 
Then deduce that for the optlmal m , 

+ P ( N < n ) ) ) .  m -cn T, = cn (l+(l+o (I))(- cn 

and f 

m 

I 

... 
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Clearly, m -cn , and ( m  -cn )/cn 1s a term whlch decreases much slower 
than 1 / G .  By the Berry-Esseen theorem (Chow and Telcher (1978, p. 299) 
or Petrov (1975)), flnd a constant C dependlng upon c only such that  

m n -- C 

Conclude that 

( m  -cn )/(cn )+@ 

I t  sufflces to  flnd the m whlch mlnlmlzes 
m n -- 
C . Next, uslng the fact that  as u -00, 

U 2  

1 e-'2 1-@(u ) - - 
uJ2.rr 

9 

reduce the problem to  that  of mlnlmlzlng 
' P2 &+*e -- f 

where m -cn =pd- for some p+m,  p=o (G ). Approxlmate 
asyrnptotlc mlnlmlzatlon of thls ylelds 

cn 
27r( c -1) 

Flnally, verlfy that for the correspondlng value for m , the mlnlmal value of 
T, 1s asymptotlcally obtalned (In the " - *' sense). 

4. THE POLAR METHOD. 

4.1. Radially symmetric distributions. 
Here we wlll explaln about the lntlmate connectlon between order statlstlcs 

and random vectors wlth radlally symmetrlc dlstrlbutlons In R d .  Thls connectlon 
wlll provlde us wlth a wealth of algorlthms for random varlate generatlon. Most 
Importantly, we wlll obtaln the tlme-honored Box-Muller method for the normal 
dlstrlbutlon. 

IS radially symmetric If AX 
1s dlstrlbuted a s  X for all orthonormal d X d  matrlces A . It 1s strlctly radlally 
symmetrlc If also P (X=o)=O. Notlng that AX corresponds to  a rotated verslon 
Of x, radlal symmetry 1s thus nothlng else but lnvarlance under rotatlons of the 

A random vector X = ( X , ,  . . . , xd) In R 
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coordlnate axes. We wrlte cd for the unit sphere In R ,. x IS uniformly dlsr-I- 
buted on C, when X 1s radlally symmetrlc and I I x I I =1 wlth probab;:::?. 
one. Here I I . I I 1s the standard L ,  norm. Sometlmes, a radlally symmetr:? 
random vector has a denslty f , and then necessarlly I t  1s of the form . 

f ( x 1 , . . . , x d ) = g ( l  1 %  I 1 )  ( x = ( x l , + * * ~ z d ) E R d )  

for some functlon g . Thls functlon g on [O,m) 1s such that 

J ~ v ,  r d - l g  ( r  dr = 1 , 

I 
co 

0 

where 

1s the volume of the unlt sphere C,. We say that g defines or determlnes the 
radlal denslty. Elllptlcal radlal symmetry 1s not be treated In thls early chapter, 
nor do we speclflcally address the problem of multlvarlate random varlate genera- 
tlon. For a blbllography on radlal symmetry, see Chmlelewskl (1981). For the 
fundamental propertles of radlal dlstrlbutlons not glven below, see for example 
Kelker (1970). 
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Theorem 4.1. (Uniform distributions on the unit sphere.) 

1. 

2. 

3. 

1s unlformly dlstrlbuted X 
11x1 I If X 1s strlctly radlally symmetrlc, then 

on c d .  
If X IS uniformly dlstrlbuted on cd, then (X12, . . . , & 2, IS dlstrlbuted as 

. . . , Yd are lndependent gamma (-) random (7, . . . , T ) ,  where Y , ,  1 
2 

Y l  yd 

varlables wlth sum S . 
1 d-1 If x 1s unlformly dlstrlbuted on cd, then x12 1s beta (-,-). 

T 7  2 2  
I Equlvalently, X12 1s dlstrlbuted as - where Y , Z  are lndependent 

Y + Z  
1 d -1 gamma (-) and gamma (-) random varlables. Furthermore, Xl has den- 
2 2 

slty 

Proof of Theorem 4.1. 

AX 1s dlstrlbuted as 

because X 1s strlctly 

X u = 1 ,  statement 1 fol- 

1.p 1 . 1  
I P I  I 

I I X l I  l ' = I I x I I  

For all orthogonal d X d  matrices A ,  
Ax , whlch In turn 1s dlstrlbuted as I I A X I  I 

radlally symmetrlc. Slnce I I 
lows. 

To  prove statement 2, we define the lld normal random varlables 
N , ,  . . . , Nd, and note that N = ( N l ,  . . . , Nd) 1s radlally symmetrlc wlth den- 
slty determlned by 

r* 
1 -- 

s ( r )  = - e d ( r  LO) . - 
( 2 4  

1s unlformly dlstrlbuted Thus, by part 1, the vector wlth components 

on cd . But slnce N i 2  1s gamma (-,2), we deduce that the random vector wlth 

components 1s dlstrlbuted as a random vector wlth components 

- . Thls proves statement 2. 

Ni 
I IN1 I 1 

2 
Ni 

2 Yi I I N 1  l 2  
2s 
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The flrst part of statement 3 follows easlly from statement 2 and known pro- 
1 d-1 
2 2  

pertles of the beta and gamma dlstrlbutlons. The beta (-,-) denslty is 

(O<s <1> , (1-x) 
IE C 

d 

1 d-1 

r(2)  
where c = . Puttlng Y = a ,  we see that Y has denslty 

yj- > 
d - 3  - 

c (l-y2) 2 1  -2y ( o c y  <1) 9 

Y '  
1 d-1 
2 2  

when X Is beta (-,-) dlstrlbuted. Thls proves statement 3. 

Theorem 4.2. (The normal distribution.) 
If N , ,  . . . , Nd are lld normal random varlables, then (Nl, . . . , N d )  1s 

radlally symrnetrlc wlth denslty defined by 
r 2  

( T  Lo) 1 e-2 g ( r )  = - d 

(2n)T 

Furthermore, If ( X I ,  , . . , xd) 1s strlctly radlally symrnetrlc and the xi's are 
Independent, then the xi's are lld normal random varlables wlth nonzero varl- 
ance. 

Proof of Theorem 4.2. 

example In Kelker (1970). 
The flrst part was shown In Theorem 4.1. The second part is proved for 
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Theorem 4.3. (Radial transformations.) 
1. 

2. 

3. 

If X 1s strlctly radlally symmetrlc In R 
R = I 1 X I I has denslty 

wlth deflnlng functlon g ,  then 

dV, r d-lg ( r  ) ( r  2 0 )  . 
If X 1s uniformly dlstrlbuted on Cd, and R Is lndependent of X and has 
the denslty glven above, then RX 1s strlctly radlally symmetrlc In R wlth 
deflnlng functlon g . 
If X 1s radlally symrnetrlc In R wlth deflnlng functlon g ,  and If R 1s a 
random varlable on [O,oo) wlth density h , lndependent of X ,  then RX Is 
radlally symrnetrlc wlth deflnlng functlon 

Proof of Theorem 4.3. 

dlmenslonal volume dVd . By a slmple polar transformatlon, 
For statement 1, we need the fact that  the surface of Cd has d-1- 

P ( R I r ) =  J s ( l  15 I I > d z  = J dvdYd-'9(Y)dY ( T L O ) .  
I I z  I I < r  Y 1 7  

Thls proves statement 1. 

R X  1s radlally symmetrlc because for all orthogonal d X d  matrlces A ,  
A ( R X )  1s dlstrlbuted as R ( A X )  and thus as R X .  But such dlstrlbutlons are 
unlquely determlned by the dlstrlbutlon of I I RX I I =R I I X I I = R ,  and 
thus, statement follows from statement 1. 

Conslder flnally part 3. Clearly, RX 1s radlally symrnetrlc. Glven R ,  
R I I X I I has denslty 

1 r d-l  r 
--dVd'Z' R 9($ ( e o )  * 

Thus, the denslty of I 1 X I I 1s the expected value of the latter expresslon wlth 
respect to R , whlch 1s seen to be g * .  

Let us brlefly dlscuss these three theorems. Conslder first the marglnal dlstrl- 
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2 

3 

4 
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Density of X, (on [ - 1 , 1 ] )  
1 

Name of density 

Arc sine density 
7rm 

1 - Uniform [-1,1] density 
2 

2 4 2  - 
1 I I  

3 
4 

5 -( l-X2) 
% 

6 
" - 

8 
-( 1 - x 2 )  2 

Slnce all radlally symmetrlc random vectors are dlstrlbuted as the product of a 
unlform random vector on Cd and an lndependent random varlable R , I t  follows 
that the flrst component X, 1s dlstrlbuted as R tlmes a random varlable wlth 
densltles as glven In the table above or In part 3 of Theorem 4.1. Thus, for d 22, 
X ,  has a marglnal denslty whenever X 1s strlctly radlally symmetrlc. By 
Khlnchlne's theorem, we note that for d 23, the denslty of x, 1s unlmodal. 

Theorem 4.2 states that radlally symmetrlc dlstrlbutlons are vlrtually useless 
If they are to be used as tools for generatlng lndependent random varlates 
XI, . . . , X ,  unless the Xi's are normally dlstrlbuted. In the next section, we 
wlll clarlfy the speclal role played by the normal dlstrlbutlon. 

4.2. Generating random vectors uniformly distributed on C d .  

a unlform dlstrlbutlon on Cd : 
The followlng two algorlthms can be used to generate random varlates wlth 

Via normal random variates 

Generate iid normal random variates, N , ,  . . . , N d ,  and compute S + , / N 1 2 +  . + N d 2  
N ,  N d  RETURN (7,. . . , 7). 
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Via rejection from the enclosing hypercube 

REPEAT 
Generate iid uniform [-1,1] random variates XI, . . . , Xd, and compute 
Stx12-k ' * +xd2. 

In addltlon, we could also make good use of a property of Theorem 4.1. Assume 
that d 1s even and that a d -vector x 1s unlformly dlstrlbuted on Cd . Then, 

(x12+x,2~ * > Xd-i2+xd 2 ,  

1s dlstributed as 

where the Ei's are lld exponentlal random varlables and S = E , +  +Ed.  - 
n 

X l  x2 
4 

Furthermore, glven XI2+X:=r 2, (-,-) 1s unlformly dlstrlbuted on C,. 
r r  

Thls leads to the followlng algorlthm: 

Via uniform spacings 

Generate iid uniform [OJ] random variates U,, . . . , Ud . 

Sort the uniform variates (preferably by bucket sorting), and compute the spacings 

-1 
2 

S I , .  * * I s.. 
2 

Generate independent pairs (VI ,  V2)1 . . . (vd-1, vd ), all uniformly distributed on 0,. 
RETURN ( v 1 f l , v 2 f 1 9 v 8 f i , v 4 f i 2  . . , vd-i& vd 

The normal and spaclngs methods take expected tlme 0 ( d  ), whlle the reJec- 
tlon method takes tlme lncreaslng faster than exponentlally wlth d .  By Stlrllng's 
formula, we observe that the expected number of lteratlons In the rejectlon 
method 1s 
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whlch lncreases very rapidly to 00. Some values for the expected number of ltera- 
tlons are glven In the table below. 

d I EXpected number of iterations 

The reJectlon method 1s not recommended except perhaps for d 5 5 .  The normal 
and spaclngs methods dlffer In the type of operatlons that are needed: the normal 
method requlres d normal random varlates plus one square root, whereas the 
spaclngs method requlres one bucket sort , - square roots and --1 unlform ran- 

dom varlates. The spaclngs method 1s based upon the assumptlon that  a very fas t  
method 1s available for generating random vectors with a unlform dlstrlbutlon on 
C,. Slnce we work wlth spaclngs, I t  1s also posslble that some accuracy 1s lost for 
large values of d .  For all these reasons, I t  seems unllkely that the spaclngs 
method wlll be competltlve wlth the normal method. For theoretlcal and experl- 
mental cornparlsons, we refer the reader to Deak (1979) and Rublnsteln (1982). 
For another derlvatlon of the spaclngs method, see for example Slbuya (1962), 
Tashlro (1977), and Guralnik, Zemach and Warnock (1985). 

d d 
2 2 
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4.3. Generating points uniformly in and on C,. 
We say that a random vector 1s unlformly dlstrlbuted In cd when I t  1s radl- 

ally symrnetrlc wlth deflnlng functlon g ( r  )=- (O<r 51). For d =2, such ran- 

dom vectors can be convenlently generated by the rejection method: 

1 

vd 

Rejection method 

REPEAT 
Generate two iid uniform [-l,l] random variates U,, U,. 

UNTIL UIa+ U , " i  1 
RETURN (u,, U,) 

4 

7r 
On the average, - palrs of unlform random varlates are needed before we exlt. 

For each palr, two multlpllcatlons are requlred as well. Some speed-up 1s posslble 
by squeezlng: 

Rejection method with squeezing 

REPEAT 
Generate two iid uniform [-1,1] random variates u , ,U ,  , and compute 
z+ I ui I + I ua I .  
Accept +[z 5 1 )  
IF NOT Accept THEN IF Z 2 6  

THEN Accept t [ U l a + U 2 < l ]  
UNTIL Accept 
RETURN (u,, v,) 

In the squeeze step, we avold the two multlpllcatlons preclsely 50% of the tlme. 
The second, sllghtly more dlfflcult problem 1s that of the generatlon of a 

polnt unlformly dlstrlbuted on C,. For example, If (X,,X,) 1s strlctly radlally 
symrnetrlc (thls 1s the case when the components are lld normal random varl- 
ables, or when the random vector 1s unlformly dlstrlbuted In C, ) ,  then I t  sufflces 

to  take (- -) where S = d X m .  At flrst slght, I t  seems that the costly 

square root 1s unavoldable. That thls 1s not so follows from the followlng key 
theorem: 

Xl x2 

s ' s  
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1 Theorem 4.4. 

1. 

2. 

3. 

4. 

5. 

6.  

If (X,,X,) 1s unlformly dlstrlbuted In c,, and S = d m ,  then: 

S and (- -) are Independent. 
x, x2 
s ’ s  

S2 1s unlformly dlstrlbuted on [0,1]. 

1s Cauchy dlstrlbuted. 
1 2  

Xl 
XI x2 

- 
(-,-) 1s unlformly dlstrlbuted on C,. 

When u 1s unlform [0,1], then ( ~ 0 ~ ( 2 n U ) , s l n ( 2 ~ ~ ) )  1s unlformly dlstrlbuted 
on C,. 

s s  

x 12-x,2 2x ,x , 
) 1s unlformly dlstrlbuted on C,. 

( s2 ’ s2 

Proof of Theorem 4.4. 

Propertles 1,3 and 4 are valld for all strlctly radlally symrnetrlc random vec- 
tors (X,,X,). Propertles 1 and 4 follow dlrectly from Theorem 4.3. From 
Theorem 4.1, we recall that S has denslty dVd 7 d-1=2r (O<r 51). Thus, S 2  1s 
unlformly dlstrlbuted on [0,1]. Thls proves property 2. Property 5 1s trlvlally true, 

and wlll be used to prove propertles 3 and 6 .  From 5, we know that - 
trlbuted as tan(2nu) ,  and thus as tan(.nU), whlch In turn 1s Cauchy dlstrlbuted 
(property 3). Flnally, In vlew of 

IS dls- 
x2 

Xl 

cos(4nU) = cos2(2nU)-sin2(2~U) , 
sln(4nU) = 2sln(2nU)cos(2nU) , 

x12-x22 2x,x, 
s2 ’ s2 

we see that ( ) 1s unlformly dlstrlbuted on C,, because I t  1s dls- 

trlbuted as (cos(4nu),sln(4nU)). Thls concludes the proof of Theorem 4.4. 

I 

Thus, for the generatlon of a random vector unlformly dlstrlbuted on C,, 
the followlng algorlthm 1s fast: 
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REPEAT 
Generate iid uniform [-1,1] random variates Xl,X,. 
Set Yl+-X12, Y,+X$,S c y 1 +  Y2. 

UNTIL s<i 
Y,-Y, 2x1x2 
S ’ S  RETURN (- - 1 

235 

4.4. Generating normal random variates in batches. 

mal random varlates: 
We begln with the descrlptlon of the polar method for generatlng d lld nor- 

Polar method for normal random variates 

Generate X uniformly on c d  . 

Generate a random variate R with density d v d  r d-le 
r 2  -_. 

( r  2 0 ) .  ( R  is distributed as 
d 
2 

where G is gamma (-) distributed.) 

RETURN RX 

In partlcular, for d =2, two lndependent normal random varlates can be obtalned 
by elther one of the followlng methods: 

Here (X, ,X,)  1s unlformly dlstrlbuted In C,, S = d X , 2 + X 2 2 ,  U 1s unlformly 
dlstrlbuted on [0,1] and E 1s exponentlally dlstrlbuted. Also, E 1s lndependent of 
the other random varlables. The valldlty of these methods follows from Theorems 
4.2, 4.3 and 4.4. The second formula 1s the well-known Box-Muller method 
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(1958). Method 4, proposed by Marsaglla, 1s slmllar to  method 1, but uses the 

observatlon that s2 1s a unlform [0,1] random varlate lndependent of (- -) 

(see Theorem 4.4), and thus that -2log(s) 1s exponentlally dlstrlbuted. If the 
exponentlal random varlate In E 1s obtalned by lnverslon of a unlform random 
varlate, then I t  cannot be competltlve wlth method 4. Method 3, published by 
Bell (1968), 1s based upon property 6 of Theorem 4.4, and effectlvely avolds the 
compufatlon of the square root In the deflnltlon of S .  In all cases, I t  1s recom- 
mended that (X,,x,) be obtalned by reJectlon from the encloslng square (wlth an 
acceleratlng squeeze step perhaps). A closlng remark about the square roots. 
Methods 1 and 4 can always be lmplemented wlth Just one (not two) square 
roots, If we compute, respectlvely, 

XI x2 
s ' s  

and 

In one of the exerclses, we wlll lnvestlgate the p c - x  method wlth the next 
hlgher convenlent cholce for d ,  d =4. We could also make d very large , In the 
range 100 . - 300 , and use the spaclngs method of sectlon 4.2 for generatlng X 
wlth a unlform dlstrlbutlon on Cd (the normal method 1s excluded since we want 
to generate normal random varlates). A gamma (-) random varlate can be gen- 

erated by one of the fa s t  methods descrlbed elsewhere In thls book. 

d 
2 

4.5. Generating radially symmetric random vectors. 

metric random vectors In R 
Theorem 4.3 suggests the followlng method for generatlng radlally sym- 

wlth deflnlng functlon g : 

Generate a random vector x uniformly distributed on cd . 
Gcnerate a random variate R with density dvd r d-lg ( r  ) ( r  20). 
RETURN RX 

Slnce we already know how to generate random varlates wlth a unlform dlstrlbu- 
tlon on cd, we are just left wlth a unlvarlate generatlon problem. But In the 
multlpllcatlon wlth R , most of the Informatlon In x' 1s lost. For example, to  

I 
-.. 
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Thls 1s the denslty of the square root of a beta ( - + l , a  -1) random varlable. d 
2 

Example 4.2. The multivariate Pearson VI1 density. 
d 
2 

The multlvarlate Pearson VI1 denslty wlth parameter a >- 1s deflned by 

the functlon 

where 

The densltles of R for the standard and Johnson-Ramberg methods are respec- 
tlvely, 

CdVd T d - l  

and 

( l+Py+l  * 

d d  In both cases, we can generate random l? as dz where Is beta ( - ,a - - )  2 2  

In the former case, and beta ( -+l ,u--)  In the latter case. Note here that for 

the speclal cholce a =- +' , the multlvarlate Cauchy denslty Is obtalned. I 

d d 
2 2 

2 

Example 4.3. 
The multlvarlate radlally symrnetrlc dlstrlbutlon determlned by 
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leads to a density for R glven by 

dr d - l  

1 

U T  
Thls 1s the denslty of (-) where U 1s a unlform [O,l] random varlable. 

1- I/ 

4.6. The deconvolution method. 
Assume that we know how to generate 2 ,  a random varlable whlch 1s dlstrl- 

buted as the sum x+Y of two lld random varlables x , Y  wlth denslty f . We 
can then generate the palr x ,  Y by looklng at the condltlonal denslty of X glven 
the value of 2. The followlng algorlthm can be used: 

The deconvolution method 

Generate a random variate Z with the density h (t )=si (z )f ( z  -z ) dz . 
Generate x with density f (2 )f (2-2) 

h ( Z )  
RETURN ( X , Z - X )  

Flrst, we notlce that h 1s lndeed the denslty of the sum of two lld random varl- 

ables wlth denslty f . Also, glven 2 ,  X has denslty ('If ('-'). Thus, the 

algorlthm 1s valld. 
h ( 2 )  

1 
2 

To lllustrate thls, recall that  if X , Y  are lld gamma (-), then X + Y  1s 

exponentlally dlstrlbuted. In thls example, we have therefore, 

whlch 1s the arc slne denslty. Thus, applylng the deconvolutlon method shows the 
followlng: If E 1s an exponentlal random varlable, and W 1s a random varlable 
wlth the standard arc slne denslty 
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1 
2 

then (EW,E  (1-W)) 1s dlstrlbuted as a palr of lld gamma (-) random varlables. 

But tlils leads preclsely to the polar method because the followlng palrs of ran- 
dom varlables are ldentlcally dlstrlbuted: 

( N l , N 2 ) (  two lld normal random varlables); 

( d r n  ,d2E (1-W)); 

<&F cos(2n.u ),AT s i n ( 2 n ~  1) . 

Here U is a unlform [0,1] random varlable. The equlvalence of the A r s t  two palrs 
1s based upon the fact that a normal random varlable 1s dlstrlbuted as the square 

root of 2 tlmes a gamma (-) random varlable. The equlvalence of the flrst and 

the thlrd palr was establlshed in Theorem 4.4. As a slde product, we observe that 

1 
2 

where (X,,X,)  is unlformly dls- XI2 
X12+XZ2 

W is dlstributed as c0s2(27rU), 1.e. as 

trlbuted In C,. 

4.7. Exercises. 
1. Write one-line random varlate generators for the normal, Cauchy and arc 

slne dlstrlbutlons. 

1s Cauchy dlstrlbuted, If N 1 , N 2  are ild normal random varlables, then - 
N :+N22 1s exponentlally distrlbuted, and d h  has the Raylelgh 

Nl 
2.  

2 2  -- 
distributlon (the Raylelgh denslty 1s xe (x YON. 

3. Show the followlng. If X 1s unlformly dlstrlbuted on cd and R 1s lndepen- 
dent of x and generated as max( U,, . . . , ud ) where the Vi’s are lld unl- 
form (0,1] random varlates, then RX 1s unlformly dlstrlbuted In C,. 
Show that If X 1s unlformly dlstrlbuted on Cd , then Y /  I I Y I I is unl- 
formly dlstrlbuted on C, where k 5 d and Y =(Xl ,  . . . , Xk ). 
Prove by a geometrlcal argument that lf (Xl,X2,X,) is unlformly dlstrlbuted 
on c,, then X , , X ,  and X ,  are unlform [-1,1] random varlables. 

If x 1s radlally symmetrlc wlth deflnlng functlon g ,  then Its flrst com- 
ponent, X , has denslty 

4. 

5.  

6. 

d - 1  

1 
2 

7. Show that two lndependent gamma (-) random variates can be generated 
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8. 

9. 

10. 

11. 

as (4 log( U2),-(1-S )log( U,)), where S =sln2(2nU,) and U,,  U ,  are lndepen- 
dent unlform [0,1] random varlates. 
Consider the palr of random varlables deflned by 

(rn-%rn-) 1-s  
1 + s  1 + s  

where E 1s an exponentlal random varlable, and S+tan2(nU)  for a unlform 
[0,1] random varlate U .  Prove that the palr 1s a palr of lld absolute normal 
random varlables. 
Show that when (X,,X2,x,,x,) 1s unlforrnly dlstrlbuted on C,, then 
(X,,X,) 1s unlformly dlstrlbuted In C ,'- 
Show that both N and d L  are unlformly dlstrlbuted on 

[O,1] when N , E  and G are Independent normal, exponentlal and gamma 
G +E 

1 (5) random varlables, respectlvely. 

Generating uniform random vectors on C,. Show why the followlng 
algorlthm 1s valid for generatlng random vectors unlformly on e,: 

Generate two iid random vectors uniformly in C,, (Xl,x2),(X3,X4) (this is best 
done by rejection). 
s+-x1'+x:, wtx:+x,a 

(Marsaglla, 1972). 

12. Generating random vectors uniformly on C,. Prove all the starred 
statements In this exerclse. To obtaln a random vector wlth a unlform dlstrl- 
butlon on c, by rejection from [-l,1l3 requlres on the average -= 5.73 ... 
unlform [-1,1] random varlates, and one square root per random vector. The 
square root can be avolded by an observatlon due t o  Cook (1957): If 
(X,,X,,x,,X,) 1s unlformly dlstrlbuted on C,, then 

18 
n 

1s unlformly dlstrlbuted on C3 (*). Unfortunately, If a random vector wlth a 
unlform dlstrlbutlon on C ,  1s obtalned by reJectlon from the encloslng 
hypercube, then the expected number of' unlform random varlates needed 1s 
4(--;-)X13. Thus, both methods are qulte expenslve. Uslng Theorem 4.4 and 32 

n 
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exerclses 4 and 5, one can show (*) that 

XlJ1-z. X , d Z  
( 6  ' 6  92 1 

1s unlformly dlstrlbuted on C, when (xl,x,) 1s unlformly dlstrlbuted In C,, 

S=X12+x22, and 1s lndependent of (- -) and unlformly dlstrl- 

buted on [-1,1]. But 2s-1 ltself 1s a candidate for 2 (*). Replaclng Z by 
2s-1, we conclude that 

Xl x2 a'& 

( 2 X 1 r n  , 2 x 2 m  ,2S-1) 

Is uniformly dlstrlbuted on C, (thls method was suggested by Marsaglia 
(1972)). If the random vector (x,,x,) 1s obtained by rejectlon from [-1,112, 
the expected number of unlform [-1,1] random varlates needed per three- 
dimenslonal random vector 1s 8m2.55 (*). 

13. The polar methods €or normal random variates, d=4. Random vec- 
tors unlformly dlstrlbuted on C, can be obtalned qulte emclently by 
Marsaglla's method descrlbed in exerclse 11. To apply the polar method for 
normal random varlates, we need an lndependent random varlate R dlstrl- 
buted as 4- where ,!?,,E, are lndependent , exponentlal random 
varlates. Such an R can be generated In a number of ways: 

(11) A s  J-210g(U1U,) where U,,U,  are lndependent unlform [0,1] random 

(111) As ,/-2log( WU,) where U, 1s as in (11) and W 1s an lndependent ran- 

Why 1s method (111) valld ? Compare the three methods experlmentally. 
Compare also wlth the polar method for d =2. 

14. Implement the polar method for normal random varlates when d is large. 
Generate random vectors on Cd by the spaclngs method when you do so. 
Plot the average tlme per random varlate versus d .  

15. The spacings method for uniform random vectors on Cd when d is 
odd. Show the validlty of the followlng method for generatlng a unlform 
random vector on C, : 

7r 

(1) As @cmn. 
varl at es. 

dom varlate as In exerclse 11. 



V.4.POLAR. METHOD 243 

Generate -- -I 1 iid uniform [O, l ]  random variates. 

Obtain the spacings SI,  . . . , Sd-1 by bucket sorting the uniform random vari- 

ates. 

Generate independent gamma (-) and gamma (-) random variates G , H .  

2 

- 
2 

d-1 1 
2 2 

Generate iid random vectors (V, ,  V2),  . . . , ( Vd-2, Vd-J uniformly on C,. 
RETURN (RV,&,RV,f i ,  RVsJSa, . . . R v d - l f i  - R*).  

16. Let x be a random vector unlformly dlstrlbuted on cd-1. Then the random 
vector Y generated by the following procedure 1s unlformly dlstrlbuted on 
Cd : 

d-1 1 
2 2 

Generate independent gamma (-) and gamma (-) random variates G ,H . 

RETURN Y t ( B x , k m )  where f is a random sign. 

Show thls. Notlce that thls method allows one to generate Y lnductlvely by 
startlng wlth d =1 or d =2. For d =1, X 1s merely f l .  For d =2, R 1s dls- 

trlbuted as sln(-). For d=3, R 1s dlstrlbuted as d? where U 1s a 

unlform [0,1] random varlable. To lmplement thls procedure, a fa s t  gamma 
generator Is requlred (Hlcks and Wheellng, 195Q; see also Rublnsteln, 1982). 

17. In a slmulatlon I t  1s requlred at one polnt to obtaln a random vector ( X , Y )  
unlformly distrlbuted over a star on R2. A star Sa wlth parameter a > O  1s 
deflned by four curves, one In each quadrant and centered at the orlgln. For 
example, the curve In the positlve quadrant 1s a plece of a closed llne satlsfy- 
lng the equatlon 

TU 
2 

I l-a: I a +  11-y I a = 1 .  
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The three other 
about the orlgln. 

curves are defined by symmetry about all the axes and 
For a =-, we obtaln the clrcle, for a =1, we obtaln a dla- 1 

2 
mond, and for a=2, we obtaln the complement of the union of four clrcles. 
Glve an algorlthm for generatlng a polnt unlformly dlstrlbuted In S a ,  where 
the expected tlme 1s unlformly bounded over a .  

18. The Johnson-Ramberg method for normal random variates. Two 
methods for generatlng normal random varlates In batches may be competl- 
tlve wlth the ordlnary polar method because they avold square roots. Both 
are based upon the Johnson-Ramberg technlque: 

Generate x uniformly in 0, by rejection from [--IJ]~. 

Generate , which is distributed as where G is a gamma (-) random 

variable. (Note that R has density - e  

RETURN Rx 

3 
2 

7 2  r 2  -- 
.) 2 

Generate X uniformly in C, by rejection from [-l,l]'. 
Generate R , where R is distributed as and G is a gamma (2) random 

7 2  

variable. (Note that R has density (z) J?(--)e .) 

RETURN Rx 

r s  5 - -  

These methods can only be competltlve If f a s t  direct methods for generatlng 
R are avallable. Develop such methods. 

19. Extend the entlre theory towards other norms, Le. Cd 1s now defined as the 
collectlon of all polnts for whlch the p- th  norm 1s less than or equal to one. 
Here p >O 1s a parameter. Reprove all theorems. Note that the role of the 
normal denslty 1s now lnherlted by the denslty 

( 5 )  = c e - 1 2  I P  , 
where c > O  1s a normallzatlon constant. Determlne thls constant. Show that 

a random varlate wlth thls denslty can be obtalned as X p  where x 1s 
1 - 

1 gamma (-) dlstrlbuted. Flnd a formula for the probablllty of acceptance 
P 
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when random variates wlth a unlform dlstribution In Cd are obtalned by 
reJectlon from [-1,112. (To check your result, the answer for d =2 is 

r2(-)r '(-) (Beyer, 1908, p. 630).) Dlscuss varlous methods for generatfng 

random vectors uniformly distrlbuted on Cd, and deduce the marglnal den- 
slty of such random vectors . 

1 - 2  
P P 


