Chapter Five
 UNIFORM AND EXPONENTLAL SPACINGS

1. MOTIVATION.

The goal of this book is to demonstrate that random varlates with varlous distrlbutions can be obtalned by cleverly manlpulating lid uniform [0,1] random varlates. As we will see in thls chapter, normal, exponential, beta, gamma and t dlstrlbuted random varlates can be obtalned by manlpulation of the order statlstles or spacings defined by samples of ild uniform [0,1] random varlates. For example, the celebrated polar method or Box-Muller method for normal random varlates will be derlved in thls manner (Box and Muller, 1858).

There is a strong relatlonship between these spacings and radially symmetric distributions in R^{d}, so that with a little extra effort we will be able to handle the problem of generating unlform random varlates \ln and on the unit sphere of R^{d}.

The polar method can also be consldered as a speclal case of a more general method, the method of deconvolution. Because of this close relationship it will also be presented in this chapter.

We start with the fundamental propertles of unlform order statistics and unlform spacings. This material is well-known and can be found in many books on probability theory and mathematical statistics. It is collected here for the convenlence of the readers. In the other sectlons, we will develop various algorithms for unlvarlate and multlvariate distrlbutions. Because order statistics and spacIngs involve sorting random varlates, we will have a short section on fast expected time sorting methods. Just as chapter IV, this chapter is highly speciallzed, and can be skipped too. Nevertheless, it is recommended for new students in the fields of slmulation and mathematical statistics.

2. PROPERTIES OF UNIFORM AND EXPONENTLAL SPACINGS.

2.1. Uniform spacings.

Let U_{1}, \ldots, U_{n} be lid unlform $[0,1]$ random varlables with order statistics $U_{(1)} \leq U_{(2)} \leq \cdots \leq U_{(n)}$. The statistlcs S_{i} deflned by

$$
S_{i}=U_{(i)}-U_{(i-1)} \quad(1 \leq i \leq n+1)
$$

where by convention $U_{(0)}=0, U_{(n+1)}=1$, are called the uniform spacings for this sample.

Theorem 2.1.

$\left(S_{1}, \ldots, S_{n}\right)$ is unlformly distributed over the simplex

$$
A_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \geq 0, \sum_{i=1}^{n} x_{i} \leq 1\right\}
$$

Proof of Theorem 2.1.

We know that $U_{(1)}, \ldots, U_{(n)}$ is uniformly distributed over the simplex

$$
B_{n}=\left\{\left(x_{1}, \cdots, x_{n}\right): 0 \leq x_{1} \leq \cdots \leq x_{n} \leq 1\right\}
$$

The transformation

$$
\begin{aligned}
& s_{1}=u_{1} \\
& s_{2}=u_{2}-u_{1} \\
& \cdots \\
& s_{n}=u_{n}-u_{n-1}
\end{aligned}
$$

has as Inverse

$$
\begin{aligned}
& u_{1}=s_{1} \\
& u_{2}=s_{1}+s_{2} \\
& \cdots \\
& u_{n}=s_{1}+s_{2}+\cdots+s_{n}
\end{aligned}
$$

and the Jacoblan of the transformation, i.e. the determinant of the matrix formed by $\frac{\partial s_{i}}{\partial u_{j}}$ is 1 . This shows that the density of S_{1}, \ldots, S_{n} is uniformly distributed on the set A_{n}.

Proofs of thls sort can often be obtalned without the cumbersome transformatlons. For example, when X has the unlform density on a set $A \subseteq R^{d}$, and B is a linear nonsingular transformation: $R^{d} \rightarrow R^{d}$, then $Y=B X$ is uniformly distributed on $B A$ as can be seen from the following argument: for all Borel sets $C \subseteq R^{d}$,

$$
\begin{aligned}
& P(Y \in C)=P(B X \in C)=P\left(X \in B^{-1} C\right) \\
& =\frac{\int_{\left(B^{-1} C\right) \cap A} d x}{\int_{A} d x}=\frac{\int_{C(B A)} d x}{\int_{B A} d x} .
\end{aligned}
$$

Theorem 2.2.

S_{1}, \ldots, S_{n+1} is distributed as

$$
\frac{E_{1}}{\sum_{i=1}^{n+1} E_{i}}, \ldots, \frac{E_{n+1}}{\sum_{i=1}^{n+1} E_{i}}
$$

where E_{1}, \ldots, E_{n+1} is a sequence of ild exponential random variables. Furthermore, if G_{n+1} is independent of $\left(S_{1}, \ldots, S_{n+1}\right)$ and is gamma $(n+1)$ distributed, then

$$
S_{1} G_{n+1}, \ldots, S_{n+1} G_{n+1}
$$

is distributed as $E_{1}, E_{2}, \ldots, E_{n+1}$.

The proof of Theorem 2.2 is based upon Lemma 2.1:

Lemma 2.1.

For any sequence of nonnegative numbers x_{1}, \ldots, x_{n+1}, we have

$$
P\left(S_{1}>x_{1}, \ldots, S_{n+1}>x_{n+1}\right)=\left(1-\sum_{i=1}^{n+1} x_{i}\right)_{+}^{n}
$$

Proof of Lemma 2.1.

Assume without loss of generallty that $\sum_{i=1}^{n+1} x_{i} \leq 1$ (for otherwise the lemma is obvlously true). We use Theorem 2.1. In the notation of Theorem 2.1, we start from the fact that S_{1}, \ldots, S_{n} is unlformly distributed in A_{n}. Thus, our probablllty is equal to

$$
P\left(S_{1}>x_{1} \ldots, S_{n}>x_{n}, 1-\sum_{i=1}^{n} S_{i}>x_{n+1}\right)
$$

This is the probabllity of a set $A_{n}{ }^{*}$ which is a slmplex just as A_{n} except that its top is not at $(0,0, \ldots, 0)$ but rather at $\left(x_{1}, \ldots, x_{n}\right)$, and that its sides are not of length 1 but rather of length $1-\sum_{i=1}^{n+1} x_{i}$. For unlform distrlbutions, probabilities can be calculated as ratlos of areas. In thls case, we have

$$
\frac{\int_{A_{n}^{*}} d x}{\int_{A_{n}} d x}=\left(1-\sum_{i=1}^{n+1} x_{i}\right)^{n} \cdot \square
$$

Proof of Theorem 2.2.

Part one. Let $G=G_{n+1}$ be the random varlable $\sum_{i=1}^{n+1} E_{i}$. Note that we need only show that

$$
\frac{E_{1}}{G}, \ldots, \frac{E_{n}}{G}
$$

Is unlformly distributed in A_{n}. The last component $\frac{E_{n+1}}{G}$ is taken care of by noting that it equals 1 minus the sum of the first n components. Let us use the symbols e_{i}, y, x_{i} for the running varlables corresponding to $E_{i}, G, \frac{E_{i}}{G}$. We first compute the joint density of E_{1}, \ldots, E_{n}, G :

$$
f\left(e_{1}, \ldots, e_{n}, y\right)=\prod_{i=1}^{n} e^{-e_{i}} e^{-\left(y-e_{1}-\cdots-e_{n}\right)}=e^{-y}
$$

valld when $e_{i} \geq 0$, all i, and $y \geq \sum_{i=1}^{n} e_{i}$. Here we used the fact that the joint density is the product of the density of the first n varlables and the density of G glven $E_{1}=e_{1}, \ldots, E_{n}=e_{n}$. Next, by a simple transformation of variables, it is easily seen that the joint density of $\frac{E_{1}}{G}, \ldots, \frac{E_{n}}{G}, G$ is

$$
y^{n} f\left(x_{1} y, \ldots, x_{n} y, y\right)=y^{n} e^{-y} \quad\left(x_{i} y \geq 0, \sum_{i=1}^{n} x_{i} y \leq y\right)
$$

This is easlly obtalned by the transformation $\left\{x_{1}=\frac{e_{1}}{y}, \ldots, x_{n}=\frac{e_{n}}{y}, y=y\right\}$. Finally, the marginal density of $\frac{E_{1}}{G}, \ldots, \frac{E_{n}}{G}$ is obtained by integrating the last density with respect to $d y$, whlch glves us

$$
\int_{0}^{\infty} y^{n} e^{-y} d y I_{A_{n}}\left(x_{1}, \ldots x_{n}\right)=n!I_{A_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

This concludes the proof of part one.
Part two. Assume that $x_{1} \geq 0, \ldots, x_{n+1} \geq 0$. By Lemma 2.1, we have

$$
\begin{aligned}
& P\left(G S_{1}>x_{1}, \ldots, G S_{n+1}>x_{n+1}\right) \\
& =\int_{0}^{\infty} P\left(S_{1}>\frac{x_{1}}{y}, \ldots, \left.S_{n+1}>\frac{x_{n+1}}{y} \right\rvert\, G=y\right) \frac{y^{n} e^{-y}}{n!} d y \\
& =\int_{y: \sum \frac{x_{i}}{y} \leq 1}\left(1-\sum_{i=1}^{n+1} \frac{x_{i}}{y}\right)^{n} \frac{y^{n} e^{-y}}{n!} d y \\
& =\int_{c}^{\infty}(y-c)^{n} \frac{e^{-y}}{n!} d y \quad\left(\text { where } c=\sum_{i=1}^{n+1} x_{i}\right) \\
& =e^{-c} \\
& =\prod_{i=1}^{n+1} e^{-x_{i}}
\end{aligned}
$$

A myriad of results follow from Theorem 2.2. For example, if U, U_{1}, \ldots, U_{n} are ild uniform $[0,1]$ random variables, E is an exponential random variable, and G_{n} is a gamma (n) random varlable, then the following random varlables have identical distributions:

$$
\begin{aligned}
& \min \left(U_{1}, \ldots, U_{n}\right) \\
& 1-U^{\frac{1}{n}} \\
& 1-e^{-\frac{E}{n}} \\
& \frac{E}{E+G_{n}}\left(E, G_{n} \text { are Independent }\right) \\
& \left(\frac{E}{n}\right)-\frac{1}{2!}\left(\frac{E}{n}\right)^{2}+\frac{1}{3!}\left(\frac{E}{n}\right)^{3}-\cdots .
\end{aligned}
$$

It is also easy to show that $\frac{\max \left(U_{1}, \ldots, U_{n}\right)}{\min \left(U_{1}, \ldots, U_{n}\right)}$ is distributed as $1+\frac{G_{n-1}}{E}$, that $\max _{G_{n}}\left(U_{1}, \ldots, U_{n}\right)-\min \left(U_{1}, \ldots, U_{n}\right)$ is distributed as $1-S_{1}-S_{n+1}$ (i.e. as $\frac{G_{n-1}}{G_{n-1}+G_{2}}$), and that $U_{(k)}$ is distributed as $\frac{G_{k}}{G_{k}+G_{n+1-k}}$ where G_{k} and G_{n+1-k} are independent. Since we already know from section I. 4 that $U_{(k)}$ is beta ($k, n+1-k$) distributed, we have thus obtained a well-known relationshlp between the gamma and peta distrlbutlons.

2.2. Exponential spacings.

In this section, $E_{(1)} \leq E_{(2)} \leq \cdots \leq E_{(n)}$ are the order statistics corresponding to a sequence of ind exponential random variables $E_{1}, E_{2}, \ldots, E_{n}$.

Theorem 2.3. (Sukhatme, 1937)
If we defline $E_{(0)}=0$, then the normallzed exponential spacings

$$
(n-i+1)\left(E_{(i)}-E_{(i-1)}\right), 1 \leq i \leq n,
$$

are lid exponentlal random variables. Also,

$$
\frac{E_{1}}{n}, \frac{E_{1}}{n}+\frac{E_{2}}{n-1}, \ldots, \frac{E_{1}}{n}+\cdots+\frac{E_{n}}{1}
$$

are distributed as $E_{(1)}, \ldots, E_{(n)}$.

Proof of Theorem 2.3.

The second statement follows from the first statement: It suffices to call the random varlables of the first statement $E_{1}, E_{2}, \ldots, E_{n}$ and to note that

$$
\begin{aligned}
& E_{(1)}=\frac{E_{1}}{n}, \\
& E_{(2)}=E_{(1)}+\frac{E_{2}}{n-1}, \\
& \cdots \\
& E_{(n)}=E_{(n-1)}+\frac{E_{n}}{1} .
\end{aligned}
$$

To prove the first statement, we note that the joint density of $E_{(1)}, \ldots, E_{(n)}$ is

$$
\begin{aligned}
& n!e^{-\sum_{i=1}^{n} x_{i}} \quad\left(0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}<\infty\right) \\
& =n!e^{-\sum_{i=1}^{n}(n-i+1)\left(x_{i}-x_{i-1}\right)} \quad\left(0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}<\infty\right)
\end{aligned}
$$

Define now $Y_{i}=(n-i+1)\left(E_{(i)}-E_{(i-1)}\right), y_{i}=(n-i+1)\left(x_{i}-x_{i-1}\right)$. Thus, we have

$$
\begin{aligned}
& x_{1}=\frac{y_{1}}{n} \\
& x_{2}=\frac{y_{1}}{n}+\frac{y_{2}}{n-1}, \\
& \cdots \\
& x_{n}=\frac{y_{1}}{n}+\cdots+\frac{y_{n}}{1} .
\end{aligned}
$$

The determinant of the matrix formed by $\frac{\partial x_{i}}{\partial y_{j}}$ is $\frac{1}{n!}$. Thus, Y_{1}, \ldots, Y_{n} has density

$$
e^{-\sum_{i=1}^{\infty} y_{i}} \quad\left(y_{i} \geq 0, \text { all } i\right)
$$

which was to be shown.

Theorem 2.3 has an important corollary: in a sample of two ild exponential random varlates, $E_{(2)}-E_{(1)}$ is agaln exponentlally distributed. This is basically due to the memoryless property of the exponentlal distribution: given that $E \geq x$, $E-x$ is agaln exponentlally distributed. In fact, If we show the memoryless property (thls is easy), and if we show that the minimum of n ild exponential random varlables is distributed as $\frac{E}{n}$ (this is easy too), then we can prove Theorem 2.3 by Induction.

Theorem 2.4. (Malmquist, 1950)
Let $0 \leq U_{(1)} \leq \cdots \leq U_{(n)} \leq 1$ be the order statistics of $U_{1}, U_{2}, \ldots, U_{n}$, a sequence of ind unlform [0,1] random variables. Then, if $U_{(n+1)}=1$,
A. $\left\{\left(\frac{U_{(i)}}{U_{(i+1)}}\right)^{i}, 1 \leq i \leq n\right\}$ is distributed as U_{1}, \ldots, U_{n}.
B. $U_{n}{ }^{\frac{1}{n}}, U_{n}{ }^{\frac{1}{n}} U_{n-1}{ }^{\frac{1}{n-1}}, \ldots, U_{n}{ }^{\frac{1}{n}} \ldots U_{1}^{\frac{1}{1}}$ is distributed as $U_{(n)}, \ldots, U_{(1)}$.

Proof of Theorem 2.4.

In Theorem 2.3, replace U_{i} by $e^{-E_{i}}$ and $U_{(i)}$ by $e^{-E_{(n-i+1)} \text {. Then, In the nota- }- \text { in }}$ tion of Theorems 2.3 and 2.4 we see that the following sequences are Identically distributed:

$$
\begin{aligned}
& \left(\frac{U_{(i)}}{U_{(i+1)}}\right)^{i}, 1 \leq i \leq n, \\
& \left(e^{\left.-E_{(n-1+1)}+E_{(n-1)}\right)^{i}}, 1 \leq i \leq n,\right. \\
& e^{-E_{1}}, 1 \leq i \leq n \\
& U_{i}, 1 \leq i \leq n
\end{aligned}
$$

Thls proves part A. Part B follows without work from part A.

2.3. Exercises.

1. Glve an alternative proof of Theorem 2.3 based upon the memoryless property of the exponential distribution (see suggestion following the proof of that theorem).
2. Prove that in a sample of n ild unlform $[0,1]$ random varlates, the maximum minus the minimum (1.e., the range) is distributed as

$$
U^{\frac{1}{n}} V^{\frac{1}{n-1}}
$$

where U, V are 11 d unlform $[0,1]$ random variates.
3. Show that the minimum spacing in a unlform sample of slze n is distributed as $\frac{1}{n+1}\left(1-U^{\frac{1}{n}}\right)$ where U itself is uniformly distributed on $[0,1]$.
4. Prove or disprove: $\frac{U}{U+V}$ is uniformly distributed on $[0,1]$ when U, V are ild uniform $[0,1]$ random variables.
5. Prove Whitworth's formula: If $S_{i}, 1 \leq i \leq n+1$ are unlform spacings, then

$$
P\left(\max _{i} S_{i} \geq x\right)=\binom{n}{1}(1-x)_{+}-\binom{n}{2}(1-2 x)_{+}^{2}+\cdots
$$

(Whltworth, 1887)
6. Let E_{1}, E_{2}, E_{3} be lid exponential random variables. Show that the following random variables are independent: $\frac{E_{1}}{E_{1}+E_{2}}, \frac{\left(E_{1}+E_{2}\right)}{E_{1}+E_{2}+E_{3}}, E_{1}+E_{2}+E_{3}$. Furthermore, show that their densitles are the uniform $[0,1]$ density, the triangular density on $[0,1]$ and the gamma (3) density, respectively.

3. GENERATION OF ORDERED SAMPLES.

The first application that one thinks of when presented with Theorem 2.2 is a method for generating the order statistics $U_{(1)} \leq \cdots \leq U_{(n)}$ directly. By thls we mean that it is not necessary to generate U_{1}, \ldots, U_{n} and then apply some sorting method.

In thls section we will describe several problems which require such ordered samples. We will not be concerned here with the problem of the generation of one order statlstic such as the maximum or the medlan.

3.1. Generating uniform $[0,1]$ order statistics.

The previous sections all suggest methods for generating uniform $[0,1]$ order statistics:

A. Sorting

Generate iid uniform $[0,1]$ random variates U_{1}, \ldots, U_{n}. Obtain $U_{(1)}, \ldots, U_{(n)}$ by sorting the U_{i} 's.

B. Via uniform spacings

Generate ild exponential random variates E_{1}, \ldots, E_{n+1}, and compute their sum G.
$U_{(0)}+0$
FOR $j:=1$ TO n DO

$$
U_{(j)} \leftarrow U_{(j-1)}+\frac{E_{j}}{G}
$$

C. Via exponential spacings

$$
U_{(n+1)} \leftarrow 1
$$

FOR $j:=n$ DOWNTO 1 DO
Generate a uniform $[0,1]$ random variate U.

$$
U_{(j)} \leftarrow U^{\frac{1}{j}} U_{(j+1)}
$$

Algorithm A is the nalve approach. Sorting methods usually found in computer libraries are comparison-based. This means that information is moved around in tables based upon palrwise comparisons of elements only. It is known (see e.g. Knuth (1973) or Baase (1978)) that the worst-case and expected times taken by these algorithms are $\Omega(n \log n)$. Heapsort and mergesort have worst-case tlmes that are $O(n \log n)$. Quicksort has expected time $O(n \log n)$, but worst-case time both $O\left(n^{2}\right)$ and $\Omega\left(n^{2}\right)$. For detalls, any standard textbook on data structures can be consulted (see e.g. Aho, Hopcroft and Ullman, 1983). What is different in the present case is that the U_{i} 's are unlformly distributed on $[0,1]$. Thus, we can hope to take advantage of truncation. As we will see in the next section, we can bucket sort the $U_{i} \cdot s \ln$ expected time $O(n)$.

Algorlthms B and C are $O(n)$ algorlthms in the worst-case. But only method C is a one-pass method. But because method C requires the computation of a power in each iteration, it is usually slower than elther A or B. Storagewise, method A ls least efficlent since additional storage proportlonal to n is needed. Nevertheless, for large n, method A with bucket sorting is recommended. This is due to the accumulation of round-off errors in algorlthms B and C.

Algorthms B and C were developed in a series of papers by Lurle and Hartley (1972), Schucany (1972) and Lurle and Mason (1973). Experimental comparisons can be found In Rablnowltz and Berenson (1974), Gerontldes and Smlth (1982), and Bentley and Saxe (1980). Ramberg and Tadlkamalla (1978) consider the case of the generation of $U_{(k)}, U_{(k+1)}, \ldots, U_{(m)}$ where $1 \leq k \leq m \leq n$. This requires generating one of the extremes $U_{(k)}$ or $U_{(m)}$, after which a sequentlal method simllar to algorithms B or C can be used, so that the total time is proportional to $m-k+1$.

3.2. Bucket sorting. Bucket searching.

We start with the description of a data structure and an algorlthm for sort$\operatorname{lng} n[0,1]$ valued elements X_{1}, \ldots, X_{n}.

Bucket sorting

[SET-UP]
We need two auxiliary tables of size n called Top and Next. Top [i] gives the index of the top element in bucket i (i.e. $\left(\frac{i-1}{n}, \frac{i}{n}\right)$). A value of 0 indicates an empty bucket. Next [$\left.i\right]$ gives the index of the next element in the same bucket as X_{i}. If there is no next element, its value is 0 .
FOR $i:=1$ TO n DO Next $[i] \leftarrow 0$
FOR $i:=0$ TO $n-1$ DO Top $[i] \curvearrowleft 0$
FOR $i:=1$ TO n DO
Bucket $\leftarrow\left\lfloor n X_{i}\right\}$
Next [i]ヶTop [Bucket]
Top [Bucket] $\leftarrow i$
[SORTING]
Sort all elements within the buckets by ordinary bubble sort or selection sort, and concatenate the nonempty buckets.

The set-up step takes time proportional to n In all cases. The sort step is where we notice a difference between distrlbutions. If each bucket contains one element, then thls step too takes time proportional to n. If all elements on the
other hand fall in the same bucket, then the time taken grows as n^{2} since selectlon sort for that one bucket takes time proportional to n^{2}. Thus, for our analysis, we will have to make some assumptions about the X_{i} 's. We will assume that the X_{i} 's are ild with density f on $[0,1]$. In Theorem 3.1 we show that the expected time is $O(n)$ for nearly all densitles f.

Theorem 3.1. (Devroye and Klincsek, 1981)

The bucket sort given above takes expected time $O(n)$ if and only if

$$
\int f^{2}(x) d x<\infty
$$

Proof of Theorem 3.1.

Assume that the buckets recelve N_{0}, \ldots, N_{n-1} points. It is clear that each N_{i} is binomially distributed with parameters n and p_{i} where

$$
p_{i}=\int_{\frac{i}{n}}^{\frac{i+1}{n}} f(x) d x
$$

By the properties of selection sort, we know that there exist finite positive constants c_{1}, c_{2}, such that the time T_{n} taken by the algorithm satisfies:

$$
c_{1} \leq \frac{T_{n}}{n+\sum_{i=0}^{n-1} N_{i}^{2}} \leq c_{2}
$$

By Jensen's inequallty for convex functlons, we have

$$
\begin{aligned}
& \sum_{i=0}^{n-1} E\left(N_{i}^{2}\right)=\sum_{i=0}^{n-1}\left(n p_{i}\left(1-p_{i}\right)+n^{2} p_{i}^{2}\right) \\
& \leq \sum_{i=0}^{n-1} n p_{i}+\sum_{i=0}^{n-1}\left(n \int_{\frac{i}{n}}^{\frac{i+1}{n}} f(x) d x\right)^{2} \\
& \leq n+\sum_{i=0}^{n-1} n \int_{\frac{i}{n}}^{\frac{i+1}{n}} f^{2}(x) d x \\
& =n\left(1+\int_{0}^{1} f^{2}(x) d x\right)
\end{aligned}
$$

This proves one implication. The other impllcation requires some finer tools, especlally if we want to avold imposing smoothness conditions on f. The key measure theoretical result needed is the Lebesgue density theorem, which (phrased in a form sultable to us) states among other things that for any denslty f on R, we have

$$
\left.\lim _{n \rightarrow \infty} n \int_{x-\frac{1}{n}}^{x+\frac{1}{n}}|f(y)-f(x)| d y=0 \quad \text { (for almost all } x\right)
$$

Consult for example Wheeden and Zygmund (1977).
If we define the density

$$
f_{n}(x)=p_{i} \quad\left(0 \leq \frac{i}{n} \leq x<\frac{i+1}{n} \leq 1\right)
$$

then it is clear that

$$
\begin{aligned}
& \left|f_{n}(x)-f(x)\right| \leq \int_{\frac{i}{n}}^{\frac{i+1}{n}}|f(y)-f(x)| d y \quad\left(\frac{i}{n} \leq x<\frac{i+1}{n}\right) \\
& \leq n \int_{x-\frac{1}{n}}^{x+\frac{1}{n}}|f(y)-f(x)| d y
\end{aligned}
$$

and thls tends to 0 for for almost all x. Thus, by Fatou's lemma,

$$
\operatorname{llm} \operatorname{lnf} \int_{0}^{1} f_{n}{ }^{2}(x) d x \geq \int_{0}^{1} \operatorname{llm} \operatorname{lnf} f_{n}{ }^{2}(x) d x=\int_{0}^{1} f^{2}(x) d x
$$

But

$$
\frac{1}{n} \sum_{i=0}^{n-1} E\left(N_{i}^{2}\right) \geq \sum_{i=0}^{n-1} n p_{i}^{2}=\sum_{i=0}^{n-1} \int_{\frac{i}{n}}^{\frac{i+1}{n}} f_{n}^{2}(x) d x=\int_{0}^{1} f_{n}^{2}(x) d x
$$

Thus, $\int f^{2}=\infty$ implles $\operatorname{llm} \operatorname{lnf} \frac{T_{n}}{n}=\infty$.

In selection sort, the number of comparisons of two elements is $(n-1)+(n-2)+\cdots+1=\frac{n(n-1)}{2}$. Thus, the total number of comparisons needed In bucket sort Is, in the notation of the proof of Theorem 3.1,

$$
\sum_{i=0}^{n-1} \frac{N_{i}\left(N_{i}-1\right)}{2}
$$

The expected number of comparisons is thus

$$
\begin{aligned}
& \sum_{i=0}^{n-1} \frac{1}{2}\left(n^{2} p_{i}^{2}+n p_{i}\left(1-p_{i}\right)-n p_{i}\right) \\
& =\frac{n(n-1)}{2} \sum_{i=0}^{n-1} p_{i}^{2} \\
& \leq \frac{n-1}{2} \int_{0}^{1} f^{2}(x) d x
\end{aligned}
$$

This upper bound is, not unexpectedly, minlmized for the uniform density on $[0,1]$, in which case we obtaln the upper bound $\frac{n-1}{2}$. In other words, the expected number of comparisons is less than the total number of elements! This is of course due to the fact that most of the sorting is done in the set-up step.

If selection sort is replaced by an $O(n \log n)$ expected time comparison-based sortlng algorithm (such as quicksort, mergesort or heapsort), then Theorem 3.1 remains valid provided that the condition $\int f^{2}<\infty$ is replaced by

$$
\int_{0}^{\infty} f(x) \log _{+} f(x) d x<\infty .
$$

See Devroye and Kllncsek (1981). The problem wlth extra space can be alleviated to some extent by clever programming tricks. These tend to slow down the algorithm and won't be discussed here.

Let us now turn to searching. The problem can be formulated as follows. $[0,1]$-valued data X_{1}, \ldots, X_{n} are glven. We assume that thls Is an Ind sequence with common denslty f. Let T_{n} be the time taken to determine whether X_{Z} is In the structure where Z is a random integer taken from $\{1, \ldots, n\}$ independent of the X_{i} 's. This is called the successful search time. The time $T_{n^{*}}$ taken to determine whether X_{n+1} (a random varlable distributed as X_{1} but independent of the data sequence) is in the structure is called the unsuccessful search time. If we store the elements in an array, then llnear (or sequentlal search) ylelds expected search times that are proportlonal to n. If we use binary search and the array is sorted, then it is proportional to $\log (n)$. Assume now that we use the bucket data structure, and that the elements within buckets are not sorted. Then, with linear search within the buckets, the expected number of comparisons of elements for successful search, given N_{0}, \ldots, N_{n-1}, is

$$
\sum_{i=0}^{n-1} \frac{N_{i}}{n} \frac{N_{i}+1}{2}
$$

For unsuccessiul search, we have

$$
\sum_{i=0}^{n-1} \frac{N_{i}}{n} N_{i}
$$

Argulng now as in Theorem 3.1, we have:

Theorem 3.2.

When searching a bucket structure we have $E\left(T_{n}\right)=O(1)$ if and only if $\int f^{2}<\infty$. Also, $E\left(T_{n^{*}}\right)=O(1)$ of and only if $\int f^{2}<\infty$.

3.3. Generating exponential order statistics.

To generate a sorted sample of exponentlal random varlables, there are two algorithms paralleling algorithms A and C for the uniform distribution.

A. Bucket sorting

Generate iid exponential random variates E_{1}, \ldots, E_{n}.
Obtain $E_{(1)} \leq \cdots \leq E_{(n)}$ by bucket sorting.

C. Via exponential spacings

$E_{(0)}$ (0
FOR $i:=1$ TO n DO
Generate an exponential random variate E.
$E_{(i)} \leftarrow E_{(i-1)}+\frac{E}{n-i+1}$

Method C uses the memoryless property of the exponentlal distribution. It takes time $O(n)$. Careless bucket sortlng applled to algorlthm A could lead to a superllnear time algorithm. For example, thls would be the case if we were to divide the interval $\left[0, \max E_{i}\right]$ up into n equi-sized intervals. This can of course be avolded if we first generate $U_{(1)} \leq \cdots \leq U_{(n)}$ for a unlform sample in expected time $O(n)$, and then return $-\log U_{(n)}, \ldots,-\log U_{(1)}$. Another possiblllty is to construct the bucket structure for $E_{i} \bmod 1,1 \leq i \leq n$, l.e. for the fractlonal parts only, and to sort these elements. Since the fractlonal parts have a bounded density,

$$
\frac{e^{-x} I_{[0,1]}(x)}{1-\frac{1}{e}}
$$

we know from Theorem 3.1 that a sorted array can be obtained in expected time $O(n)$. But thls sorted array has many sorted sub-arrays. In one extra pass, we can untangle it provided that we have kept track of the unused integer parts of the data, $\left\{E_{i}\right]$. Concatenation of the many sub-arrays requires another pass, but we still have linear behavlor.

3.4. Generating order statistics with distribution function F.

The order statistics $X_{(1)} \leq \cdots \leq X_{(n)}$ that correspond to X_{1}, \ldots, X_{n}, a sequence of lld random varlables with absolutely continuous distribution function F on R^{1} can be generated as

$$
F^{-1}\left(U_{(1)}\right), \ldots, F^{-1}\left(U_{(n)}\right)
$$

or as

$$
F^{-1}\left(1-e^{-E_{(1)}}\right), \ldots, F^{-1}\left(1-e^{-E_{(n)}}\right)
$$

starting from unlform or exponential order statistics. The exponentlal order statlstics method based on C (see prevlous section) was proposed by Newby (1879). In general, the cholce of one method over the other one largely depends upon the form of F. For example, for the Welbull distribution function

$$
F(x)=1-e^{-\left(\frac{x}{b}\right)^{0}} \quad(x \geq 0)
$$

we have $F^{-1}(u)=b(-\log (1-u))^{\frac{1}{a}}$ and $F^{-1}\left(1-e^{-u}\right)=b u^{\frac{1}{a}}$, so that the exponential order statlstics method seems better sulted.

In many cases, it is much faster to just sort X_{1}, \ldots, X_{n} so that the costly Inverslons can be avolded. If bucket sorting is used, one should make sure that the expected time is $O(n)$. This can be done for example by transforming the data in a monotone manner for the purpose of sorting to $[0,1]$ and Insuring that the density f of the transformed data has a small value for $\int f^{2}$. Transformations that one might consider should be simple, e.g. $\frac{x}{a+x}$ is useful for transformIng nonnegative data. The parameter $a>0$ is a design parameter which should be -picked such that the density after transformation has the smallest possible value for $\int f^{2}$.

The so-called grouplng method studled by Rabonowitz and Berenson (1974) and Gerontides and Smith (1982) is a hybrid of the inversion method and the bucket sorting method. The support of the distribution is partitioned into k intervals, each having equal probabllity. Then one keeps for each interval a linked list. Intervals are selected with equal probability, and within each interval, random points are generated directly. In a final pass, all linked lists are sorted and concatenated. The sorting and concatenating take linear expected time when
$k=n$, because the Interval cardinallties are as for the bucket method in case of a unlform distribution. There are two major differences with the bucket sorting method: first of all, the determination of the intervals requires $k-1$ implicit inversions of the distribution function. This is only worthwhile when it can be done in a set-up step and very many ordered samples are needed for the same distributlon and the same n (recall that k is best taken proportional to n). Secondly, we have to be able to generate random variates with a distribution restricted to these intervals. Candidates for this include the refection method. For monotone densitles or unimodal densitles and large n, the rejection constant will be close to one for most intervals if rejection from uniform densitles is used.

But perhaps most promising of all is the rejection method itself for generating an ordered sample. Assume that our denslty f is dominated by $c g$ where g is another density, and $c>1$ is the rejection constant. Then, exploiting propertles of points uniformly distributed under f, we can proceed as follows:

Rejection method for generating an ordered sample

[NOTE: n is the size of the ordered sample; $m>n$ is an integer picked by the user. Its recommended value is $\left.\left\{n c+\sqrt{n c(c-1) \log \left(\frac{c n}{2 \pi(c-1)}\right)}\right].\right]$
REPEAT
Generate an ordered sample X_{1}, \ldots, X_{m} with density g.
Generate m iid uniform $[0,1]$ random variates U_{1}, \ldots, U_{m}.
Delete all X_{i} 's for which $U_{i}>c g\left(X_{i}\right) / f\left(X_{i}\right)$.
UNTIL the edited (but ordered) sample has $N \geq n$ elements
Delete another $N-n$ randomly selected X_{i} 's from this sample, and return the edited sample.

The maln loop of the algorithm, when successful, glves an ordered sample of random size $N \geq n$. This sample is further edited by one of the well-known methods of selecting a random (unlform) sample of slze $N-n$ from a set of slze n (see chapter XII). The expected tlme taken by the latter procedure is $E(N-n \mid N \geq n)$ times a constant not depending upon N or n. The expected tlme taken by the global algorlthm is $m / P(N \geq n)+E(N-n \mid N \geq n)$ if constants are omltted, and a unlform ordered sample with density g can be generated in linear expected time.

Theorem 3.3.

Let m, n, N, f, c, g keep thelr meaning of the rejection algorithm defined above. Then, if $m \geq c n$ and $m=O(n)$, the algorithm takes expected time $O(n)$. If in addition $m-c n=o(n)$ and $(m-c n) / \sqrt{n} \rightarrow \infty$, then

$$
T_{n}=\frac{m}{P(N \geq n)}+E(N-n \mid N \geq n) \sim c n
$$

as $n \rightarrow \infty$.

Proof of Theorem 3.3.

In order to analyze the success probabllity, we need some result about the closeness between the blnomial and normal distributions. First of all, slnce N is blnomial ($m, \frac{1}{c}$), we know from the central llmit theorem that as $m \rightarrow \infty$,

$$
P(N<n) \sim \Phi\left(\frac{n-\frac{m}{c}}{\sqrt{m \frac{1}{c}\left(1-\frac{1}{c}\right)}}\right)
$$

where Φ is the normal distribution function. If $m \geq c n$ at all times, then we see that $P(N<n)$ stays bounded away from 1 , and oscillates asymptotlcally between 0 and $1 / 2$. It can have a llmit. If $(m-c n) / \sqrt{n} \rightarrow \infty$, then we see that $P(N<n) \rightarrow 0$.

We note that $E(N-n \mid N \geq n)=.E\left((N-n)_{+}\right) / P(N \geq n)$. Since $N-n \leq m-n$, we see that $T_{n} \leq(2 m-n) / P(N \geq n)$. The bound is $O(n)$ when $m=O(n)$ and $P(N \geq n)$ is bounded away from zero. Also, $T_{n} \sim c n$ when $P(N<n) \rightarrow 0$ and $m \sim c n$.

Remark 3.1. Optimal choice of m.

The best posslble value for T_{n} is $c n$ because we cannot hope to accept n points with large enough probability of success unless the original sample is at least of size $c n$. It is fortunate that we need not take m much larger than $c n$. Detalled computations are needed to obtain the following recommendation for m : take m close to

$$
n c+\sqrt{n c(c-1) \log \left(\frac{c n}{2 \pi(c-1)}\right)} .
$$

With this cholce, T_{n} is $c n+O(\sqrt{n \log (n)})$. See exerclse 3.7 for guidance with the derivation.

3.5. Generating exponential random variates in batches.

By Theorem 2.2, lid exponentlal random varlates E_{1}, \ldots, E_{n} can be generated as follows:

Exponential random variate generator

Generate an ordered sample $U_{(1)} \leq \cdots \leq U_{(n-1)}$ of uniform $[0,1]$ random variates. Generate a gamma (n) random variate G_{n}. $\operatorname{RETURN}\left(G_{n} U_{(1)}, G_{n}\left(U_{(2)}-U_{(1)}, \ldots, G_{n}\left(1-U_{(n-1)}\right)\right)\right.$.

Thus, one gamma variate (which we are able to generate in expected time O (1)) and a sorted uniform sample of size $n-1$ are all that is needed to obtaln an ild sequence of n exponentlal random varlates. Thus, the contribution of the gamma generator to the total time is asymptotically negligible. Also, the sorting can be done extremely quickly by bucket sort if we have a large number of buckets (exerclse 3.1), so that for good Implementations of bucket sorting, a superefflclent exponentlal random varlate generator can be obtalned. Note however that by taking differences of numbers that are close to each other, we loose some accuracy. For very large n, this method is not recommended.

One spectal case is worth mentioning here: $U G_{2}$ and $(1-U) G_{2}$ are ild exponential random varlates.

3.6. Exercises.

1. In bucket sorting, assume that instead of n buckets, we take $k n$ buckets where $k \geq 1$ is an integer. Analyze how the expected time is affected by the cholce of k. Note that there is a time component for the set-up which Increases as $k n$. The tlme component due to selectlon sort within the buckets is a decreasing function of k and f. Determine the asymptotically optimal value of k as a function of $\int f^{2}$ and of the relatlve welghts of the two tlme components.
2. Prove the clalm that if an $O(n \log n)$ expected tlme comparison-based sortIng algorithm is used within buckets, then $\int_{0} f \log _{+} f<\infty$ Implles that the
expected time is $O(n)$.
3. Show that $\int f \log _{+} f<\infty$ implies $\int f^{2}<\infty$ for any density f. Glve an example of a density f on $[0,1]$ for which $\int f \log _{+} f<\infty$, yet $\int f^{2}=\infty$. Give also an example for whlch $\int f \log _{+} f=\infty$.
4. The randomness in the time taken by bucket sorting and bucket searching can be approprlately measured by $\sum_{i=0}^{n-1} N_{i}{ }^{2}$, a quantity that we shall call T_{n}. It is often good to know that T_{n} does not become very large with high probabllity. For example, we may wish to obtain good upper bounds for $P\left(T_{n}>E\left(T_{n}\right)+\alpha\right)$, where $\alpha>0$ is a constant. For example, obtaln bounds that decrease exponentlally fast $\ln n$ for all bounded densities on $[0,1]$ and all $\alpha>0$. Hint: use an exponentlal version of Chebyshev's Inequallty and a Polssonlzation trick for the sample size.
5. Give an $O(n)$ expected time generator for the maximal unlform spacing in a sample of size n. Then glve an O (1) expected time generator for the same problem.
6. If a density f can be decomposed as $p f_{1}+(1-p) f_{2}$ where f_{1}, f_{2} are densities and $p \in[0,1]$ is a constant, then an ordered sample $X_{(1)} \leq \cdots \leq X_{(n)}$ of f can be generated as follows:

Generate a binomial (n, p) random variate N.
Generate the order statistics $Y_{(1)} \leq \cdots \leq Y_{(N)}$ and $Z_{(1)} \leq \cdots \leq Z_{(n-N)}$ for densities f_{1} and f_{2} respectively.
Merge the sorted tables into a sorted table $X_{(2)} \leq \cdots \leq X_{(n)}$.

The acceleration is due to the fact that the method based upon inversion of F is sometlmes simple for f_{1} and f_{2} but not for f; and that n coln flips needed for selection in the mixture are avolded. Of course, we need a blnomlal random varlate. Here is the question: based upon this decomposition method, derive an efficient algorithm for generating an ordered sample from any monotone denslty on $[0, \infty)$.
7. This is about the optimal choice for m in Theorem 3.3 (the rejection method for generating an ordered sample). The purpose is to find an m such that for that cholce of $m, T_{n}-c n \sim \underset{m}{\inf }\left(T_{n}-c n\right)$ as $n \rightarrow \infty$. Proceed as follows: first show that it suffices to consider only those m for which $T_{n} \sim c n$. This implies that $E\left((N-n)_{+}\right)=0(m-c n), P(N<n) \rightarrow 0$, and $(m-c n) / \sqrt{n} \rightarrow \infty$. Then deduce that for the optimal m,

$$
T_{n}=c n\left(1+(1+o(1))\left(\frac{m-c n}{c n}+P(N<n)\right)\right)
$$

Clearly, $m \sim c n$, and $(m-c n) / c n$ is a term which decreases much slower than $1 / \sqrt{n}$. By the Berry-Esseen theorem (Chow and Telcher (1978, p. 299) or Petrov (1975)), find a constant C depending upon c only such that

$$
\left|P(N<n)-\Phi\left(\frac{n-\frac{m}{c}}{\left.\sqrt{\frac{m}{c}\left(1-\frac{1}{c}\right.}\right)}\right)\right| \leq \frac{C}{\sqrt{n}}
$$

Conclude that it sufflces to flnd the m which minimizes

$$
\begin{aligned}
& (m-c n) /(c n)+\Phi\left(\frac{n-\frac{m}{c}}{\sqrt{\frac{m}{c}\left(1-\frac{1}{c}\right)}}\right) . \text { Next, using the fact that as } u \rightarrow \infty, \\
& 1-\Phi(u) \sim \frac{1}{u \sqrt{2 \pi}} e^{-\frac{u^{2}}{2}},
\end{aligned}
$$

reduce the problem to that of minimizing

$$
\rho \sqrt{\frac{c-1}{c n}}+\frac{1}{\rho \sqrt{2 \pi}} e^{-\frac{\rho^{2}}{2}},
$$

where $m-c n=\rho \sqrt{c(c-1) n}$ for some $\rho \rightarrow \infty, \rho=o(\sqrt{n})$. Approximate asymptotlc minimization of this ylelds

$$
\rho=\sqrt{\log \left(\frac{c n}{2 \pi(c-1)}\right)}
$$

Finally, verlfy that for the corresponding value for m, the minimal value of T_{n} is asymptotically obtained (in the " \sim " sense).

4. THE POLAR METHOD.

4.1. Radially symmetric distributions.

Here we will explain about the intlmate connection between order statistics and random vectors with radially symmetrlc distrlbutions $\ln R^{d}$. This connection will provide us with a wealth of algorithms for random varlate generation. Most importantly, we wlll obtain the time-honored Box-Muller method for the normal distribution.

A random vector $X=\left(X_{1}, \ldots, X_{d}\right) \ln R^{d}$ is radially symmetric if $A X$ is distributed as X for all orthonormal $d \times d$ matrices A. It is strictly radially symmetric if also $P(X=0)=0$. Noting that $A X$ corresponds to a rotated version of X, radial symmetry is thus nothing else but invariance under rotations of the
coordinate axes. We write C_{d} for the unit sphere in $R^{d} . X$ is uniformly dis:-ibuted on C_{d} when X is radially symmetric and $||X||=1$ with probab:ity one. Here $\left|\left|.| |\right.\right.$ is the standard L_{2} norm. Sometimes, a radially symme: :ic random vector has a density f, and then necessarlly it is of the form

$$
f\left(x_{1}, \ldots, x_{d}\right)=g(| | x| |) \quad\left(x=\left(x_{1}, \ldots, x_{d}\right) \in R^{d}\right)
$$

for some function g. This function g on $[0, \infty)$ is such that

$$
\int_{0}^{\infty} d V_{d} r^{d-1} g(r) d r=1
$$

where

$$
V_{d}=\frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d}{2}+1\right)}
$$

is the volume of the unit sphere C_{d}. We say that g defines or determines the radial denslty. Elliptical radial symmetry is not be treated in thls early chapter, nor do we specifically address the problem of multivariate random varlate generation. For a blbllography on radial symmetry, see Chmlelewskl (1981). For the fundamental propertles of radial distributions not glven below, see for example Kelker (1970).

Theorem 4.1. (Uniform distributions on the unit sphere.)

1. If X is strictly radially symmetric, then $\frac{X}{||X||}$ is uniformly distributed on C_{d}.
2. If X is uniformly distributed on C_{d}, then $\left(X_{1}{ }^{2}, \ldots, X_{d}{ }^{2}\right)$ is distributed as $\left(\frac{Y_{1}}{S}, \ldots, \frac{Y_{d}}{S}\right)$, where Y_{1}, \ldots, Y_{d} are independent gamma $\left(\frac{1}{2}\right)$ random variables with sum S.
3. If X is uniformly distributed on C_{d}, then $X_{1}{ }^{2}$ is beta $\left(\frac{1}{2}, \frac{d-1}{2}\right)$. Equivalently, $X_{1}{ }^{2}$ is distributed as $\frac{Y}{Y+Z}$ where Y, Z are independent gamma $\left(\frac{1}{2}\right)$ and gamma $\left(\frac{d-1}{2}\right)$ random varlables. Furthermore, X_{1} has denslty

$$
\frac{\Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}\left(1-x^{2}\right)^{\frac{d-3}{2}} \quad(|x| \leq 1)
$$

Proof of Theorem 4.1.

For all orthogonal $d \times d$ matrices $A, \frac{A X}{\left|X^{X}\right| \mid}$ is distributed as
$A X$ $\frac{A X}{||A X||}$, which in turn is distributed as $\frac{X^{X}}{||X||}$ because X is strictly lows.

To prove statement 2 , we deflne the lid normal random varlables N_{1}, \ldots, N_{d}, and note that $N=\left(N_{1}, \ldots, N_{d}\right)$ is radially symmetric with denslty determined by

$$
g(r)=\frac{1}{(2 \pi)^{\frac{d}{2}}} e^{-\frac{r^{2}}{2}} \quad(r \geq 0)
$$

Thus, by part 1 , the vector with components $\frac{N_{i}}{|N| \mid}$ is uniformly distributed on C_{d}. But since $N_{i}{ }^{2}$ is gamma $\left(\frac{1}{2}, 2\right)$, we deduce that the random vector with components $\frac{N_{i}^{2}}{||N||^{2}}$ is distributed as a random vector with components $\frac{2 Y_{i}}{2 S}$. This proves statement 2.

The first part of statement 3 follows easlly from statement 2 and known propertles of the beta and gamma distributions. The beta $\left(\frac{1}{2}, \frac{d-1}{2}\right)$ density is

$$
c \frac{(1-x)^{\frac{d-3}{2}}}{\sqrt{x}} \quad(0<x<1)
$$

where $c=\frac{\Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{d-1}{2}\right)}$. Putting $Y=\sqrt{X}$, we see that Y has density

$$
c\left(1-y^{2}\right)^{\frac{d-3}{2}} \frac{1}{y} 2 y \quad(0<y<1)
$$

when X is beta $\left(\frac{1}{2}, \frac{d-1}{2}\right)$ distributed. This proves statement 3.

Theorem 4.2. (The normal distribution.)

If N_{1}, \ldots, N_{d} are Ild normal random varlables, then $\left(N_{1}, \ldots, N_{d}\right)$ is radially symmetric with denslty defined by

$$
g(r)=\frac{1}{(2 \pi)^{\frac{d}{2}}} e^{-\frac{r^{2}}{2}} \quad(r \geq 0)
$$

Furthermore, if $\left(X_{1}, \ldots, X_{d}\right)$ is strictly radially symmetric and the X_{i} 's are independent, then the X_{i} 's are Ild normal random varlables with nonzero varlance.

Proof of Theorem 4.2.

The first part was shown in Theorem 4.1. The second part is proved for example In Kelker (1970).

Theorem 4.3. (Radial transformations.)

1. If X is strictly radially symmetric in R^{d} with defining function g, then $R=||X||$ has density $d V_{d} r^{d-1} g(r) \quad(r \geq 0)$.
2. If X is unlformly distributed on C_{d}, and R is independent of X and has the density given above, then $R X$ is strictly radially symmetric in R^{d} with defining function g.
3. If X is radially symmetric in R^{d} with defining function g, and if R is a random varlable on $[0, \infty)$ with density h, Independent of X, then $R X$ is radlally symmetric with deflning function

$$
g *(r)=\int_{0}^{\infty} \frac{h(u)}{u^{d}} g\left(\frac{r}{u}\right) d u
$$

Proof of Theorem 4.3.

For statement 1, we need the fact that the surface of C_{d} has $d-1$ dimensional volume $d V_{d}$. By a simple polar transformation,

$$
P(R \leq r)=\int_{||x|| \leq r} g(| | x| |) d x=\int_{y \leq r} d V_{d} y^{d-1} g(y) d y \quad(r \geq 0)
$$

Thls proves statement 1.
$R X$ is radially symmetric because for all orthogonal $d \times d$ matrices A, $A(R X)$ is distributed as $R(A X)$ and thus as $R X$. But such distributions are uniquely determined by the distribution of $||R X||=R| | X| |=R$, and thus, statement follows from statement 1.

Consider finally part 3. Clearly, $R X$ is radially symmetric. Given R, $R||X||$ has density

$$
\frac{1}{R} d V_{d}\left(\frac{r}{R}\right)^{d-1} g\left(\frac{r}{R}\right) \quad(r \geq 0)
$$

Thus, the density of $||X||$ is the expected value of the latter expression with respect to R, which is seen to be $g *$.

Let us brlefly discuss these three theorems. Consider first the marginal distri-
butions of random vectors that are uniformly distributed on C_{d} :

d	Density of X_{1} (on $\left.[-1,1]\right)$	Name of density
2	$\frac{1}{\pi \sqrt{1-x^{2}}}$	Arc sine density
3	$\frac{1}{2}$	Uniform $[-1,1]$ density
4	$\frac{2}{\pi} \sqrt{1-x^{2}}$	
5	$\frac{3}{4}\left(1-x^{2}\right)$	
6	$\frac{8}{3 \pi}\left(1-x^{2}\right)^{\frac{3}{2}}$	

Slnce all radlally symmetric random vectors are distributed as the product of a uniform random vector on C_{d} and an independent random variable R, it follows that the first component X_{1} is distributed as R times a random varlable with densitles as glven in the table above or in part 3 of Theorem 4.1. Thus, for $d \geq 2$, X_{1} has a marginal density whenever X is strictly radially symmetric. By Khinchine's theorem, we note that for $d \geq 3$, the density of X_{1} is unimodal.

Theorem 4.2 states that radially symmetric distributions are virtually useless If they are to be used as tools for generating independent random varlates X_{1}, \ldots, X_{n} unless the X_{i} 's are normally distributed. In the next section, we will clarify the special role played by the normal distribution.

4.2. Generating random vectors uniformly distributed on \mathbf{C}_{d}.

The following two algorithms can be used to generate random varlates with a unlform distribution on C_{d} :

Via normal random variates

Generate iid normal random variates, N_{1}, \ldots, N_{d}, and compute $S \leftarrow \sqrt{N_{1}{ }^{2}+\cdots+N_{d}{ }^{2}}$. $\operatorname{RETURN}\left(\frac{N_{1}}{S}, \ldots, \frac{N_{d}}{S}\right)$.

Via rejection from the enclosing hypercube

REPEAT

> Generate iid uniform $[-1,1]$ random variates X_{1}, \ldots, X_{d}, and compute $S \leftarrow X_{1}^{2}+\cdots+X_{d}{ }^{2}$.

UNTLI $S \leq 1$
$S \leftarrow \sqrt{S}$
$\operatorname{RETURN}\left(\frac{X_{1}}{S}, \ldots, \frac{X_{d}}{S}\right)$

In addition, we could also make good use of a property of Theorem 4.1. Assume that d is even and that a d-vector X is uniformly distributed on C_{d}. Then,

$$
\left(X_{1}^{2}+X_{2}^{2}, \ldots, X_{d-1}^{2}+X_{d}^{2}\right)
$$

Is distributed as

$$
\left(\frac{E_{1}}{S}, \ldots, \frac{E_{\frac{d}{2}}}{S}\right)
$$

where the E_{i} 's are ild exponentlal random varlables and $S=E_{1}+\cdots+E_{\frac{d}{2}}$. Furthermore, given $X_{1}^{2}+X_{2}^{2}=r^{2},\left(\frac{X_{1}}{r}, \frac{X_{2}}{r}\right)$ is unlformly distributed on C_{2}. This leads to the following algorithm:

Via uniform spacings

Generate ild uniform $[0,1]$ random variates $U_{1}, \ldots, U_{\frac{d}{2}}$.
Sort the uniform variates (preferably by bucket sorting), and compute the spacings $S_{1}, \ldots, S_{\frac{d}{2}}$.
Generate independent pairs $\left(V_{1}, V_{2}\right), \ldots,\left(V_{d-1}, V_{d}\right)$, all uniformly distributed on C_{2}.
RETURN $\left(V_{1} \sqrt{S_{1}}, V_{2} \sqrt{S_{1}}, V_{3} \sqrt{S_{2}}, V_{4} \sqrt{S_{2}}, \ldots, V_{d-1} \sqrt{S_{\frac{d}{2}}}, V_{d} \sqrt{S_{\frac{d}{2}}}\right)$.

The normal and spacings methods take expected time $O(d)$, while the rejectlon method takes time increasing faster than exponentlally with d. By Stirling's formula, we observe that the expected number of Iterations in the rejection method is

$$
\frac{2^{d}}{V_{d}}=\frac{2^{d} \Gamma\left(\frac{d}{2+1)}\right.}{\pi^{\frac{d}{2}}} \sim\left(\frac{2 d}{\pi e}\right)^{\frac{d}{2}} \sqrt{\pi d}
$$

which increases very rapidly to ∞. Some values for the expected number of Iterathons are given in the table below.

d	Expected number of iterations
1	1
2	$\frac{4}{\pi} \approx 1.27$
3	$\frac{6}{\pi} \approx 1.91$
4	$\frac{32}{\pi^{2}} \approx 3.24$
5	$\frac{60}{\pi^{2}} \approx 6.06$
6	$\frac{384}{\pi^{3}} \approx 12.3$
7	$\frac{840}{\pi^{3}} \approx 27.0$
8	$\frac{6144}{\pi^{4}} \approx 62.7$
10	$\frac{122880}{\pi^{3}} \approx 399$

The rejection method is not recommended except perhaps for $d \leq 5$. The normal and spacings methods differ in the type of operations that are needed: the normal method requires d normal random varlates plus one square root, whereas the spacings method requires one bucket sort , $\frac{d}{2}$ square roots and $\frac{d}{2}-1$ uniform random variates. The spacings method is based upon the assumption that a very fast method is avallable for generating random vectors with a uniform distribution on C_{2}. Since we work with spacings, it is also possible that some accuracy is lost for large values of d. For all these reasons, it seems unllkely that the spacings method will be competitlve with the normal method. For theoretical and experimental comparlsons, we refer the reader to Deak (1979) and Rubinsteln (1882). For another derivation of the spacings method, see for example Sibuya (1982), Tashiro (1977), and Guralnik, Zemach and Warnock (1985).

4.3. Generating points uniformly in and on C_{2}.

We say that a random vector is unlformly distributed $\ln C_{d}$ when it is radially symmetric with defining function $g(r)=\frac{1}{V_{d}}(0 \leq r \leq 1)$. For $d=2$, such random vectors can be convenlently generated by the rejection method:

Rejection method

REPEAT
Generate two iid uniform $[-1,1]$ random variates U_{1}, U_{2}.
UNTIL $U_{1}{ }^{2}+U_{2}{ }^{2} \leq 1$
RETURN (U_{1}, U_{2})

On the average, $\frac{4}{\pi}$ pairs of unlform random varlates are needed before we exlt. For each palr, two multiplications are required as well. Some speed-up is possible by squeezing:

Rejection method with squeezing

REPEAT

Generate two iid uniform $[-1,1]$ random variates U_{1}, U_{2}, and compute $Z \leftarrow\left|U_{1}\right|+\left|U_{2}\right|$.
Accept $\leftarrow[Z \leq 1]$
IF NOT Accept THEN IF $Z \geq \sqrt{2}$
THEN Accept $\leftarrow\left[U_{1}{ }^{2}+U_{2}{ }^{2} \leq 1\right]$
UNTLL Accept
RETURN (U_{1}, U_{2})

In the squeeze step, we avold the two multipllcations precisely 50% of the time.
The second, slightly more difflcult problem is that of the generation of a point unlformly distributed on C_{2}. For example, if (X_{1}, X_{2}) is strictly radially symmetric (thls is the case when the components are lid normal random variables, or when the random vector is unlformly distributed in C_{2}), then it suffices to take $\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right.$) where $S=\sqrt{X_{1}{ }^{2}+X_{2}{ }^{2}}$. At first sight, it seems that the costly square root is unavoldable. That this is not so follows from the following key theorem:

Theorem 4.4.

If (X_{1}, X_{2}) is uniformly distributed in C_{2}, and $S=\sqrt{X_{1}{ }^{2}+X_{2}{ }^{2}}$, then:

1. S and $\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right)$ are independent.
2. S^{2} is unliormly distributed on $[0,1]$.
3. $\frac{X_{2}}{X_{1}}$ is Cauchy distributed.
4. $\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right)$ is uniformly distributed on C_{2}.
5. When U is uniform $[0,1]$, then $(\cos (2 \pi U), \sin (2 \pi U))$ is unlformly distributed on C_{2}.
6. $\left(\frac{X_{1}{ }^{2}-X_{2}{ }^{2}}{S^{2}}, \frac{2 X_{1} X_{2}}{S^{2}}\right)$ is unlformly distributed on C_{2}.

Proof of Theorem 4.4.

Propertles 1,3 and 4 are valid for all strictly radially symmetric random vectors (X_{1}, X_{2}). Propertles 1 and 4 follow directly from Theorem 4.3. From Theorem 4.1, we recall that S has density $d V_{d} r^{d-1}=2 r \quad(0 \leq r \leq 1)$. Thus, S^{2} is unlformly distributed on $[0,1]$. This proves property 2. Property 5 is trivially true, and will be used to prove propertles 3 and 6. From 5, we know that $\frac{X_{2}}{X_{1}}$ is distributed as $\tan (2 \pi U)$, and thus as $\tan (\pi U)$, whlch \ln turn is Cauchy distributed (property 3). Finally, in vlew of

$$
\begin{aligned}
& \cos (4 \pi U)=\cos ^{2}(2 \pi U)-\sin ^{2}(2 \pi U), \\
& \sin (4 \pi U)=2 \sin (2 \pi U) \cos (2 \pi U),
\end{aligned}
$$

we see that $\left(\frac{X_{1}{ }^{2}-X_{2}{ }^{2}}{S^{2}}, \frac{2 X_{1} X_{2}}{S^{2}}\right.$) is uniformly distributed on C_{2}, because it is distrlbuted as $(\cos (4 \pi U), \sin (4 \pi U))$. This concludes the proof of Theorem 4.4.

Thus, for the generation of a random vector uniformly distrlbuted on C_{2}, the following algorithm is fast:

REPEAT

Generate iid uniform $[-1,1]$ random variates X_{1}, X_{2}.
Set $Y_{1} \leftarrow X_{1}{ }^{2}, Y_{2} \leftarrow X_{2}{ }^{2}, S \leftarrow Y_{1}+Y_{2}$.
UNTLL $S \leq 1$
$\operatorname{RETURN}\left(\frac{Y_{1}-Y_{2}}{S}, \frac{2 X_{1} X_{2}}{S}\right)$

4.4. Generating normal random variates in batches.

We begin with the description of the polar method for generating d ild normal random varlates:

Polar method for normal random variates

Generate X uniformly on C_{d}.
Generate a random variate R with density $d V_{d} r^{d-1} e^{-\frac{r^{2}}{2}}(r \geq 0)$. (R is distributed as $\sqrt{2 G}$ where G is gamma ($\frac{d}{2}$) distributed.)
RETURN $R X$

In partlcular, for $d=\mathbf{2}$, two independent normal random varlates can be obtalned by elther one of the following methods:

$\sqrt{2 E}\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right)$
$\sqrt{2 E}(\cos (2 \pi U), \sin (2 \pi U))$
$\sqrt{2 E}\left(\frac{X_{1}{ }^{2}-X_{2}{ }^{2}}{X_{1}{ }^{2}+X_{2}{ }^{2}}, \frac{2 X_{1} X_{2}}{X_{1}{ }^{2}+X_{2}{ }^{2}}\right)$
$\sqrt{-4 \log (S)}\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right)$

Here $\left(X_{1}, X_{2}\right)$ is uniformly distributed in $C_{2}, S=\sqrt{X_{1}{ }^{2}+X_{2}{ }^{2}}, U$ is uniformly distributed on $[0,1]$ and E is exponentlally distributed. Also, E is independent of the other random varlables. The valldity of these methods follows from Theorems 4.2, 4.3 and 4.4. The second formula is the well-known Box-Muller method
(1858). Method 4, proposed by Marsaglia, is slmilar to method 1, but uses the observation that S^{2} is a uniform $[0,1]$ random varlate independent of $\left(\frac{X_{1}}{S}, \frac{X_{2}}{S}\right)$ (see Theorem 4.4), and thus that $-2 \log (S)$ is exponentlally distributed. If the exponentlal random variate in E is obtalned by inversion of a uniform random varlate, then it cannot be competitlve with method 4. Method 3, published by Bell (1988), is based upon property 8 of Theorem 4.4, and effectively avoids the computation of the square root in the definition of S. In all cases, it is recommended that (X_{1}, X_{2}) be obtalned by rejection from the enclosing square (with an accelerating squeeze step perhaps). A closing remark about the square roots. Methods 1 and 4 can always be implemented wlth just one (not two) square roots, lf we compute, respectlvely,

$$
\sqrt{\frac{2 E}{S^{2}}}
$$

and

$$
\sqrt{\frac{-2 \log \left(S^{2}\right)}{S^{2}}}
$$

In one of the exerclses, we will Investigate the polar method with the next higher convenlent cholce for $d, d=4$. We could also make d very large, In the range $100 \cdots 300$, and use the spacings method of section 4.2 for generating X with a unlform distribution on C_{d} (the normal method is excluded since we want to generate normal random varlates). A gamma ($\frac{d}{2}$) random varlate can be generated by one of the fast methods described elsewhere in thls book.

4.5. Generating radially symmetric random vectors.

Theorem 4.3 suggests the following method for generating radially symmetric random vectors $\ln R^{d}$ with defining function g :

Generate a random vector X uniformly distributed on C_{d}.
Generate a random variate R with density $d V_{d} r^{d-1} g(r)(r \geq 0)$.
RETURN $R X$

Since we already know how to generate random varlates with a uniform distribution on C_{d}, we are just left with a univariate generation problem. But in the multipllcation with R, most of the information in X is lost. For example, to

Insure that X is on C_{d}, the rejection method generates X unlformly in C_{d} and divides then by $||X||$. But when we multiply the result with R, this division by $||X||$ seems somehow wasteful. Johnson and Ramberg (1977) observed that it is sometimes better to start from a random vector with a uniform distribution $\ln C_{d}$:

The Johnson-Ramberg method for generating radially symmetric random vec-
tors
Generate a random vector X uniformly in C_{d} (preferably by rejection from the enclosing
hypercube).
Generate a random variate R with density $-V_{d} r^{d} g^{\prime}(r)(r \geq 0)$, where g is the defining function of the radially symmetric distribution.
RETURN RX

This method only works when $-V_{d} r^{d} g^{\prime}(r)$ is Indeed a density in r on $[0, \infty)$. A sufficlent condition for this is that g is continuously differentiable on $(0, \infty)$, $g^{\prime}(r)<0 \quad(r>0)$, and $r^{d} g(r) \rightarrow 0$ as $r \downarrow 0$ and $r \uparrow \infty$.

Example 4.1. The multivariate Pearson II density.

Consider the multivarlate Pearson II density with parameter $a \geq 1$, defined by

$$
g(r)=c\left(1-r^{2}\right)^{a-1} \quad(0 \leq r \leq 1)
$$

where

$$
c=\frac{\Gamma\left(a+\frac{d}{2}\right)}{\pi^{\frac{d}{2}} \Gamma(a)}
$$

The density of R in the standard algorithm is the density of \sqrt{B} where B is a beta $\left(\frac{d}{2}, a\right)$ random varlable:

$$
g(r)=c d V_{d} r^{d-1}\left(1-r^{2}\right)^{a-1} \quad(0 \leq r \leq 1)
$$

For $d=2, R$ can thus be generated as $\sqrt{1-U^{\frac{1}{a}}}$ where U is a uniform $[0,1]$ random varlate. We note further that in this case, very little is galned by using the Johnson-Ramberg method since R must have density

$$
g(r)=2 c V_{d} r^{d+1}(a-1)\left(1-r^{2}\right)^{a-2} \quad(0 \leq r \leq 1)
$$

This is the density of the square root of a beta $\left(\frac{d}{2}+1, a-1\right)$ random varlable.

Example 4.2. The multivariate Pearson VII density.

The multivarlate Pearson VII density with parameter $a>\frac{d}{2}$ is deflned by the function

$$
g(r)=\frac{c}{\left(1+r^{2}\right)^{a}},
$$

where

$$
c=\frac{\Gamma(a)}{\pi^{\frac{d}{2}} \Gamma\left(a-\frac{d}{2}\right)} .
$$

The densitles of R for the standard and Johnson-Ramberg methods are respectively,

$$
\frac{c d V_{d} r^{d-1}}{\left(1+r^{2}\right)^{a}}
$$

and

$$
\frac{2 c V_{d} r^{d+1} a}{\left(1+r^{2}\right)^{a+1}}
$$

In both cases, we can generate random R as $\sqrt{\frac{B}{1-B}}$ where B is beta $\left(\frac{d}{2}, a-\frac{d}{2}\right)$ In the former case, and beta $\left(\frac{d}{2}+1, a-\frac{d}{2}\right)$ In the latter case. Note here that for the special choice $a=\frac{d+1}{2}$, the multivariate Cauchy density is obtalned.

Example 4.3.

The multivarlate radially symmetric distribution determined by

$$
g(r)=\frac{1}{V_{d}\left(1+r^{d}\right)^{2}}
$$

leads to a density for R given by

$$
\frac{d r^{d-1}}{\left(1+r^{d}\right)^{2}}
$$

This is the density of $\left(\frac{U}{1-U}\right)^{\frac{1}{d}}$ where U is a uniform $[0,1]$ random variable.

4.6. The deconvolution method.

Assume that we know how to generate Z, a random varlable which is distributed as the sum $X+Y$ of two lld random variables X, Y with density f. We can then generate the pair X, Y by looking at the conditional density of X given the value of Z. The following algorithm can be used:

The deconvolution method

Generate a random variate Z with the density $h(z)=\int f(x) f(z-x) d x$.
Generate X with density $\frac{f(x) f(Z-x)}{h(Z)}$.
RETURN ($X, Z-X$)

First, we notice that h is indeed the denslty of the sum of two lld random variables with density f. Also, given Z, X has density $\frac{f(x) f(Z-x)}{h(Z)}$. Thus, the algorithm is valld.

To illustrate thls, recall that if X, Y are ild gamma $\left(\frac{1}{2}\right)$, then $X+Y$ is exponentlally distributed. In this example, we have therefore,

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{\pi x}} e^{-x} \quad(x \geq 0) \\
& h(z)=e^{-z} \quad(z \geq 0)
\end{aligned}
$$

Furthermore, the density $\frac{f(x) f(Z-x)}{h(Z)}$ can be written as

$$
\frac{1}{\pi \sqrt{x(Z-x)}} \quad(x \in(0, Z))
$$

which is the arc sine density. Thus, applying the deconvolution method shows the following: if E is an exponential random variable, and W is a random variable with the standard arc sine density

$$
\frac{1}{\pi \sqrt{x(1-x)}} \quad(x \in(0,1)),
$$

then $(E W, E(1-W))$ is distrlbuted as a palr of ild gamma $\left(\frac{1}{2}\right)$ random varlables. But thils leads preclsely to the polar method because the following palrs of random varlables are identically distributed:

$$
\begin{aligned}
& \left(N_{1}, N_{2}\right)(\text { two ild normal random variables }) ; \\
& (\sqrt{2 E W}, \sqrt{2 E(1-W)}) \\
& (\sqrt{2 E} \cos (2 \pi U), \sqrt{2 E} \sin (2 \pi U))
\end{aligned}
$$

Here U is a unlform $[0,1]$ random variable. The equivalence of the first two pairs is based upon the fact that a normal random varlable is distributed as the square root of 2 times a gamma $\left(\frac{1}{2}\right)$ random variable. The equivalence of the first and the thlrd palr was established in Theorem 4.4. As a side product, we observe that W is distributed as $\cos ^{2}(2 \pi U)$, l.e. as $\frac{X_{1}{ }^{2}}{X_{1}{ }^{2}+X_{2}{ }^{2}}$ where (X_{1}, X_{2}) is uniformly distributed $\ln C_{2}$.

4.7. Exercises.

1. Write one-line random variate generators for the normal, Cauchy and arc slne distributions.
2. If N_{1}, N_{2} are Ild normal random variables, then $\frac{N_{1}}{N_{2}}$ is Cauchy distributed, $N_{1}{ }^{2}+N_{2}{ }^{2}$ is exponentlally distributed, and $\sqrt{N_{1}{ }^{2}+N_{2}{ }^{2}}$ has the Raylelgh distribution (the Rayleigh density is $x e^{-\frac{x^{2}}{2}} \quad(x \geq 0)$).
3. Show the following. If X is unlformly distributed on C_{d} and R is independent of X and generated as $\max \left(U_{1}, \ldots, U_{d}\right)$ where the U_{i} 's are Ild unlform $[0,1]$ random varlates, then $R X$ is unlformly distributed in C_{d}.
4. Show that if X is uniformly distributed on C_{d}, then $Y /||Y||$ is untformly distrlbuted on C_{k} where $k \leq d$ and $Y=\left(X_{1}, \ldots, X_{k}\right)$.
5. Prove by a geometrical argument that if $\left(X_{1}, X_{2}, X_{3}\right)$ is unlformly distributed on C_{3}, then X_{1}, X_{2} and X_{3} are uniform $[-1,1]$ random variables.
6. If X is radially symmetric with defining function g, then its first component, X_{1}, has density

$$
\frac{2 \pi^{\frac{d-1}{2}}}{\Gamma\left(\frac{d-1}{2}\right)} \int_{r}^{\infty} u\left(u^{2}-r^{2}\right)^{\frac{d-3}{2}} g(u) d u \quad(r \geq 0)
$$

7. Show that two independent gamma ($\frac{1}{2}$) random varlates can be generated
as $\left(-S \log \left(U_{2}\right),-(1-S) \log \left(U_{2}\right)\right)$, where $S=\sin ^{2}\left(2 \pi U_{1}\right)$ and U_{1}, U_{2} are Independent uniform $[0,1]$ random varlates.
8. Consider the pair of random varlables deflned by

$$
\left(\sqrt{2 E} \frac{2 S}{1+S}, \sqrt{2 E} \frac{1-S}{1+S}\right)
$$

where E is an exponentlal random varlable, and $S \leftarrow \tan ^{2}(\pi U)$ for a unlform [0,1] random varlate U. Prove that the palr is a palr of ild absolute normal random varlables.
9. Show that when $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is unlformly distributed on C_{4}, then (X_{1}, X_{2}) is uniformly distributed in C_{2}.
10. Show that both $\frac{N}{\sqrt{N^{2}+2 E}}$ and $\sqrt{\frac{G}{G+E}}$ are unlformly distributed on [0,1] when N, E and G are independent normal, exponentlal and gamma $\left(\frac{1}{2}\right)$ random varlables, respectively.
11. Generating uniform random vectors on \mathbf{C}_{4}. Show why the following algorithm is valid for generating random vectors uniformly on C_{4} :

> Generate two iid random vectors uniformly in $C_{2},\left(X_{1}, X_{2}\right),\left(X_{3}, X_{4}\right)$ (this is best done by rejection).
> $S \leftarrow X_{1}{ }^{2}+X_{2}{ }^{2}, W \leftarrow X_{3}{ }^{2}+X_{4}{ }^{2}$
> RETURN $\left(X_{1}, X_{2}, X_{3} \sqrt{\frac{1-S}{W}}, X_{4} \sqrt{\frac{1-S}{W}}\right)$
(Marsaglla, 1972).
12. Generating random vectors uniformly on \mathbf{C}_{3}. Prove all the starred statements in this exerclse. To obtain a random vector with a uniform distribution on C_{3} by rejection from $[-1,1]^{3}$ requires on the average $\frac{18}{\pi}=5.73 \ldots$ unlform $[-1,1]$ random varlates, and one square root per random vector. The square root can be avolded by an observation due to Cook (1957): If ($X_{1}, X_{2}, X_{3}, X_{4}$) is unlformly distributed on C_{4}, then

$$
\frac{1}{X_{1}^{2}+X_{2}^{2}+X_{3}^{2}+X_{4}^{2}}\left(2\left(X_{2} X_{4}+X_{1} X_{3}\right), 2\left(X_{3} X_{4}-X_{1} X_{2}\right), X_{1}^{2}-X_{2}^{2}-X_{3}^{2}+X_{4}^{2}\right)
$$

is unlformly distributed on $C_{3}(*)$. Unfortunately, if a random vector with a unlform distribution on C_{4} is obtalned by rejection from the enclosing hypercube, then the expected number of unlform random varlates needed is $4\left(\frac{32}{\pi^{2}}\right) \approx 13$. Thus, both methods are quite expensive. Using Theorem 4.4 and
exerclses 4 and 5 , one can show (*) that

$$
\left(\frac{X_{1} \sqrt{1-Z^{2}}}{\sqrt{S}}, \frac{X_{2} \sqrt{1-Z^{2}}}{\sqrt{S}}, Z\right)
$$

is uniformly distributed on C_{3} when $\left(X_{1}, X_{2}\right)$ is uniformly distributed $\ln C_{2}$, $S=X_{1}{ }^{2}+X_{2}{ }^{2}$, and Z is independent of $\left(\frac{X_{1}}{\sqrt{S}}, \frac{X_{2}}{\sqrt{S}}\right)$ and uniformly distributed on $[-1,1]$. But $2 S-1$ itself is a candidate for $Z(*)$. Replacing Z by $2 S-1$, we conclude that

$$
\left(2 X_{1} \sqrt{1-S}, 2 X_{2} \sqrt{1-S}, 2 S-1\right)
$$

is uniformly distributed on C_{3} (thls method was suggested by Marsaglia (1872)). If the random vector (X_{1}, X_{2}) is obtalned by rejection from $[-1,1]^{2}$, the expected number of uniform $[-1,1]$ random varlates needed per threedimensional random vector is $\frac{8}{\pi} \approx 2.55$ (*).
13. The polar methods for normal random variates; $\mathbf{d}=4$. Random vectors uniformly distributed on C_{4} can be obtalned quite efficiently by Marsaglla's method described in exerclse 11. To apply the polar method for normal random varlates, we need an Independent random varlate R distributed as $\sqrt{2\left(E_{1}+E_{2}\right)}$ where E_{1}, E_{2} are independent. exponentlal random varlates. Such an R can be generated in a number of ways:
(I) As $\sqrt{2\left(E_{1}+E_{2}\right)}$.
(11) As $\sqrt{-2 \log \left(U_{1} U_{2}\right)}$ where U_{1}, U_{2} are independent unlform [0,1] random varlates.
(iii) As $\sqrt{-2 \log \left(W U_{2}\right)}$ where U_{2} is as in (ii) and W is an independent random varlate as in exerclse 11.
Why is method (ili) valld ? Compare the three methods experimentally. Compare also with the polar method for $d=2$.
14. Implement the polar method for normal random variates when d is large. Generate random vectors on C_{d} by the spacings method when you do so. Plot the average time per random variate versus d.
15. The spacings method for uniform random vectors on C_{d} when d is odd. Show the valldity of the following method for generating a unlform random vector on C_{d} :

Generate $\frac{d-1}{2}-1$ iid uniform $[0,1]$ random variates.
Obtain the spacings $S_{1}, \ldots, S_{\frac{d-1}{2}}$ by bucket sorting the uniform random variates.
Generate independent gamma ($\frac{d-1}{2}$) and gamma ($\frac{1}{2}$) random variates G, H. $R \leftarrow \sqrt{\frac{G}{G+H}}, R * \leftarrow \sqrt{1-R^{2}}=\sqrt{\frac{H}{H+G}}$
Generate iid random vectors (V_{1}, V_{2}), $\ldots,\left(V_{d-2}, V_{d-1}\right)$ uniformly on C_{2}. RETURN ($\left.R V_{1} \sqrt{S_{1}}, R V_{2} \sqrt{S_{1}}, R V_{3} \sqrt{S_{2}}, \ldots, R V_{d-1} \sqrt{\frac{S_{d-1}}{2}}, R *\right)$.
16. Let X be a random vector unlformly distributed on C_{d-1}. Then the random vector Y generated by the following procedure is unlformly distributed on C_{d} :

Generate independent gamma $\left(\frac{d-1}{2}\right)$ and gamma $\left(\frac{1}{2}\right)$ random variates G, H.
$R \leftarrow \sqrt{\frac{G}{G+H}}$
RETURN $Y \leftarrow\left(R X, \pm \sqrt{1-R^{2}}\right)$ where \pm is a random sign.

Show thls. Notice that thls method allows one to generate Y inductively by starting with $d=1$ or $d=2$. For $d=1, X$ is merely ± 1. For $d=2, R$ is distributed as $\sin \left(\frac{\pi U}{2}\right)$. For $d=3, R$ is distributed as $\sqrt{1-U^{2}}$ where U is a uniform $[0,1]$ random variable. To implement this procedure, a fast gamma generator is required (Hicks and Wheeling, 1958; see also Rublnstein, 1982).
17. In a simulation it is required at one point to obtaln a random vector (X, Y) uniformly distributed over a star on R^{2}. A star S_{a} with parameter $a>0$ is defined by four curves, one in each quadrant and centered at the origin. For example, the curve in the positive quadrant is a plece of a closed line satisfying the equation

$$
|1-x|^{a}+|1-y|^{a}=1
$$

The three other curves are defined by symmetry about all the axes and about the origin. For $a=\frac{1}{2}$, we obtain the circle, for $a=1$, we obtaln a diamond, and for $a=2$, we obtain the complement of the union of four clrcles. Glve an algorithm for generating a polnt unlformly distributed $\ln S_{a}$, where the expected time is unlformly bounded over a.
18. The Johnson-Ramberg method for normal random variates. Two methods for generating normal random varlates in batches may be competltlve with the ordinary polar method because they avold square roots. Both are based upon the Johnson-Ramberg technique:

Generate X uniformly in C_{2} by rejection from $[-1,1]^{2}$.
Generate R, which is distributed as $\sqrt{2 G}$ where G is a gamma $\left(\frac{3}{2}\right)$ random variable. (Note that R has density $\frac{r^{2}}{2} e^{-\frac{r^{2}}{2}}$.)
RETURN $R X$

Generate X uniformily in C_{3} by rejection from $[-1,1]^{3}$.
Generate R, where R is distributed as $\sqrt{2 G}$ and G is a gamma (2) random variable. (Note that R has density $\left(\frac{r}{\sqrt{2}}\right)^{3} \Gamma^{-1}\left(\frac{5}{2}\right) e^{-\frac{r^{2}}{2}}$.)
RETURN $R X$

These methods can only be competitive if fast direct methods for generating R are avallable. Develop such methods.
18. Extend the entire theory towards other norms, l.e. C_{d} is now deffned as the collection of all points for which the p-th norm is less than or equal to one. Here $p>0$ is a parameter. Reprove all theorems. Note that the role of the normal density is now Inherited by the density

$$
f(x)=c e^{-|x|^{p}},
$$

where $c>0$ is a normallzation constant. Determine this constant. Show that a random variate with this density can be obtalned as $X^{\frac{1}{p}}$ where X is gamma $\left(\frac{1}{p}\right)$ distrlbuted. Find a formula for the probabillty of acceptance
when random varlates with a unlform distribution in C_{d} are obtained by rejection from $[-1,1]^{2}$. (To check your result, the answer for $d=2$ is $\Gamma^{2}\left(\frac{1}{p}\right) \Gamma^{-1}\left(\frac{2}{p}\right)$ (Beyer, 1988, p. 630).) Dlscuss varlous methods for generating random vectors unlformly distributed on C_{d}, and deduce the marginal denslty of such random vectors.

