Chapter Eleven
 MULTIVARIATE DISTRIBUTIONS

1. GENERAL PRINCIPLES.

1.1. Introduction.

In section V.4, we have discussed in great detall how one can efficiently generate random vectors in R^{d} with radially symmetric distributions. Included in that section were methods for generating random vectors uniformly distributed in and on the unlt sphere C_{d} of R^{d}. For example, when N_{1}, \ldots, N_{d} are ild normal random varlables, then

$$
\left(\frac{N_{1}}{N}, \ldots, \frac{N_{d}}{N}\right)
$$

where $N=\sqrt{N_{1}{ }^{2}+\cdots+N_{d}{ }^{2}}$, is uniformly distributed on the surface of C_{d}. This unliorm distribution is the bullding block for all radlally symmetric distributlons because these distributions are all scale mixtures of the unlform distribution on the surface of C_{d}. This sort of technique is called a special property technique: it explolts certain characteristics of the distrlbution. What we would llke to do here is give several methods of attacking the generation problem for d dimenslonal random vectors, including many special property techniques.

The material has little global structure. Most sections can in fact be read independently of the other sections. In this introductory section several general princlples are described, Including the conditional distribution method. There is
 subclasses of dlstributions, such as unlform distrlbutions on compact sets, elliptlcally symmetric distributions (lncluding the multivarlate normal distribution), blvarlate unlform distributions and distrlbutions on llnes.

1.2. The conditional distribution method.

The conditlonal distribution method allows us to reduce the multivariate generation problem to d unlvarlate generation problems, but it can only be used when quite a blt of information is known about the distribution.

Assume that our random vector \mathbf{X} has density

$$
f\left(x_{1}, \ldots, x_{d}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2} \mid x_{1}\right) \cdots f_{d}\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right),
$$

where the f_{i} 's are conditional densitles. Generation can proceed as follows:

Conditional distribution method

FOR $i:=1$ TO d DO
Generate X_{i} with density $f_{i}\left(. \mid X_{1}, \ldots, X_{i-1}\right)$. (For $i=1$, use $f_{1}($.$))$
RETURN $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$

It is necessary to know all the conditlonal densitles. This is equivalent to knowing all marginal distrlbutlons, because

$$
f_{i}\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=\frac{f_{i}^{*}\left(x_{1}, \ldots, x_{i}\right)}{f_{i-1}^{*}\left(x_{1}, \ldots, x_{i-1}\right)}
$$

where f_{2}^{*} is the marginal density of the flrst i components, l.e. the density of (X_{1}, \ldots, X_{i}).

Example 1.1. The multivariate Cauchy distribution.

The multivarlate Cauchy density f is given by

$$
f(x)=\frac{c}{\left(1+||x||^{2}\right)^{\frac{d+1}{2}}},
$$

where $c=\Gamma\left(\frac{d+1}{2}\right) / \pi^{(d+1) / 2}$. Here $\left|\left|.| |\right.\right.$ is the standard L_{2} EucIIdean norm. It Is known that X_{1} is unlvarlate Cauchy, and that given X_{1}, \ldots, X_{i-1}, the random varlable X_{i} is distributed as $T\left(1+\sum_{j=1}^{i-1} X_{j}\right) / \sqrt{i}$ where T has the t distributlon with i degrees of freedom (Johnson and Kotz, 1970).

Example 1.2. The normal distribution.

Assume that f is the density of the zero mean normal distribution on R^{2}, with varlance-covarlance matrix $\mathbf{A}=\left\{a_{i j}\right\}$ where $a_{i j}=E\left(X_{i} X_{j}\right)$:

$$
f(x)=\frac{1}{2 \pi \sqrt{|\mathbf{A}|}} e^{-\frac{1}{2} x^{\prime} \mathbf{A}^{-1} x}
$$

In this case, the conditional density method ylelds the following algorithm:

Conditional density method for normal random variates

Generate N_{1}, N_{2}, iid normal random variates.
$X_{1} \leftarrow N_{1} \sqrt{a_{11}}$
$X_{2} \leftarrow \frac{a_{21}}{a_{11}} X_{1}+N_{2} \sqrt{\frac{a_{22} a_{11}-a_{21}{ }^{2}}{a_{11}}}$
RETURN (X_{1}, X_{2})

This follows by noting that X_{1} is zero mean normal with varlance a_{11}, and computing the conditional density of X_{2} given X_{1} as a ratio of marginal densities.

Example 1.3.

Let f be the uniform density in the unit clrcle C_{2} of R^{2}. The conditional denslty method is easlly obtalned:

Generate X_{1} with density $f_{1}(x)=\frac{2}{\pi} \sqrt{1-x^{2}}(|x| \leq 1)$.
Generate X_{2} uniformly on $\left[-\sqrt{1-X_{2}^{2}}, \sqrt{1-X_{1}^{2}}\right]$.
RETURN (X_{1}, X_{2})

In all three examples, we could have used alternative methods. Examples 1.1 and 1.2 deal with easlly treated radially symmetric distributions, and Example 1.3 could have been handled via the ordinary rejection method.

1.3. The rejection method.

It should be clear that the rejection method is not tied to a particular space. It can be used in multivarlate random varlate generation problems, and is probably the most useful general purpose technique here. A few traps to watch out for are worth mentioning. First of all, rejection from a unlform density on a rectangle of R^{d} often leads to a rejection constant which deterlorates quickly as d increases. A case in point is the rejection method for generating points unlformly In the unlt sphere of R^{d} (see section V.4.3). Secondly, unllke $\ln R^{1}$, upper bounds for certaln densitles are not easily obtalnable. For example, the Information that f is unlmodal with a mode at the origin is of ilttle use, whereas $\ln R^{1}$, the same information allows us to conclude that $f(x) \leq 1 /|x|$. Similarly, combining unimodality with moment conditions is not enough. Even the fact that f is log-concave is not sufficient to derlve unlversally applicable upper bounds (see sectlon VII.2).

In general, the design of an efflclent rejection method is more difflcult than in the unlvarlate case.

1.4. The composition method.

The composition method is not tled to a particular space such as R^{1}. A popular technlque for obtalning dependence from independence is the following: define a random vector $\mathrm{X}=\left(X_{1}, \ldots, X_{d}\right)$ as $\left(S Y_{1}, \ldots, S Y_{d}\right)$ where the S_{i} 's are Ild random varlables, and S is a random scale. In such cases, we say that the distribution of \mathbf{X} is a scale mixture. If Y_{1} has density f, then \mathbf{X} has a density glven by

$$
E\left(\prod_{i=1}^{d}\left(\frac{1}{S} f\left(\frac{x_{i}}{S}\right)\right)\right)
$$

If Y_{1} has distribution function $F=1-G$, then

$$
P\left(X_{1}>x_{1}, \ldots, X_{d}>x_{d}\right)=E\left(\prod_{i=1}^{d} G\left(\frac{x_{i}}{S}\right)\right)
$$

Example 1.4. The multivariate Burr distribution.

When Y_{1} is Welbull with parameter a (1.e. $G(y)=e^{-y^{a}} \quad(y>0)$), and S is gamma (b), then ($S Y_{1}, \ldots, S Y_{d}$) has distribution function determined by

$$
\begin{aligned}
& P\left(X_{1}>x_{1}, \ldots, X_{d}>x_{d}\right)=E\left(\prod_{i=1}^{d} e^{-\left(x_{i} / S\right)^{a}}\right) \\
& =\int_{0}^{\infty} \frac{s^{b-1} e^{-s}}{\Gamma(b)} e^{-s^{-c}\left(\sum_{i=1}^{d} x_{i}{ }^{d}\right)} d s \\
& =\frac{1}{\left(1+\sum_{i=1}^{d} x_{i}^{a}\right)^{b}} \quad\left(x_{i}>0, i=1,2, \ldots, d\right) .
\end{aligned}
$$

This defines the multivarlate Burr distribution of Takahasi (1985). From thls relation it is also easily seen that all unlvarlate or multivarlate marginals of a multivarlate Burr distrlbution are unlvarlate or multivarlate Burr distributions. For more examples of scale mixtures in which S is gamma, see Hutchinson (1981).

Example 1.5. The multinomial distribution.

The conditional distribution method is not limited to continuous distributions. For example, consider the multinomial distribution with parameters n, p_{1}, \ldots, p_{d} where the p_{i} 's form a probabllity vector and n is a positive integer. A random vector $\left(X_{1}, \ldots, X_{d}\right)$ is multinomlally distributed with these parameters when

$$
\begin{gathered}
P\left(\left(X_{1}, \ldots, X_{d}\right)=\left(i_{1}, \ldots, i_{d}\right)\right)=\frac{n!}{\prod_{j=1}^{d} i_{j}!} \prod_{j=1}^{d} p_{j}^{i_{j}} \\
\left(i_{j} \geq 0, j=1, \ldots, d ; \sum_{j=1}^{d} i_{j}=n\right)
\end{gathered}
$$

This is the distribution of the cardinalitles of d urns into which n balls are thrown at random and independently of each other. Urn number j is selected with probabillty p_{j} by every ball. The ball-In-urn experiment can be mimicked, which leads us to an algorithm taking time $O(n+d)$ and $\Omega(n+d)$. Note however that X_{1} is binomial (n, p_{1}), and that given X_{1}, the vector (X_{2}, \ldots, X_{d}) is multinomial $\left(n-X_{1}, q_{2}, \ldots, q_{d}\right.$) where $q_{j}=p_{j} /\left(1-p_{1}\right)$. This recurrence relation is nothing but another way of describing the conditional distribution method for this case. With a uniformly fast binomlal generator we can proceed in expected tlme $O(d)$ unlformly bounded in n :

Multinomial random vector generator

[NOTE: the parameters n, p_{1}, \ldots, p_{d} are destroyed by this algorithm. Sum holds a cumulative sum of probabilities.]
Sum ↔0
FOR $i:=1$ TO d DO
Generate a binomial ($n, \frac{p_{i}}{S}$) random vector X_{i}.
$n \leftarrow n-X_{i}$
Sum $\leftarrow \operatorname{Sum}-p_{i}$

For small values of n, it is unlikely that this algorithm is very competitive, malnly because the parameters of the binomial distribution change at every call.

1.5. Discrete distributions.

Consider the problem of the generation of a random vector taking only values on d-tuples of nonnegative integers. One of the striking differences with the continuous multivarlate distributions is that the d-tuples can be put into one-to-one correspondence with the nonnegative integers on the real line. This one-to-one mapping can be used to apply the Inversion method (Kemp, 1981; Kemp and Loukas, 1978) or one of the table methods (Kemp and Loukas, 1981). We say that the function which transforms d-tuples into nonnegative integers is a coding function. The inverse function is called the decoding function.

Coding functions are easy to construct. Consider $d=2$. Then we can visit all 2 -tuples in the positive quadrant in cross-diagonal fashion. Thus, flrst we visit $(0,0)$, then $(0,1)$ and (1,0), then $(0,2),(1,1)$ and (2,0), etcetera. Note that we visit all the Integers (i, j) with $i+j=k$ before visiting those with $i+j=k+1$. Since we visit $k(k-1) / 2$ 2-tuples with $i+j<k$, we see that we can take as coding function

$$
h(i, j)=\frac{(i+j)(i+j-1)}{2}+i
$$

This can be generalized to d-tuples (exercise 1.4), and a slmple decoding function exlsts which allows us to recover (i, j) from the value of $h(i, j)$ in time $O(1)$ (exerclse 1.4). There are other orders of traversal of the 2 -tuples. For example, we could visit 2 -tuples in order of increasing values of $\max (i, j)$.

In general one cannot visit all 2 -tuples in order of increasing values of i, its first component, as there could be an inflite number of 2 -tuples with the same value of i. It is llke trying to visit all shelves in a llbrary, and getting stuck in the first shelf because it does not end. If the second component is bounded, as it often is, then the library traversal leads to a slmple coding function. Let M be the maximal value for j. Then we have

$$
h(i, j)=(M+1) i+j .
$$

One should be aware of some pitfalls when the unlvarlate connection is exploited. Even if the distribution of probabllity over the d-tuples is relatively smooth, the corresponding univarlate probabllity vector is often very oscillatory, and thus unfit for use in the rejection method. Rejectlon should be applied almost exclusively to the original space.

The fast table methods require a finite distribution. Even though on paper they can be applled to all finite distributions, one should realize that the number of possible d-tuples in such distributions usually explodes exponentially with d. For a distribution on the integers \ln the hypercube $\{1,2, \ldots, n\}^{d}$, the number of possible values is n^{d}. For this example, table methods seem useful only for moderate values of d. See also exerclse 1.5 .

Kemp and Loukas (1978) and Kemp (1981) are concerned with the inversion method and its efficiency for various coding functions. Recall that in the unlvarlate case, inversion by sequentlal search for a nonnegative integer-valued random variate X takes expected time (as measured by the expected number of comparisons) $E(X)+1$. Thus, with the coding function h for X_{1}, \ldots, X_{d}, we see without further work that the expected number of comparisons is

$$
E\left(h\left(X_{1}, \ldots, X_{d}\right)+1\right)
$$

Example 1.6.

Let us apply inversion for the generation of (X_{1}, X_{2}), and let us scan the space in cross diagonal fashion (the coding function is $\left.h(i, j)=\frac{(i+j)(i+j-1)}{2}+i\right)$. Then the expected number of comparisons before halting is

$$
E\left(\frac{\left(X_{1}+X_{2}\right)\left(X_{1}+X_{2}-1\right)}{2}+X_{1}+1\right)
$$

This is at least proportional to elther one of the marginal second moments, and is thus much worse than one would normally have expected. In fact, in d dimenslons, a slmilar coding function leads to a finite expected tlme if and only if $E\left(X_{i}{ }^{d}\right)<\infty$ for all $i=1, \ldots, d$ (see exerclse 1.6).

Example 1.7.

Let us apply inversion for the generation of $\left(X_{1}, X_{2}\right)$, where $0 \leq X_{2} \leq M$, and let us perform a library traversal (the coding functlon is $h(i, j)=(M+1) i+j)$. Then the expected number of comparisons before halting is

$$
E\left((M+1) X_{1}+X_{2}+1\right)
$$

This is finite when only the flrst moments are finite, but has the drawback that M figures explicitly in the complexity.

We have made our point. For large values of d, ordinary generation methods are often not feasible because of time or space Inefficlencles. One should nearly always try to convert the problem into several univarlate problems. This can be done by applying the conditional distribution method. For the generation of X_{1}, X_{2}, we flrst generate X_{1}, and then generate X_{2} conditional on the given value of X_{1}. Effectively, this forces us to know the marginal distribution of X_{1} and the joint two-dimenslonal distribution. The marginal distribution of X_{2} is not needed. To see how this improves the complexitles, consider using the inverslon method in both stages of the algorithm. The expected number of comparisons in the generation of X_{2} given X_{1} is $E\left(X_{2} \mid X_{1}\right)+1$. The number of comparisons if the generation of X_{1} is $X_{1}+1$. Summing and taking expected values shows that the expected number of comparisons is

$$
E\left(X_{1}+X_{2}+2\right)
$$

(Kemp and Loukas, 1978). Compare with Examples 1.0 and 1.7.
In the conditional distribution method, we can improve the complexity even further by employing table methods in one, some or all of the stages. If $d=2$ and both components have infinite support, we cannot use tables. If only the second component has Inflnite support, then a table method can be used for X_{1}. This is the Ideal situation. If both components have flnlte support, then we are tempted to apply the table method in both stages. This would force us to set up many tables, one for each of the possible values of X_{1}. In that case, we could as well have set up one glant table for the entire distribution. Finally, if the first component has infinite support, and the second component has finite support, then the Incapabllity of storing an inflinlte number of finite tables forces us to set up the tables as we need them, but the time spent doing so is prohibltively large.

If a distribution is given in analytic form, there usually is some special property which can be used in the design of an efflclent generator. Several examples can be found \ln section 3.

1.6. Exercises.

1. Consider the density $f\left(x_{1}, x_{2}\right)=5 x_{1} e^{-x_{1} x_{2}}$ defined on the infinite strip $0.2 \leq x_{1} \leq 0.4,0 \leq x_{2}$. Show that the first component X_{1} is unlformly distributed on [0.2,0.4], and that given X_{1}, X_{2} is distributed as an exponential random variable divided by X_{1} (Schmelser, 1980).
2. Show how you would generate random variates with denslty

$$
\frac{6}{\left(1+x_{1}+x_{2}+x_{3}\right)^{4}} \quad\left(x_{1}, x_{2}, x_{3} \geq 0\right) .
$$

Show also that $X_{1}+X_{2}+X_{3}$ has density $3 x^{2} /(1+x)^{4} \quad(x \geq 0)$ (Springer, 1979, p.87).
3. Prove that for any distribution function F on R^{d}, there exists a measurable function $g:[0,1] \rightarrow R^{d}$ such that $g(U)$ has distribution function F, where U is uniformly distributed on $[0,1]$. This can be considered as a generalization of the inversion method. Hint: from U we can construct d ild unform [0,1] random varlables by skipping bits. Then argue va conditioning.
4. Consider the coding function for 2-tuples of nonnegatlve Integers (i, j) glven by $h(i, j)=\frac{(i+j)(i+j-1)}{2}+i+1$.
A. Generallze thls coding function to d-tuples. The generalization should be such that all d-tuples with sum of the components equal to some Integer k are grouped together, and the groups are ordered according to increasing values for k. Within a group, this rule should be applled recursively to groups of d-1-tuples with constant sum.
B. Glve the decoding function for the two-dimensional h shown above, and Indicate how it can be evaluated in time O (1) (Independent of the slze of the argument).
5. Consider the multinomial distribution with parameters n, p_{1}, \ldots, p_{d}, which assigns probabillty

$$
\frac{n!}{i_{1}!\cdots i_{d}!} \prod_{j=1}^{d} p_{j}^{i_{j}}
$$

to all d-tuples with $i_{j} \geq 0, \sum_{j=1}^{d} i_{j}=n$. Let the total number of possible values be $N(n, d)$. For fixed n, find a simple function $\psi(d)$ with the property that

$$
\lim _{d \rightarrow \infty} \frac{N(n, d)}{\psi(d)}=1
$$

Thls gives some Idea about how quickly $N(n, d)$ grows with d.
6. Show that when a cross-diagonal traversal is followed in dimensions for inversion by sequentlal search of a discrete probabllity distribution on the nonnegative integers of R^{d}, then the expected time required by the inverslon is finlte if and only if $E\left(X_{i}{ }^{d}\right)<\infty$ for all $i=1, \ldots, d$ where X_{1}, \ldots, X_{d} is a d-dimensional random vector with the given distribution.
7. Relationship between multinomial and Poisson distributions. Show that the algorithm given below in which the sample size parameter is used as a mixing parameter dellvers a sequence of d IId Polsson (λ) random variables.

Generate a Poisson ($d \lambda$) random variate N.
RETURN a multinomial ($N, \frac{1}{d}, \ldots, \frac{1}{d}$) random vector $\left(X_{1}, \ldots, X_{d}\right)$.

Hint: this can be proved by explicitly computing the probabllitles, by worklng with generating functions, or by employing propertles of Polsson point processes.
8. A bivariate extreme value distribution. Marshall and Oikin (1983) have studled multivariate extreme value distributions in detall. One of the distributions considered by them is defined by

$$
P\left(X_{1}>x_{1}, X_{2}>x_{2}\right)=e^{-\left(e^{-t_{1}}+e^{-t_{2}}-\left(e^{x_{1}}+e^{x_{2}}\right)-1\right)} \quad\left(x_{1} \geq 0, x_{2} \geq 0\right)
$$

How would you generate a random varlate with this distributlon?
9. Let f be an arbltrary unlvariate density on $(0, \infty)$. Show that $f\left(x_{1}+x_{2}\right) /\left(x_{1}+x_{2}\right)\left(x_{1}>0, x_{2}>0\right)$ is a blvariate density (Feller, 1971, p.100). Explolting the structure in the problem to the fullest, how would you generate a random vector with the glven blvarlate density?

2. LINEAR TRANSFORMATIONS. THE MULTINORMAL DISTRIBUTION.

2.1. Linear transformations.

When an R^{d}-valued random vector \mathbf{X} has density $f(\mathbf{x})$, then the random vector \mathbf{Y} defined as the solution of $\mathbf{X}=\mathrm{HY}$ has density

$$
g(\mathbf{y})=|\mathbf{H}| f(\mathbf{H} \mathbf{y}), \mathbf{y} \in R^{d},
$$

for all nonsingular $d \times d$ matrices \mathbf{H}. The notation $|\mathrm{H}|$ is used for the absolute value of the determinant of H . This property is reclprocal, i.e. when Y has densty g, then $\mathbf{X}=\mathbf{H Y}$ has density f.

The llnear transformation \mathbf{H} deforms the coordinate system. Partlcularly important llnear deformations are rotatlons: these correspond to orthonormal : ransformation matrices \mathbf{H}. For random varlate generation, linear transformations are important in a few spectal cases:
A. The generation of points uniformly distributed in d-dimensional slmplices or hyperellipsolds.
B. The generation of random vectors with a glven dependence structure, as measured by the covarlance matrix.
These two application areas are now dealt with separately.

2.2. Generators of random vectors with a given covariance matrix.

The covarlance matrix of an R^{d}-valued random vector Y with mean 0 is defined as $\Sigma=E\left(\mathbf{Y} \mathbf{Y}^{\prime}\right)$ where \mathbf{Y} is considered as a column vector, and \mathbf{Y}^{\prime} denotes the transpose of \mathbf{Y}. Assume first that we wish to generate a random vector \mathbf{Y} with zero mean and covarlance matrlx Σ and that we do not care for the time belng about the form of the distribution. Then, it is always possible to proceed as follows: generate a random vector \mathbf{X} with d ild components X_{1}, \ldots, X_{d} each having zero mean and unlt varlance. Then deflne \mathbf{Y} by $\mathbf{Y}=\mathbf{H X}$ where \mathbf{H} is a nonsingular $d \times d$ matrix. Note that

$$
\begin{aligned}
& E(\mathbf{Y})=\mathbf{H} E(\mathbf{X})=0 \\
& E\left(\mathbf{Y} \mathbf{Y}^{\prime}\right)=\mathbf{H} E\left(\mathbf{X X}^{\prime}\right) \mathbf{H}^{\prime}=\mathbf{H} \mathbf{H}^{\prime}=\Sigma
\end{aligned}
$$

We need a few facts now from the theory of matrices. First of all, we recall the definition of positive definiteness. A matrix \mathbf{A} is positive deflnite (positive semldefintte) when $\mathbf{x}^{\prime} \mathbf{A x}>0(\geq 0)$ for all nonzero R^{d}-valued vectors \mathbf{x}. But we have

$$
\mathbf{x}^{\prime} \Sigma \mathbf{x}=E\left(\mathbf{x}^{\prime} \mathbf{Y} \mathbf{Y}^{\prime} \mathbf{x}\right)=E\left(| | \mathbf{x}^{\prime} \mathbf{Y}| |\right) \geq 0
$$

for all nonzero \mathbf{x}. Here $||\cdot||$ is the standard L_{2} norm $\ln R^{d}$. Equality occurs only if the Y_{i} 's are linearly dependent with probabllity one, l.e. $\mathbf{x}^{\prime} \mathbf{Y}=0$ with probability one for some $\mathbf{x} \neq 0$. In that case, \mathbf{Y} is sald to have dimension less than d. Otherwise, \mathbf{Y} is said to have dimension d. Thus, all covariance matrices are positive semidefinite. They are positive definite if and only if the random vector in question has dimension d.

For symmetric positive definite matrices Σ, we can always find a nonsingular matrix \mathbf{H} such that

$$
\mathrm{HH}^{\prime}=\Sigma
$$

In fact, such matrices can be characterized by the existence of a nonsingular \mathbf{H}. We can do even better. One can always find a lower triangular nonsingular \mathbf{H} such that

$$
\mathrm{HH}^{\prime}=\Sigma .
$$

We have now turned our problem into one of decomposing a symmetric positive definite matrix Σ into a product of two lower trlangular matrices. The algorithm can be summarized as follows:

Generator of a random vector with given covariance matrix

[SET-UP]
Find a matrix H such that $\mathrm{HH}^{\prime}=\Sigma$.
[GENERATOR]
Generate d independent zero mean unit variance random variates X_{1}, \ldots, X_{d}. RETURN $\mathrm{Y}=\mathrm{HX}$

The set-up step can be done in tlme $O\left(d^{3}\right)$ as we will see below. Since \mathbf{H} can have up to $\Omega\left(d^{2}\right)$ nonzero elements, there is no hope of generating Y in less than $\Omega\left(d^{2}\right)$. Note also that the distributions of the X_{i} 's are to be plcked by the users. We could take them nd and blatomic: $P\left(X_{1}=1\right)=P\left(X_{1}=-1\right)=\frac{1}{2}$. In that case, Y is atomic with up to 2^{d} atoms. Such atomic solutions are rarely adequate. Most applications also demand some control over the marginal distributions. But these demands restrict our cholces for X_{1}. Indeed, if our method is to be unlversal, we should choose X_{1}, \ldots, X_{d} in such a way that all llnear combinations of these independent random variables have a given distribution. This can be assured in several ways, but the cholces are limited. To see this, let us consider Ild random varlables X_{i} with common characterlstlc function ϕ, and assume that we wish all linear comblnations to have the same distribution up to a scale factor. The sum $\sum a_{j} X_{j}$ has characteristlc function

$$
\prod_{j=1}^{d} \phi\left(a_{j} t\right)
$$

This is equal to $\phi(a t)$ for some constant a when ϕ has certain functional forms. Take for example

$$
\phi(t)=e^{-|t|^{\alpha}}
$$

for some $\alpha \in(0,2]$ as in the case of a symmetrlc stable distribution. Unfortunately, the only symmetric stable distribution with a finite variance is the normal distribution ($\alpha=2$). Thus, the property that the normal distribution is closed under the operation "llnear combination" is what makes it so attractive to the user. If the user specifies non-normal marglnals, the covarlance structure is much more difflcult to enforce. See however some good solutlons for the blvarlate case as developed in section XI.3.

A computational remark about H is in order here. There is a simple algorithm known as the square root method for finding a lower trlangular H with $\mathrm{HH}^{\prime}=\Sigma$ (Faddeeva, 1959; Moonan, 1957; Grayblil, 1969). We give the relationshlp between the matrices here. The elements of Σ are called $\sigma_{i j}$, and those of the lower trlangular solution matrix H are called $h_{i j}$.

$$
\begin{aligned}
& h_{i 1}=\sigma_{i 1} / \sqrt{\sigma_{11}}(1 \leq i \leq d) \\
& h_{i i}=\sqrt{\sigma_{i i}-\sum_{j=1}^{i-1} h_{i j}^{2}}(1<i \leq d) \\
& h_{i j}=\frac{\sigma_{i j}-\sum_{k=1}^{j-1} h_{i k} h_{j k}}{h_{j j}}(1<j<i \leq d) \\
& h_{i j}=0(i<j \leq d)
\end{aligned}
$$

2.3. The multinormal distribution.

The standard multinormal distribution on R^{d} has density

$$
\begin{aligned}
& f(\mathbf{x})=(2 \pi)^{-\frac{d}{2}} e^{-\frac{1}{2} \mathbf{x}^{\prime} \mathbf{x}} \\
& =(2 \pi)^{-\frac{d}{2}} e^{-\frac{1}{2}| | \mathbf{x}| |^{2}} \quad\left(\mathbf{x} \in R^{d}\right) .
\end{aligned}
$$

Thls is the density of d ild normal random varlables. When \mathbf{X} has density f, $\mathbf{Y}=\mathbf{H X}$ has density

$$
g(\mathbf{y})=\left|\mathbf{H}^{-1}\right| f\left(\mathbf{H}^{-1} \mathbf{y}\right), \mathbf{y} \in R^{d} .
$$

But we know that $\Sigma=\mathbf{H H}^{\prime}$, so that $\left|\mathbf{H}^{-1}\right|=|\Sigma|^{-1 / 2}$. Also, $\left|\left|\mathbf{H}^{-1} \mathbf{y}\right|\right|^{2}=\mathbf{y}^{\prime} \Sigma^{-1} \mathbf{y}$, which gives us the density

$$
g(\mathbf{y})=(2 \pi)^{-\frac{d}{2}}|\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2} \mathbf{y}^{\prime} \Sigma^{-1} \mathbf{y}} \quad\left(\mathbf{y} \in R^{d}\right)
$$

This is the density of the multinormal distribution with zero mean and nonsingular covarlance matrix Σ. We note without work that the i-th marginal distribution is zero mean normal with varlance given by the i-th diagonal element of Σ. In the most general form of the normal distribution, we need only add a translation parameter (mean) to the distribution.

Random varlate generation for the normal distribution can be done by the llnear transformation of d ild normal random varlables described in the previous section. This involves decomposition of $\mathbf{\Sigma}$ into a product of the form $\mathbf{H H}^{\prime}$. This method has been advocated by Scheuer and Stoller (1982) and Barr and Slezak (1972). Deak (1979) glves other methods for generating multinormal random vectors. For the conditional distribution method in the case $d=2$, we refer to Example 1.2. In the general case, see for example Scheuer and Stoller (1982).

An important special case is the blvarlate multinormal distribution with zero mean, and covarlance matrix

$$
\left|\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right|
$$

where $\rho \in[-1,1]$ is the correlation between the two marginal random variables. It Is easy to see that if (N_{1}, N_{2}) are Ild normally distributed random varlables, then

$$
\left(N_{1}, \rho N_{1}+\sqrt{1-\rho^{2}} N_{2}\right)
$$

has the said distribution. The multinormal distribution can be used as the starting point for creating other multivarlate distributions, see section XI.3. We will also exhibit many multivarlate distributions with normal marginals which are not multinormal. To keep the terminology conslstent throughout thls book, we will refer to all distributions having normal marginals as multivarlate normal distributlons. Multinormal distributions form only a tiny subclass of the multivariate normal distributions.

2.4. Points uniformly distributed in a hyperellipsoid.

A hyperellipsold in R^{d} is defined by a symmetric positive definite $d \times d$ matrix \mathbf{A} : it is the collection of all points $\mathbf{y} \in R^{d}$ with the property that

$$
\mathbf{y}^{\prime} \mathbf{A y} \leq 1
$$

A random vector unlformly distributed in thls hyperellipsold can be generated by a llnear transformation of a random vector \mathbf{X} distributed unlformly in the unlt hypersphere C_{d} of R^{d}. Such random vectors can be generated quite efflclently (see section V.4). Recall that linear transformations cannot destroy unlformity. They can only alter the shape of the support of unlform distrlbutions. The only problem we face is that of the determination of the linear transformation in function of \mathbf{A}.

Let us deflne $\mathrm{Y}=\mathbf{H X}$ where H is our $d \times d$ transformation matrix. The set detined by

$$
y^{\prime} \mathbf{A y} \leq 1
$$

心rresponds to the set
$\mathbf{x}^{\prime} \mathbf{H}^{\prime} \mathbf{A H x} \leq 1$.
$3^{2}:$ since this has to coinclde with $\mathbf{x}^{\prime} \mathbf{x} \leq 1$ (the definition of C_{d}), we note that
$H^{\prime} \mathbf{A H}=\mathrm{I}$
were I is the unlt $d \times d$ matrix. Thus, we need to take H such that $\mathbf{A}^{-:}=H^{\prime}$. See also RubInsteln (1982).

2.5. Uniform polygonal random vectors.

A convex polytope of R^{d} with vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}$ is the collection of all points in R^{d} that are obtainable as convex combinations of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$. Every polnt x in this convex polytope can be written as

$$
\mathbf{x}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{\mathbf{i}}
$$

for some a_{1}, \ldots, a_{n} wlth $a_{i} \geq 0, \sum_{i=1}^{n} a_{i}=1$. The set $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}$ is minimal for the convex polytope generated by it when all $\mathbf{v}_{\mathbf{i}}$'s are distinct, and no $\mathbf{v}_{\mathbf{i}}$ can be written as a strict convex comblnation of the $\mathbf{v}_{\mathbf{j}}$'s. (A strict convex combination is one which has at least one a_{i} not equal to 0 or 1.)

We say that a set of vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}$ is in general position if no three polnts are on a line, no four polnts are in a plane, etcetera. Thus, if the set of vertices is minimal for a convex polytope P, then it is in general position.

A simplex is a convex polytope with $d+1$ vertlces In general position. Note that d points in general position in R^{d} define a hyperplane of dimension $d-1$. Thus, any convex polytope with fewer than $d+1$ vertices must have zero d dimensional volume. In this sense, the simplex is the simplest nontrivial object in R^{d}.

We can define a basic slmplex by the orlgin and d polnts on the positive coordinate axes at distance one from the origin.

There are two distinct generation problems related to convex polytopes. We could be asked to generate a random vector unlformly distrlbuted in a glven polytope (see below), or we could be asked to generate a random collection of vertices defining a convex polytope. The latter problem is not dealt with here. See however Devroye (1982) and May and Smlth (1982).

Random vectors distributed unlformly in an arbitrary slmplex can be obtalned by linear transformations of random vectors distributed uniformly in the basic simplex. Fortunately, we do not have to go through the agony of factorlzing a matrix as in the case of a glven covariance matrix structure. Rather, there is a surprisingly simple direct solution to the general problem.

Theorem 2.1.

Let $\left(S_{1}, \ldots, S_{d+1}\right)$ be the spacings generated by a unfform sample of size d on $[0,1]$. (Thus, $S_{i} \geq 0$ for all i, and $\sum S_{i}=1$.) Then

$$
\mathbf{X}=\sum_{i=1}^{d+1} S_{i} \mathbf{v}_{\mathbf{i}}
$$

is uniformly distributed in the polytope P generated by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{d}+1}$, provided that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{d}+1}$ are in general position.

Proof of Theorem 2.1.

Let \mathbf{S} be the column vector S_{1}, \ldots, S_{d}. We recall first that \mathbf{S} is uniformly distrlbuted in the basic simplex B where

$$
B=\left\{\left(x_{1}, \ldots, x_{d}\right): x_{i} \geq 0, \sum_{i} x_{i} \leq 1\right\}
$$

If all $\mathbf{v}_{\mathbf{i}}$'s are considered as column vectors, and \mathbf{A} is the matrix

$$
\left[\begin{array}{llll}
\mathbf{v}_{1}-\mathbf{v}_{d+1} & \mathbf{v}_{2}-\mathbf{v}_{d+1} & \cdots & \mathbf{v}_{d}-\mathbf{v}_{\mathbf{d}+1}
\end{array}\right]
$$

then we can write \mathbf{X} as follows:

$$
\mathbf{X}=\mathbf{v}_{\mathrm{d}+1}+\sum_{i=1}^{d}\left(\mathbf{v}_{\mathbf{i}}-\mathbf{v}_{\mathrm{d}+1}\right) S_{i}=\mathbf{v}_{\mathrm{d}+1}+\mathbf{S}^{\prime} \mathbf{A}
$$

It is clear that \mathbf{X} is unlformly distributed, since it can be obtained by a llnear transformation of \mathbf{S}. The support Supp (\mathbf{X}) of the distribution of \mathbf{X} is the collecthon of all points which can be written as $\mathbf{v}_{d+1}^{d+1}+\mathbf{a}^{\prime} \mathbf{A}$ where $\mathbf{a} \in B$ is a column vector. First, assume that $\mathbf{x} \in P$. Then, $\mathbf{x}=\sum_{i=1} a_{i} \mathbf{v}_{\mathbf{i}}$ for some probablilty vector a_{1}, \ldots, a_{d+1}. Thls can be rewrltten as follows:

$$
\mathbf{x}=\mathbf{v}_{\mathbf{d}+1}+\sum_{i=1}^{d} a_{i}\left(\mathbf{v}_{\mathbf{i}}-\mathbf{v}_{\mathrm{d}+1}\right)=\mathbf{v}_{\mathrm{d}+1}+\mathbf{a}^{\prime} \mathbf{A}
$$

where a is the vector formed by a_{1}, \ldots, a_{d}. Thus, $P \subseteq \operatorname{Supp}(\mathbf{X})$. Next, assume $\mathbf{x} \in \operatorname{Supp}(\mathbf{X})$. Then, for some column vector $\mathbf{a} \in B$,

$$
\begin{aligned}
& \mathbf{x}=\mathbf{v}_{\mathrm{d}+1}+\mathbf{a}^{\prime} \mathbf{A}=\mathbf{v}_{\mathrm{d}+1}+\sum_{i=1}^{d} a_{i}\left(\mathbf{v}_{\mathbf{i}}-\mathbf{v}_{\mathrm{d}+1}\right) \\
& =\sum_{i=1}^{d+1} a_{i} \mathbf{v}_{\mathbf{i}}
\end{aligned}
$$

which implles that \mathbf{x} is a convex combination of the $\mathbf{v}_{\mathbf{i}}$'s, and thus $\mathbf{x} \in P$. Hence $\operatorname{Supp}(\mathbf{X}) \subset P$, and hence $\operatorname{Supp}(\mathbf{X})=P$, which concludes the proof of Theorem 2.1.

Example 2.1. Triangles.

The following algorithm can be used to generate random vectors unlformly distributed in the triangle defined by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ of R^{2} :

Generator for uniform distribution in triangle

Generate id uniform $[0,1]$ random variates U, V.
IF $U>V$ then swap U and V.
RETURN $\left(U \mathbf{v}_{1}+(V-U) \mathbf{v}_{2}+(1-V) \mathbf{v}_{3}\right)$

See also exerclse 2.1.

Example 2.2. Convex polygons in the plane.

Convex polygons on R^{2} with $n>3$ vertices can be partitioned into $n-2$ disjolnt triangles. Thls can always be done by connecting all vertices with a designated root vertex. Trlangulation of a polygon is of course always possible, even when the polygon is not convex. To generate a polnt uniformly in a trlangulated polygon, it suffices to generate a point unlformly in the i-th triangle (see e.g. Example 2.1), where the i-th trlangle is selected with probabllity proportional to Its area. It is worth recalling that the area of a trlangle formed by $\left(v_{11}, v_{12}\right),\left(v_{21}, v_{22}\right),\left(v_{31}, v_{32}\right)$ is

$$
\frac{1}{2}\left|\sum_{i<j}\left(v_{i 1} v_{j 2}-v_{j 1} v_{i 2}\right)\right|
$$

We can deal with all simpllces in all Euclidean spaces via Theorem 2.1. Example 2.2 shows that all polygons in the plane can be dealt with too, because all such polygons can be trlangulated. Unfortunately, decomposition of d dimensional polytopes into d-dimensional simplices is not always possible, so that Example 2.2 cannot be extended to higher dimensions. The decomposition is possible for all convex polytopes however. A decomposition algorlthm is given in Rubin (1984), who also provides a good survey of the problem. Theorem 2.1 can also be found in Rubinsteln (1982). Example 2.2 describes a method used by Hsuan (1882). The present methods which use decomposition and linear transformatlons are valld for polytopes. For sets with unusual shapes, the grid methods of section VIII.3.2 should be useful.

We conclude this section with the simple mention of how one can attack the decomposition of a convex polytope with n vertices into slmplices for general Euclldean spaces. If we are given an ordered polytope, i.e. a polytope with all its
faces clearly Identlfled, and with polnters to nelghboring faces, then the partition is trlvial: choose one vertex, and construct all slmplices consisting of a face (each face has d vertices) and the picked vertex. For selection of a simplex, we also need the area of a simplex with vertices $\mathbf{v}_{\mathbf{i}}, i=1,2, \ldots, d+1$. This is given by

$$
\frac{|\mathbf{A}|}{d!}
$$

where \mathbf{A} is the $d \times d$ matrix with as columns $\mathbf{v}_{1}-\mathbf{v}_{\mathrm{d}+1}, \ldots, \mathbf{v}_{\mathrm{d}}-\mathbf{v}_{\mathrm{d}+1}$. The complexity of the preprocessing step (decomposition, computation of areas) depends upon m, the number of faces. It is known that $m=O\left(n^{\lfloor d / 2\rfloor}\right)$ (McMullen, 1970). Since each area can be computed in constant time (d is kept fixed, n varles), the set-up time is $O(m)$. The expected generation time is O (1) if a constant tlme selection algorithm is used.

The aforementioned ordered polytopes can be obtalned from an unordered collection of n vertices in worst-case tlme $O\left(n \log (n)+n^{\lfloor(d+1) / 2\rfloor}\right)$ (Seldel, 1981), and this is worst-case optimal for even dimensions under some computational models.

2.6. Time series.

The generation of random time serles with certain speciflc propertles (marglnal distributions, autocorrelation matrlx, etcetera) is discussed by Schmeiser (1980), Franklln (1965), Price (1976), Hoffman (1979), Ll and Hammond (1975), Lakhan (1981), Polge, Holllday and Bhagavan (1973), Mikhallov (1974), Fraker and Rippy (1974), Badel (1979), Lawrance and Lewls (1977, 1980, 1981), and Jacobs and Lewls (1977).

2.7. Singular distributions.

Singular distributions in R^{d} are commonplace. Distributions that put all thelr mass on a llne or curve in the plane are slngular. So are distributions that put all thelr mass on the surface of a hypersphere of R^{d}. Computer generation of random vectors on such hyperspheres is discussed by Ulrich (1984), who in partlcular derlves an efficlent generator for the Fisher-von Mises distribution in R^{d}.

A llne $\ln R^{d}$ can be given in many forms. Perhaps the most popular form is the parametric one, where $\mathrm{x}=\mathbf{h}(z)$ and $z \in R$ is a parameter. An example is the clrcle $\ln R^{2}$, determined by

$$
\begin{aligned}
& x_{1}=\cos (2 \pi z), \\
& x_{2}=\sin (2 \pi z)
\end{aligned}
$$

Now, if Z is a random varlable and h is a Borel measurable function, then $\mathbf{X}=\mathbf{h}(Z)$ is a random vector which puts all its mass on the line deflned by $\mathbf{x}=\mathbf{h}(z)$. In other words, \mathbf{X} has a line distribution. For a one-to-one mapping $\mathbf{h}: R \rightarrow R^{d}$, which is also continuous, we can define a line density $f(z)$ at the point $\mathbf{x}=\mathbf{h}(z)$ va the relatlonships

$$
\left.P(\mathbf{X}=\mathbf{h}(z) \text { for some } z \in[a, b])=\int_{a}^{b} f(z) \psi(z) d z \quad \text { (all }[a, b]\right)
$$

where $\psi(z)=\sqrt{\sum_{i=1}^{d}{h^{\prime}}_{i}{ }^{2}(z)}$ is the norm of the tangent of h at z, and h_{i} is the i-th component of \mathbf{h}. But since this must equal $P(a \leq Z \leq b)=\int_{a} g(z) d z$ where g is the density of Z, we see that

$$
f(z)=\frac{g(z)}{\psi(z)}
$$

For a unlform llne density, we need to take g proportional to ψ.
As a flrst example, consider a function in the plane determined by the equatlon $y=\chi(x)(0 \leq x \leq 1)$. A point with unlform line density can be obtalned by considering the x-coordinate as our parameter z. This yleids the algorithm

Generate a random variate X with density $c \sqrt{1+\chi^{\prime 2}(x)}$.
$\operatorname{RETURN}(X, \chi(X))$

This could be called the projection method for obtalning random varlates with certaln line densitles. The converse, projection from a line to the x-axis is much less useful, since we already have many techniques for generating real-linevalued random varlates.

2.8. Exercises.

1. Consider a triangle with vertices $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and let U, V be ild uniform $[0,1]$ random varlables.
A. Show that if we set $\mathbf{Y} \leftarrow \mathbf{v}_{\mathbf{2}}+\left(\mathbf{v}_{\mathbf{3}}-\mathbf{v}_{2}\right) U$, and $\mathbf{X} \leftarrow \mathbf{v}_{\mathbf{1}}+\left(\mathbf{Y}-\mathbf{v}_{1}\right) V$, then \mathbf{X} is not uniformly distributed in the given trlangle. This method is misleading, as \mathbf{Y} is uniformly distributed on the edge ($\mathbf{v}_{2}, \mathbf{v}_{3}$), and \mathbf{X} is unlformly distributed on the line joining \mathbf{v}_{1} and \mathbf{Y}.
B. Show that \mathbf{X} in part A is uniformly distributed in the sald triangle if we replace V in the algorlthm by $\max (V, V *)$ where $V, V *$ are $11 d$ unlform [0,1] random variables.
2. Define a simple boolean function which returns the value true if and only if \mathbf{x} belongs to the a trlangle in R^{2} with three glven vertices.
3. Consider a triangle ABC where AB has length one, BC has length b, and the angle ABC is θ. Let \mathbf{X} be unlformly distributed in the trlangle, and let \mathbf{Y} be the Intersection of the lines AX and BC . Let Z be the distance between \mathbf{Y} and B. Show that Z has density

$$
\frac{1}{\sqrt{z^{2}-2 z \cos (\theta)+1}} \quad(0<z<b) .
$$

Compare the geometric algorithm for generating Z given above with the inversion method.

3. DEPENDENCE. BIVARLATE DISTRIBUTIONS.

3.1. Creating and measuring dependence.

In many experiments, a controlled degree of dependence is required. Sometimes, users want distributions with glven marginals and a given dependence structure as measured with some crlterion. Sometlmes, users know precisely what they want by completely specifying a multivarlate distribution. In this section, we will mainly look at problems in which certaln marginal distributions are needed together with a given degree of dependence. Usually, there are very many multivarlate distributions which satisfy the given requirements, and sometimes there are none. In the former case, we should design generators which are efficlent and lead to distributions which are not unrealistic.

For a clear treatment of the subject, it is best to emphasize blvarlate distributlons. A number of different measures of assoclation are commonly used by practicing statisticlans. First and foremost is the correlation coefficient ρ (also called Pearson product moment correlation coefflclent) defined by

$$
\rho=\frac{E\left(\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right)}{\sigma_{1} \sigma_{2}},
$$

where μ_{1}, μ_{2} are the means of X_{1}, X_{2}, and σ_{1}, σ_{2} are the corresponding standard devlations. The key properties of ρ are well-known. When X_{1}, X_{2} are independent, $\rho=0$. Furthermore, by the Cauchy-Schwarz Inequallty, it is easy to see that $|\rho| \leq 1$. When $X_{1}=X_{2}$, we have $\rho=1$, and when $X_{1}=-X_{2}$, we have $\rho=-1$. Unfortunately, there are a few enormous drawbacks related to the correlation coefflclent. First, it is only deffned for distributions having marginals with finlte varlances. Furthermore, it is not invariant under monotone transformations of the coordinate axes. For example, if we define a blvarlate uniform distribution
with a given value for ρ and then apply a transformation to get certain specific marginals, then the value of ρ could (and usually does) change. And most importantly, the value of ρ may not be a solid indicator of the dependence. For one thing, $\rho=0$ does not imply independence.

Measures of association which are Invarlant under monotone transformations are in great abundance. For example, there is Kendall's tau defined by

$$
\tau=2 P\left(\left(X_{1}-X_{2}\right)\left(X_{1}{ }_{1}-X_{2}^{\prime}\right)>0\right)-1
$$

where $\left(X_{1}, X_{2}\right)$ and $\left(X_{1}, X_{2}^{\prime}\right)$ are Ild. The invarlance under strictly monotone transformations of the coordinate axes is obvious. Also, for all distributions, τ exists and takes values $\ln [-1,1]$, and $\tau=0$ when the components are independent and nonatomlc. The grade correlation (also called Spearman's rho or the rank correlation) ρ_{g} is defined as $\rho\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right)$ where ρ is the standard correlation coefficient, and F_{1}, F_{2} are the marginal distribution functions of X_{1}, X_{2} (see for example Glbbons (1971)). ρ_{g} always exists, and is invariant under monotone transformations. τ and ρ_{g} are also called ordinal measures of association since they depend upon rank information only (Kruskal, 1958). Unfortunately, $\tau=0$ or $\rho_{g}=0$ do not imply independence (exerclse 3.4). It would be desirable for a good measure of assoclation or dependence that it be zero only when the components are independent.

The two measures given below satisfy all our requirements (universal existence, Invarlance under monotone transformations, and the zero value implyIng Independence):
A. The sup correlation (or maximal correlation) $\rho *$ defined by Gebeleln
(1941) and studled by Sarmanov (1982,1983) and Renyl (1959):

$$
\bar{\rho}\left(X_{1}, X_{2}\right)=\sup \rho\left(g_{1}\left(X_{1}\right), g_{2}\left(X_{2}\right)\right)
$$

where the supremum is taken over all Borel-measurable functions g_{1}, g_{2} such that $g_{1}\left(X_{1}\right), g_{2}\left(X_{2}\right)$ have finite positive varlance, and p is the ordinary correlation coefficient.
B. The monotone correlation $\rho *$ Introduced by Klmeldorf and Sampson (1878), which is defined as $\bar{\rho}$ except that the supremum is taken over monotone functions g_{1}, g_{2} only.
Let us outllne why these measures satisfy our requirements. If $\rho *=0$, and X_{1}, X_{2} are nondegenerate, then X_{2} is independent of X_{1} (Kimeldorf and Sampson, 1978). Thls is best seen as follows. We flrst note that for all s, t,

$$
\rho\left(I_{(-\infty, s)}\left(X_{1}\right), I_{(-\infty, t)}\left(X_{2}\right)\right)=0
$$

because the indicator functions are monotone and $\rho *=0$. But this implles

$$
P\left(X_{1} \leq s, X_{2} \leq t\right)=P\left(X_{1} \leq s\right) P\left(X_{2} \leq t\right)
$$

which in turn implies independence. For $\bar{\rho}$, we refer to exercise 3.6 and Renyl (1959). Good general discusslons can be found in Renyl (1959), Kruskal (1958), Klmeldorf and Sampson (1978) and Whitt (1978). The measures of dependence are obvlously interrelated. We have directly from the definltions,

$$
|\rho| \leq \rho^{*} \leq \bar{\rho} \leq 1
$$

There are examples in which we have equallty between all correlation coefficients (multivarlate normal distribution, exercise 3.5), and there are other examples in which there is strict inequallty. It is perhaps interesting to note when $\rho *$ equals one. This is for example the case when X_{2} is monotone dependent upon X_{1}, i.e. there exlsts a monotone functlon g such that $P\left(X_{2}=g\left(X_{1}\right)\right)=1$, and X_{1}, X_{2} are nonatomic (Kimeldorf and Sampson (1978)). Thls follows directly from the fact that $\rho *$ is invariant under monotone transformations, so that we can assume without loss of generality that the distribution is bivariate uniform. But then g must be the Identity function, and the statement is proved, i.e. $\rho *=1$. Unfortunately, $\rho *=1$ does not Imply monotone dependence.

For continuous marginals, there is yet another good measure of dependence, based upon the distance between probabillty measures. It is defined as follows:

$$
\begin{aligned}
& L=\sup _{A}\left|P\left(\left(X_{1}, X_{2}\right) \in A\right)-P\left(\left(X_{1}, X^{\prime}{ }_{2}\right) \in A\right)\right| \\
& =\frac{1}{2} \int\left|f\left(x_{1}, x_{2}\right)-f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)\right| d x_{1} d x_{2}
\end{aligned}
$$

where A is a Borel set of R^{2}, X_{2} is distributed as X_{2}, but is independent of X_{1}, f is the density of $\left(X_{1}, X_{2}\right)$, and f_{1}, f_{2} are the marginal densittes. The supremum in the definttion of L measures the distance between the given blvariate probabillty measure and the artificlal bivarlate probabllity measure constructed by taking the product of the two partlclpating marginal probabllity measures. The invarlance under strictly monotone transformations is clear. The integral form for L is Scheffe's theorem in disgulse (see exerclse 3.9). It is only valld when all the given densitles exist.

Example 3.1.

It is clearly possible to have unform marginals and a singular bivarlate distribution (consider $X_{2}=X_{1}$). It is even possible to find such a singular distributhon with $\rho=\rho_{g}=0$ (consider a carefully selected distribution on the surface of the unlt circle; or consider $\mathrm{I}_{2}=\mathrm{SI}_{1}$ where S takes the values +1 and -1 with equal probabllity). However, when we take A equal to the support of the singular dtstribution, then A has zero Lebesgue measure, and therefore zero measure for any absolutely continuous probabllity measure. Hence, $L=1$. In particular, when X_{2} is monotone dependent on I_{1}. then the blvarlate distribution is singular, and therefore $L=1$.

Example 3.2.

X_{1}, X_{2} are independent if and only if $L=0$. The if part follows from the fact that for all A, the product measure of A is equal to the given blvarlate probabllity measure of A. Thus, both probabllity measures are equal. The only if part is trivially true.

In the search for good measures of assoclation, there is no clear winner. Probabllity theoretical conslderations lead us to favor L over $\rho_{g}, \rho *$ and $\bar{\rho}$. On the other hand, as we have seen, approximating the blvarlate distribution by a singular distribution, always glves $L=1$. Thus, L is extremely sensitive to even small local devlations. The correlation coefficlents are much more robust in that respect.

We will assume that what the user wants is a distribution with glven absolutely continuous marginal distribution functions, and a given value for one of the transformation-Invariant measures of dependence. We can then construct a blvarlate unlform distrlbution with the given measure of dependence, and then transform the coordinate axes as in the unlvarlate inversion method to achleve given marginal dlstrlbutions (Nataf, 1982; Klmeldorf and Sampson, 1975; Mardia, 1970). If we can choose between a famlly of blvarlate unlform distributions, then it is perhaps possible to plck out the unlque distribution, if it exists, with the glven measure of dependence. In the next section, we will deal with blvarlate unlform distributions in general.

3.2. Bivariate uniform distributions.

We say that a distribution is blvarlate uniform (exponential, gamma, normal, Cauchy, etcetera) when the unlvarlate marginal distrlbutions are all unlform (exponentlal, gamma, normal, Cauchy, etcetera). Distributions of this form are extremely important in mathematical statistics in the context of testing for dependence between components. First of all, if the marginal distributions are contInuous, it is always possible by a transformation of both axes to insure that the marginal distributions have any prespecifled density such as the uniform $[0,1]$ density. If after the transformation to unlformity the joint density is uniform on $[0,1]^{2}$, then the two component random varlables are independent. In fact, the joint density after transformation provides a tremendous amount of information about the sort of dependence.

There are varlous ways of obtaining blvarlate distributions with specifled marginals from blvarlate unlform distrlbutions, which make these uniform distributions even more important. Good surveys are provided.by Johnson (1878), Johnson and Tenenbein (1878) and Marshall and Olkin (1983). The following
theorem comes closest to generallzing the unlvarlate propertles which lead to the inversion method.

Theorem 3.1.

Let $\left(X_{1}, X_{2}\right)$ be blvarlate unlform with joint density g. Let f_{1}, f_{2} be fixed univarlate densitles with corresponding distribution functions F_{1}, F_{2}. Then the density of $\left(Y_{1}, Y_{2}\right)=\left(F^{-1}{ }_{1}\left(X_{1}\right), F^{-1}{ }_{2}\left(X_{2}\right)\right)$ is

$$
f\left(y_{1}, y_{2}\right)=f_{1}\left(y_{1}\right) f_{2}\left(y_{2}\right) g\left(F_{1}\left(y_{1}\right), F_{2}\left(y_{2}\right)\right)
$$

Conversely, if $\left(Y_{1}, Y_{2}\right)$ has density f glven by the formula shown above, then Y_{1} has marginal density f_{1} and Y_{2} has marginal density f_{2}. Furthermore, $\left(X_{1}, X_{2}\right)=\left(F_{1}\left(Y_{1}\right), F_{2}\left(Y_{2}\right)\right)$ is bivarlate unlform with joint density

$$
g\left(x_{1}, x_{2}\right)=\frac{f\left(F^{-1}{ }_{1}\left(x_{1}\right), F_{2}^{-1}\left(x_{2}\right)\right)}{f_{1}\left(F^{-1}{ }_{1}\left(x_{1}\right)\right) f_{2}\left(F_{2}^{-1}\left(x_{2}\right)\right)} \quad\left(0 \leq x_{1}, x_{2} \leq 1\right)
$$

Proof of Theorem 3.1.

Stralghtforward.

There are many reclpes for cooking up bivarlate distributions with specified marginal distribution functions F_{1}, F_{2}. We will list a few in Theorem 3.2. It should be noted that if we replace $F_{1}\left(x_{1}\right)$ by x_{1} and $F_{2}\left(x_{2}\right)$ by x_{2} in these reclpes, then we obtaln bivarlate unlform distribution functlons. Recall also that the blvarlate density, if it exlsts, can be obtalned from the blvarlate distribution function by taking the partlal derlvative with respect to $\partial x_{1} \partial x_{2}$.

Theorem 3.2.

Let $F_{1}=F_{1}\left(x_{1}\right), F_{2}=F_{2}\left(x_{2}\right)$ be univariate distribution functions. Then the following is a list of blvarlate distribution functions $F=F\left(x_{1}, x_{2}\right)$ having as marglnal distribution functions F_{1} and F_{2} :
A. $\quad F=F_{1} F_{2}\left(1+a\left(1-F_{1}\right)\left(1-F_{2}\right)\right)$. Here $a \in[-1,1]$ is a parameter (Farlie (1980), Gumbel (1958), Morgenstern (1956)). Thls will be called Morgenstern's famlly.
B. $\quad F=\frac{F_{1} F_{2}}{1-a\left(1-F_{1}\right)\left(1-F_{2}\right)}$. Here $a \in[-1,1]$ is a parameter (All, Mikhall and Haq (1978)).
C. F is the solution of $F\left(1-F_{1}-F_{2}+F\right)=a\left(F_{1}-F\right)\left(F_{2}-F\right)$ where $a \geq 0$ is a parameter (Plackett, 1985).
D. $\quad F=a \max \left(0, F_{1}+F_{2}-1\right)+(1-a) \min \left(F_{1}, F_{2}\right)$ where $0 \leq a \leq 1$ is a parameter (Frechet, 1951).
E. $(-\log (F))^{m}=\left(-\log \left(F_{1}\right)\right)^{m}+\left(-\log \left(F_{2}\right)\right)^{m}$ where $m \geq 1$ is a parameter (Gumbel, 1960).

Proof of Theorem 3.2.

To verlfy that F is Indeed a distribution function, we must verlfy that F is nondecreasing in both arguments, and that the limits as $x_{1}, x_{2} \rightarrow-\infty$ and $\rightarrow \infty$ are 0 and 1 respectively. To verlfy that the marginal distribution functions are correct, we need to check that

$$
\lim _{x_{2} \rightarrow \infty} F\left(x_{1}, x_{2}\right)=F_{1}\left(x_{1}\right)
$$

and

$$
\lim _{x_{1} \rightarrow \infty} F\left(x_{1}, x_{2}\right)=F_{2}\left(x_{2}\right)
$$

The latter relations are easily verlfled.

It helps to visualize these reclpes. We begin with Frechet's inequallties (Frechet, 1951), which follow by simple geometric arguments in the plane:

Theorem 3.3. Frechet's inequalities.

For any two unlvarlate distribution functions F_{1}, F_{2}, and any blvarlate distribution function F having these two marginal distribution functions,

$$
\max \left(0, F_{1}(x)+F_{2}(y)-1\right) \leq F(x, y) \leq \min \left(F_{1}(x), F_{2}(y)\right) .
$$

Proof of Theorem 3.3.

For flxed $\left(x_{1}, x_{2}\right)$ in the plane, let us denote by $Q_{S E}, Q_{N E}, Q_{S W}, Q_{N W}$ the four quadrants centered at x, y where equality is resolved by including boundarles with the south and west halfplanes. Thus, $\left(x_{1}, x_{2}\right)$ belongs to $Q_{S W}$ whlle the vertical line at x_{1} belongs to $Q_{S W} \cup Q_{N W}$. It is easy to see that at x_{1}, x_{2},

$$
\begin{aligned}
& F_{1}\left(x_{1}\right)=P\left(Q_{S W} \cup Q_{N W}\right), \\
& F_{2}\left(x_{2}\right)=P\left(Q_{S W} \cup Q_{S E}\right), \\
& F\left(x_{1}, x_{2}\right)=P\left(Q_{S W}\right) .
\end{aligned}
$$

Clearly, $F \leq \min \left(F_{1}, F_{2}\right)$ and $1-F \leq 1-F_{1}+1-F_{2}$.

These inequalities are valid for all bivarlate distribution functions F with marginal distribution functions F_{1} and F_{2}. Interestingly, both extremes are also valld distribution functions. In fact, we have the following property which can be used for the generation of random vectors with these distribution functions.

Theorem 3.4.

Let U be a unlform $[0,1]$ random variable, and let F_{1}, F_{2} be continuous univariate distribution functlons. Then

$$
\left(F^{-1}{ }_{1}(U), F^{-1}(U)\right)
$$

has distrlbution function $\operatorname{mln}\left(F_{1}, F_{2}\right)$. Furthermore,

$$
\left(F_{1}^{-1}{ }_{1}(U), F^{-1}(1-U)\right)
$$

has distribution function $\max \left(0, F_{1}+F_{2^{-1}}\right)$.

Proof of Theorem 3.4.

We have

$$
P\left(F^{-1}{ }_{1}(U) \leq x_{1}, F_{2}^{-1}(U)=x_{2}\right)=P\left(U \leq \min \left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right)\right) .
$$

Also,

$$
P\left(F_{1}^{-1}(U) \leq x_{1}, F_{2}^{-1}(1-U)=x_{2}\right)=P\left(U \leq F_{1}\left(x_{1}\right), 1-U \leq F_{2}\left(x_{2}\right)\right) .
$$

Frechet's extremal distribution functions are those for which maximal positive and negative dependence are obtalned respectlvely. This is best seen by considering the blvarlate unlform case. The upper distribution function $\min \left(x_{1}, x_{2}\right)$ puts its mass uniformly on the 45 degree dlagonal of the first quadrant. The bottom distribution function $\max \left(0, x_{1}+x_{2}-1\right)$ puts its mass unlformly on the -45 degree dlagonal of $[0,1]^{2}$. Hoeffding (1840) and Whitt (1978) have shown that maximal positive and negative correlation are obtalned for Frechet's extremal distribution functions (see exerclse 3.1). Note also that maximally correlated random varlable are very important in varlance reduction technlques in Monte Carlo simulation. Theorem 3.4 shows us how to generate such random vectors. We have thus identified a large class of applications in which the inversion method seems essential (Fox, 1980). For Frechet's blvariate famlly (case D in Theorem 3.2), we note without work that it sufflces to consider a mixture of Frechet's extremal distributions. Thls is often a poor way of creating intermedlate correlation. For example, in the blvarlate unlform case, all the probabilly mass is concentrated on the two diagonals of $[0,1]^{2}$.

The list of examples in Theorem 3.2 is necessarlly incomplete. Other examples can be found in exercises 3.2 and 3.3. Random varlate generation is usually taken care of via the conditional distribution method. The following example should suffice.

Example 3.3. Morgenstern's family.

Conslder the unlform verslon of Morgenstern's blvarlate family with parameter $|a| \leq 1$ glven by part A of Theorem 3.2. It is easy to see that for thls famlly, there exists a density given by

$$
f\left(x_{1}, x_{2}\right)=1+a\left(2 x_{1}-1\right)\left(2 x_{2}-1\right)
$$

Here we can generate X_{1} unlformly on [0,1]. Given X_{1}, X_{2} has a trapezoldal density which is zero outside $[0,1]$ and varles from $1-a\left(2 X_{1}-1\right)$ at $x_{2}=0$ to $1+a\left(2 X_{1}-1\right)$ at $x_{2}=1$. If U, V are 1 d unform $[0,1]$ random varlables, then X_{2}
can be generated as

$$
\begin{aligned}
& \min \left(U,-\frac{V}{a\left(2 X_{1}-1\right)}\right) \quad X_{1}<\frac{1}{2} \\
& \max \left(U, 1-\frac{V}{a\left(2 X_{1}-1\right)}\right) \quad X_{1} \geq \frac{1}{2}
\end{aligned}
$$

There are other important considerations when shopping around for a good blvarlate unlform family. For example, it is useful to have a family which contains as members, or at least as llmits of members, Frechet's extremal distributlons, plus the product of the marginals (the Independent case). We will call such famllies comprehensive. Examples of comprehenslve blvarlate famlles are given In the table below. Note that the comprehensiveness of a famlly is Invariant under strlctly monotone transformations of the coordinate axes (exercise 3.11), so that the marginals do not really matter.

Distribution function	Reference
$F \quad$ is the solution of	Plackett (1965)
$F\left(1-F_{1}-F_{2}+F\right)=a\left(F_{1}-F\right)\left(F_{2}-F\right)$	
where $a \geq 0$ is a parameter	
$F=\frac{a^{2}(1-a)}{2} \max \left(0, F_{1}+F_{2}-1\right)$	Frechet (1958)
$+\frac{a^{2}(1+a)}{2} \min \left(F_{1}, F_{2}\right)+\left(1-a^{2}\right) F_{1} F_{2}$	
where $\|a\| \leq 1$ is a parameter	
$\frac{1}{2 \pi \sqrt{1-r^{2}} e^{-\frac{x_{1}^{2}+x_{2}{ }^{2}-2 r x_{1} x_{2}}{2\left(1-r^{2}\right)}} \text { where }}$ $\|r\| \leq 1$ is a measure of associ- ation	

From this table, one can create other comprehensive famllies elther by monotone transformations, or by taking mixtures. Note that most familles, including Morgenstern's famlly, are not comprehensive.

Another issue is that of the range spanned by the family in terms of the values of a glven measure of dependence. For example, for Morgenstern's blvariate uniform family of Example 3.3, the correlation coefficlent is $-a / 3$. Therefore, it can take all the values in $\left[-\frac{1}{3}, \frac{1}{3}\right]$, but no values outside this interval. Needless to say, full ranges for certaln measures of assoclation are an asset. Typically, thls
goes hand in hand with comprehensiveness.

Example 3.4. Full correlation range families.

Plackett's blvarlate family with parameter $a \geq 0$ and arbltrary continuous marginal distribution functions has correlation coefficlent

$$
\rho=\frac{-\left(1-a^{2}\right)-2 a \log (a)}{(1-a)^{2}},
$$

which can be shown to take the values $1,0,-1$ when $a \rightarrow \infty, a=1$ and $a=0$ respectlvely (see e.g. Barnett, 1980). Since ρ is a continuous function of a, all values of ρ can be achleved.

The blvarlate normal family can also achleve all possible values of correlatlon. Since for thls famlly, $\rho=\rho *=\bar{\rho}$, we also achleve the full range for the sup correlation and the monotone correlation.

Example 3.5. The Johnson-Tenenbein families.

Johnson and Tenenbeln (1981) proposed a general method of constructing blvarlate famlles for which τ and ρ_{g} can attaln all possible values in ($-1,1$). The method consists slmply of taking $\left(X_{1}, X_{2}\right)=(U, H(c U+(1-c) V)$), where U, V are ild random varlables with common distribution function $F, c \in[0,1]$ is a welght parameter, and H is a monotone function chosen in such a way that $H(c U+(1-c) V)$ also has distribution function F. To take a simple example, let U, V be lld normal random varlables. Then we should take $H(u)=u / \sqrt{c^{2}+(1-c)^{2}}$. The resulting two-dimensional random vector is easily seen to be bivariate normal, as it is a linear combination of ild normal random varlables. Its correlation coefflclent is

$$
\frac{c}{\sqrt{c^{2}+(1-c)^{2}}},
$$

which can take all values in $[0,1]$. Moreover,

$$
\begin{aligned}
& \rho_{g}=\frac{6}{\pi} \arcsin \left(\frac{c}{2 \sqrt{c^{2}+(1-c)^{2}}}\right), \\
& \tau=\frac{2}{\pi} \arcsin \left(\frac{c}{\sqrt{c^{2}+(1-c)^{2}}}\right) .
\end{aligned}
$$

It is easy to see that these measures of association can also take all values in $[0,1]$ when we vary c. Negative correlations can be achleved by considering $(-U, H(c U+(1-c) V))$. Recall next that τ and ρ_{g} are Invarlant under strictly
monotone transformations of the coordlnate axes. Thus, we can now construct blvarlate famllies with speclfied marginals and glven values for ρ_{g} or τ.

3.3. Bivariate exponential distributions.

We wlll take the blvariate exponentlal distribution as our prototype distribution for lllustrating just how we can construct such distributions directly. At the same tlme, we will discuss random varlate generators. There are two very different approaches:
A. The analytlc method: one deflnes expllcitly a blvarlate denslty or distribution function, and worrles about generators later. An example is Gumbel's blvarlate exponentlal family (1980) described below. Another example is the distribution of Nagao and Kadoya (1971) dealt with in exercise 3.10.
B. The emplric method: one constructs a pair of random varlables known to have the correct marginals, and worrles about the form of the distribution function later. Here, random varlate generation is typlcally a trivial problem. Examples Include distributions proposed by Johnson and Tenenbeln (1981), Moran (1987), Marshall and Olkin (1987), Arnold (1987) and Lawrance and Lewls (1983).
The distinction between A and B is often not clear-cut. Familles can also be partitioned based upon the range for glven measures of assoclation, or upon the notion of comprehenslveness. Let us start with Gumbel's famlly of blvariate exponential distribution functions:

$$
1-e^{-x_{1}}-e^{-x_{2}}+e^{-x_{1}-x_{2}-a x_{1} x_{2}} \quad\left(x_{1}, x_{2}>0\right) .
$$

Here $a \in[0,1]$ ls the parameter. The joint density is

$$
e^{-x_{1}-x_{2}-a x_{1} x_{2}}\left(\left(1+a x_{1}\right)\left(1+a x_{2}\right)-a\right)
$$

Notice that the conditional density of X_{2} given $X_{1}=x_{1}$ is

$$
\begin{aligned}
& e^{-\left(1+a x_{1}\right) x_{2}}\left(\left(1+a x_{1}\right)\left(1+a x_{2}\right)-a\right) \\
& =\frac{a}{\theta}\left[\theta^{2} x_{2} e^{-\theta x_{2}}\right)+\frac{\theta-a}{\theta}\left(\theta e^{-\theta x_{2}}\right)
\end{aligned}
$$

where $\theta=1+a x_{1}$. In thls decomposition, we recognize a mixture of a gamma (2) and a gamma (1) denslty. Random varlates can easlly be generated via the condltlonal distribution method, where the conditional distribution of X_{2} given X_{1} can be handled by composition (see below). Unfortunately, the family contalns only none of Frechet's extremal distributions, which suggests that extreme correlations
cannot be obtalned.

> Gumbel's bivariate exponential distribution with parameter a
> Generate IId exponentlal random varlates X_{1}, X_{2}.
> Generate a unlform $[0,1]$ random varlate U.
> IF $U \leq \frac{a}{1+a X_{1}}$
> \quad THEN
> \quad Generate an exponential random varlate E.
> $\quad X_{2} \leftarrow X_{2}+E$
> $\operatorname{RETURN}\left(X_{1}, \frac{X_{2}}{1+a X_{1}}\right)$

Generallzations of Gumbel's distribution have been suggested by various authors. In general, one can start from a blvarlate uniform distrlbution function F, and defline a blvariate exponentlal distribution function by

$$
F\left(1-e^{-x_{1}}, 1-e^{-x_{2}}\right) .
$$

For a generator, we need only conslder $(-\log (U),-\log (V))$ where U, V is bivarlate unlform with distribution function F. For example, if we do this for Morgenstern's family with parameter $|a| \leq 1$, then we obtaln the blvarlate exponential distribution function

$$
\left(1-e^{-x_{1}}\right)\left(1-e^{-x_{2}}\right)\left(1+a e^{-x_{1}-x_{2}}\right) \quad\left(x_{1}, x_{2} \geq 0\right)
$$

This distribution has also been studled by Gumbel (1960). Both Gumbel's exponentlal distributions and other possible transformations of blvarlate unlform distributions are often artiffcial.

In the empiric (or constructive) method, one argues the other way around, by first defling the random vector. In the table shown below, a sampling of such bivarlate random vectors is given. We have taken what we consider are good didactical examples showing a variety of approaches. All of them explolt spectal propertles of the exponentlal distribution, such as the fact that the sum of squares of ild normal random variables is exponentially distributed, or the fact that the minimum of independent exponential random varlables is agaln exponen-
tlally distrlbuted.

$\left(X_{1}, X_{2}\right)$	Reference
$\left(\min \left(\frac{E_{1}}{\lambda_{1}}, \frac{E_{3}}{\lambda_{3}}\right), \min \left(\frac{E_{2}}{\lambda_{2}}, \frac{E_{3}}{\lambda_{3}}\right)\right)$	Marshall and Olkin (1967)
$\left(\beta_{1} E_{1}+S_{1} E_{2}, \beta_{2} E_{2}+S_{2} E_{1}\right)$,	
$P\left(S_{i}=1\right)=1-P\left(S_{i}=0\right)=1-\beta_{i}(i=1,2)$	
$\left(\begin{array}{ll}\left(E_{1},-\log \left((1-c) e^{-\frac{E_{2}}{1-c}}+c e^{-\frac{E_{2}}{6}}\right)+\log (1-2 c)\right) \\ c \in[0,1]\end{array}\right.$	Lawrance and Lewis (1983)
$\left(\frac{1}{2}\left(N_{1}{ }^{2}+N_{2}{ }^{2}\right), \frac{1}{2}\left(N_{3}{ }^{2}+N_{4}{ }^{2}\right)\right)$,	Johnson and Tenenbein (1981)
$\left(N_{1}, N_{3}\right),\left(N_{2}, N_{4}\right)$ iid multinor-	
mal with correlation ρ	Moran (1967)

In thls table, E_{1}, E_{2}, E_{3} are ild exponential random varlates, and $\lambda_{1}, \lambda_{2}, \lambda_{3} \geq 0$ are parameters with $\lambda_{1} \lambda_{2}+\lambda_{3}>0$. The N_{i} 's are normal random varlables, and c, β_{1}, β_{2} are [0,1]-valued constants. A special property of the marginal distribution, closure under the operation min, is explolted in the definition. To see this, note that for $x>0$,

$$
\begin{aligned}
& P\left(X_{1}>x\right)=P\left(E_{1}>\lambda_{1} x, E_{3}>\lambda_{3} x\right) \\
& =e^{-\left(\lambda_{1}+\lambda_{3}\right) x} \quad(x>0)
\end{aligned}
$$

Thus, X_{1} is exponential with parameter $\lambda_{1}+\lambda_{3}$. The jolnt distribution function is uniquely determined by the function $G\left(x_{1}, x_{2}\right)$ defined by

$$
G\left(x_{1}, x_{2}\right)=P\left(X_{1}>x_{1}, X_{2}>x_{2}\right)=e^{-\lambda_{1} x_{1}-\lambda_{2} x_{2}-\lambda_{3} \max \left(x_{1}, x_{2}\right)} .
$$

The distribution is a mixture of a singular distribution carrying welght $\lambda_{3} /\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)$, and an absolutely contlnuous part (exercise 3.8). Also, it is unfortunate that when (X_{1}, X_{2}) has the glven bivarlate exponential distribution, then ($a_{1} X_{1}, a_{2} X_{2}$) is bivariate exponential in the case $a_{1}=a_{2}$ only. On the positive side, we should note that the family includes the independent case ($\lambda_{3}=0$), and one of Frechet's extremal cases ($\lambda_{1}=\lambda_{2}=0$). In the latter case, note that

$$
G\left(x_{1}, x_{2}\right)=P\left(X_{1}>x_{1}, X_{2}>x_{2}\right)=e^{-\lambda_{3} \max \left(x_{1}, x_{2}\right)}
$$

The Lawrance-Lewls blvarlate exponential is Just one of a long list of blvariate exponentlals constructed by them. The one given in the table is particularly fiexible. We can quickly verlfy that the marginals are exponentlal via characterlstic functions. The characteristic function of X_{1} is

$$
\begin{aligned}
& \phi(t)=E\left(e^{i t X_{1}}\right)=E\left(e^{\beta_{1} i t E_{1}}\right)\left(\beta_{1}+\left(1-\beta_{1}\right) E\left(e^{i t E_{2}}\right)\right) \\
& =\frac{1}{1-i t \beta_{1}}\left(\beta_{1}+\frac{\left(1-\beta_{1}\right)}{1-i t}\right)=\frac{1}{1-i t}
\end{aligned}
$$

The correlation $\rho=2 \beta_{1}\left(1-\beta_{2}\right)+\beta_{2}\left(1-\beta_{1}\right)$, valld for $0 \leq \beta_{1} \leq \beta_{2} \leq 1$, can take all values between 0 and 1 . To create negative correlation, one can replace E_{1}, E_{2} in the formulas for X_{2} by two other exponential random varlables, $h\left(E_{1}\right), h\left(E_{2}\right)$ where $h(x)=-\log \left(1-e^{-x}\right)$ (Lawrance and Lewls, 1983).

The Johnson and Tenenbeln construction is almost as slmple as the Lawrance-Lewis construction. Interestingly, by varying the parameter c, all possible nonnegative values for ρ_{g}, τ and ρ are achlevable.

Finally, in Moran's bivarlate distribution, good use is made of yet another property of exponential random varlables. His distribution has correlation ρ^{2} where ρ is the correlation of the underlying blvarlate normal distribution. Agaln, random varlate generation is extremely simple, and the correlation spans the full nonnegative range. Difficultles arise only when one needs to compute the exact value of the density at some points, but then again, these same difficultles are shared by most emplric methods.

3.4. A case study: bivariate gamma distributions.

We have seen how blvariate distributions with any given marginals can be constructed from blvarlate uniform distributions or blvarlate distributions with other continuous marginals, via transformations of the coordinate axes. These transformations leave ρ_{g}, τ and other ordinal measures of assoclation invarlant, but generally speaking not ρ. Furthermore, the inversion of the marginal distribution functions (F_{1}, F_{2}) required to apply these transformations is often unfeasible. Such is the case for the gamma distribution. In thls section we will look at these new problems, and provide new solutions.

To clarify the problems with inversion, we note that if X_{1}, X_{2} is blvarlate gamma (a_{1}, a_{2}), where a_{i} is the parameter for X_{i}, then maximum and minimum correlation are obtalned for the Frechet bounds, i.e.

$$
\begin{aligned}
& X_{2}=F_{2}^{-1}\left(F_{1}\left(X_{1}\right)\right) \\
& X_{2}=F_{2}^{-1}\left(1-F_{1}\left(X_{1}\right)\right)
\end{aligned}
$$

respectlvely (Moran (1987), Whitt (1978)). Direct use of Frechet's bounds is posslble but not recommended if generator efficiency is important. In fact, it is not recommended to start from any bivariate unlform distribution. Also, the method of Johnson and Tenenbein (1981) Illustrated on the blvarlate uniform, normal and exponentlal distributions in the previous sections requires an inversion of a gamma distribution function if it were to be applled here.

We can also obtain help from the composition method, noting that the random vector $\left(X_{1}, X_{2}\right)$ defined by

$$
\left(X_{1}, X_{2}\right)= \begin{cases}\left(Y_{1}, Y_{2}\right) & , \text { with probability } p \\ \left(Z_{1}, Z_{2}\right) & , \text { with probabillty 1-p }\end{cases}
$$

has the right marginal distributions if both random vectors on the right hand side have the same marginals. Also, $\left(X_{1}, X_{2}\right)$ has correlation coefficient $p \rho_{Y}+(1-p) \rho_{Z}$ where ρ_{Y}, ρ_{Z} are the correlation coefflclents of the two glven random vectors. One typlcally chooses ρ_{Y} and ρ_{Z} at the extremes, so that the entlire range of ρ values is covered by adjusting p. For example, one could take $\rho_{Y}=0$ by considering ild random varlables Y_{1}, Y_{2}. Then ρ_{Z} can be taken maximal by using the Frechet maximal dependence as in $\left(Z_{1}, Z_{2}\right)=\left(Z_{1}, F_{2}^{-1}\left(1-F_{1}\left(Z_{1}\right)\right)\right.$ where Z_{1} is gamma $\left(a_{1}\right)$. Doing so leads to a mixture of a continuous distribution (the product measure) and a slngular distributlon, which is not desirable.

The gamma distribution shares with many distributions the property that it is closed under additions of independent random variables. This has led to inverslon-free methods for generating blvarlate gamma random vectors, now known as trivariate reduction methods (Cherlan, 1941; David and Flx, 1981; Mardla, 1970; Johnson and Ramberg, 1977; Schmelser and Lal, 1982). The name is borrowed from the princlple that two dependent random varlables are constructed from three Independent random varlables. The application of the princlple is certalnly not llmited to the gamma distribution, but is perhaps best lllustrated here. Consider independent gamma random varlables G_{1}, G_{2}, G_{3} with parameters a_{1}, a_{2}, a_{3}. Then the random vector

$$
\left(X_{1}, X_{2}\right)=\left(G_{1}+G_{3}, G_{2}+G_{3}\right)
$$

is bivarlate gamma. The marginal gamma distributions have parameters $a_{1}+a_{3}$ and $a_{2}+a_{3}$ respectively. Furthermore, the correlation is given by

$$
\rho=\frac{a_{3}}{\sqrt{\left(a_{1}+a_{3}\right)\left(a_{2}+a_{3}\right)}}
$$

If ρ and the marginal gamma parameters are specifled beforehand, we have one of two situations: elther there is no possible solution for a_{1}, a_{2}, a_{3}, or there is exactly one solution. The limitation of thls technlque, which goes back to Cherlan (1941) (see Schmelser and Lal (1980) for a survey), is that

$$
0 \leq \rho \leq \frac{\min \left(\alpha_{1}, \alpha_{2}\right)}{\sqrt{\alpha_{1} \alpha_{2}}}
$$

where α_{1}, α_{2} are the marginal gamma parameters. Within this range, trivarlate reduction leads to one of the fastest algorithms known to date for blvarlate gamma dlstrlbutlons.

Trivariate reduction for bivariate gamma distribution

[NOTE: ρ is a given correlation, α_{1}, α_{2} are given parameters for the marginal gamma distributions. It is assumed that $0 \leq \rho \leq \frac{\min \left(\alpha_{1}, \alpha_{2}\right)}{\sqrt{\alpha_{1} \alpha_{2}}}$.
[GENERATOR]
Generate a gamma ($\alpha_{1}-\rho \sqrt{\alpha_{1} \alpha_{2}}$) random variate G_{1}.
Generate a gamma ($\alpha_{2}-\rho \sqrt{\alpha_{1} \alpha_{2}}$) random variate G_{2}.
Generate a gamma ($\rho \sqrt{\alpha_{1} \alpha_{2}}$) random variate G_{3}.
$\operatorname{RETURN}\left(G_{1}+G_{3}, G_{2}+G_{3}\right)$

Ronning (1877) generallzed this principle to higher dimensions, and suggested several possible linear combinations to achleve desired correlations. Schmeiser and Lal (1882) (exercise 3.18) fill the vold by extending the trivariate reduction method in two dimenslons, so that all theoretlcally possible correlations can be achleved in blvarlate gamma distributions. But we do not get something for nothIng: the algorithm requires the inversion of the gamma distribution function, and the numerical solution of a set of nonllnear equations in the set-up stage.

3.5. Exercises.

1. Prove that over all bivarlate distribution functions with given marginal univarlate distribution functions F_{1}, F_{2}, the correlation coefficlent ρ is minimized for the distribution function $\max \left(0, F_{1}(x)+F_{2}(y)-1\right)$. It is maximized for the distribution function $\min \left(F_{1}(x), F_{2}(y)\right.$) (Whitt, 1876; Hoeffding, 1940).
2. Plackett's bivariate uniform family (Plackett (1965). Consider the blvarlate unlform famlly deflned by part C of Theorem 3.2, with parameter $a \geq 0$. Show that on $[0,1]^{2}$, this distribution has a density given by

$$
f\left(x_{1}, x_{2}\right)=\frac{a(a-1)\left(x_{1}+y_{1}-2 x_{1} x_{2}\right)+a}{\left(\left((a-1)\left(x_{1}+x_{2}\right)+1\right)^{2}-4 a(a-1) x_{1} x_{2}\right)^{3 / 2}}
$$

For this dlstribution, Mardla (1970) has proposed the following generator:

Mardia's generator for Plackett's bivariate uniform family

Generate two iid uniform [0,1] random variables U, V.
$X_{1} \leftarrow U$
$Z \leftarrow V(1-V)$
$X_{2} \leftarrow \frac{2 Z\left(a^{2} X_{1}+1-X_{1}\right)+a(1-2 Z)-(1-2 V) \sqrt{a\left(a+4 Z X_{1}\left(1-X_{1}\right)(1-a)^{2}\right)}}{a+Z(1-a)^{2}}$
RETURN (X_{1}, X_{2})

Show that this algorlthm is valld.
3. Suggest generators for the following blvarlate uniform famlles of distrlbutlons:

Density	Parameter(s)	Reference
$\begin{gathered} 1+a\left((m+1) x_{1}^{m}-1\right)\left((n+1) x_{2}^{n}-1\right) \\ \underline{a\left(x_{1}^{1-a}+x_{2}^{1-a}-1\right)^{\frac{2 a-1}{1-a}}} \end{gathered}$	$\frac{1}{m n} \leq a \leq \max (m, n), m, n \geq 0$	Farlie (1960)
$\left(x_{1} x_{2}\right)^{a}$	$a>1$	(derived from multivariate Pareto)
$\begin{aligned} & \frac{\pi\left(1+u^{2}\right)\left(1+v^{2}\right)}{2+u^{2}+v^{2}} \\ & u=1 / \tan ^{2}\left(\pi x_{1}\right), v=1 / \tan ^{2}\left(\pi x_{2}\right) \end{aligned} \quad \text { where }$		Mardia (1970) (derived from multivariate Cauchy)
$1+a\left(2 x_{1}-1\right)\left(2 x_{2}-1\right)+b\left(3 x_{1}{ }^{2}-1\right)\left(3 x_{2}{ }^{2}-1\right)$	$\|a\| \leq \frac{1}{2},\|b\| \leq \frac{1}{8}$	Kimeldorf and Sampson (1975)

4. This is about varlous measures of assoclation. Construct a blvarlate unlform distribution for which $\rho=\rho_{g}=\tau=0$, and $X_{2}=g\left(X_{1}\right)$ for some function g (1.e. X_{2} is completely dependent on X_{1}, see e.g. Lancaster, 1983).
5. Show that for the normal distribution $\ln R^{2},|\rho|=\rho *=\bar{\rho}$.
6. Prove that $\bar{\rho}=0$ implies independence of components (Renyl, 1959).
7. Recall the deflnition of complete dependence of exercise 3.4. Construct a sequence of blvarlate unlform distributions \ln which for every n, the second coordinate is completely dependent on the first coordinate. The sequence should aiso tend in distribution to the independent bivarlate unlform distribution (Klmeldorf and Sampson, 1978). Conclude that the notion of complete dependence is pecullar.
*. The phenomenon described in exerclse 7 cannot happen for monotone dependent sequences. If a sequence of random blvarlate uniform random vectors in
which the second component is monotone dependent on the first component for all n, tends in distrlbution to a random vector, then this new random vector is blvarlate unlform, and the second component is monotone dependent on the first component (Klmeldorf and Sampson, 1978).
8. One measure of assoclation for blvarlate distrlbutions is

$$
\begin{aligned}
& L=\sup _{A}\left|P\left(\left(X_{1}, X_{2}\right) \in A\right)-P\left(\left(X_{1}, X_{2}\right) \in A\right)\right| \\
& =\frac{1}{2} \int\left|f\left(x_{1}, x_{2}\right)-f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)\right| d x_{1} d x_{2},
\end{aligned}
$$

where A is a Borel set of R^{2}, X^{\prime} is distributed as X_{2}, but is independent of X_{1}, f is the density of (X_{1}, X_{2}) and f_{1}, f_{2} are the marginal densitles. The second equality is valld only if the densities involved in the right-hand-side exist. Prove the second equallty (Scheffe, 1947).
10. Nagao and Kadoya (1971) studled the following blvariate exponential density:

$$
f\left(x_{1}, x_{2}\right)=\frac{e^{-\frac{1}{1-r}\left(\frac{x_{1}}{\sigma_{1}}+\frac{x_{2}}{\sigma_{2}}\right)} I_{0}\left(\frac{2}{1-r} \sqrt{\frac{r x_{1} x_{2}}{\sigma_{1} \sigma_{2}}}\right)}{\sigma_{1} \sigma_{2}(1-r)}
$$

where $r \in[0,1)$ is a measure of dependence, $\sigma_{1}, \sigma_{2}>0$ are constants (parameters), and I_{0} is a modifled Bessel function of the flrst kind. Obtain the parameters of the marginal exponentlal distributions. Compute the correlation coefflcient ρ. Finally indicate how you would generate random vectors in uniformly bounded expected time.
11. Show that the property of comprehensiveness of a bivariate family is invariant under strlctly monotone transformations of the coordinate axes (Kimeldorf and Sampson, 1975).
12. Show that Plackett's blvarlate family with parameter $a \geq 0$ is comprehensive. Show in particular that Frechet's extremal distributions are attalned for $a=0$ and $a \rightarrow \infty$, and that the product of the marginals is obtalned for $a=1$.
13. Show that the standard bivarlate normal family (1.e., the normal distribution in the plane) with varlable correlation is comprehensive.
14. Show that Morgenstern's blvarlate famlly is not comprehensive.
15. Consider the Johnson-Tenenbein family of Example 3.4, with parameter $c \in[0,1]$. Let U and V have uniform $[0,1]$ densities.
A. Find H such that the distribution is blvarlate unlform. Hint: H is parabollc on $[0, b]$ and $[1-b, 1]$, and linear \ln between, where $b=\min (c, 1-c)$.
B. Find ρ, τ and ρ_{g} as a function of c. In particular, prove that

$$
\tau=\left\{\begin{array}{ll}
\frac{4 c-5 c^{2}}{6(1-c)^{2}} & 0<c<\frac{1}{2} \\
\frac{11 c^{2}-6 c+1}{8 c^{2}} & \frac{1}{2}<c<1
\end{array},\right.
$$

$$
\rho_{g}=\left\{\begin{array}{ll}
\frac{10 c-13 c^{2}}{10(1-c)^{2}} & 0<c<\frac{1}{2} \\
\frac{3 c^{3}+16 c^{2}-11 c+2}{10 c^{3}} & \frac{1}{2}<c<1
\end{array} .\right.
$$

Conclude that all nonnegative values for ρ, τ and ρ_{g} are achlevable by adJusting c (Johnson and Tenenbeln, 1981).
16. Show that for Gumbel's blvarlate exponentlal famlly with parameter $a \in[0,1]$, the correlation reaches a minimum for $a=1$, and this minimum is $-0.40385 . .$. Show that the correlation is a decreasing function of a, taking the maximal value 0 at $a=0$.
17. Consider the following palr of random variables: $\beta_{1} E_{1}+S_{1} E_{2}, \beta_{2} E_{2}+S_{2} E_{1}$ where $P\left(S_{i}=1\right)=1-P\left(S_{i}=0\right)=1-\beta_{i}(i=1,2)$ and E_{1}, E_{2} are ind exponentlal random varlables (Lawrance and Lewls (1983)). Does thls family contaln one of Frechet's extremal distributions?
18. Compute ρ, ρ_{g} and τ for the blvarlate exponentlal distribution of Johnson and Tenenbein (1981), defined as the distribution of $E_{1},-\log \left((1-c) e^{-\frac{E_{2}}{1-c}}+c e^{-\frac{E_{2}}{c}}\right)+\log (1-2 c)$ where $c \in[0,1]$ and E_{1}, E_{2} are 11 d exponentlal random variables.
18. Schmelser and Lal (1982) proposed the following method for generating a blvarlate gamma random vector: let G_{1}, G_{2}, G_{3} be independent gamma random varlables with respective parameters a_{1}, a_{2}, a_{3}, let U, V be an independent blvarlate unlform random vector with $V=U$ or $V=1-U$, let F_{b} denote the gamma distribution function with parameter b, and let b_{1}, b_{2} be two nonnegative numbers. Deflne

$$
\left(X_{1}, X_{2}\right)=\left(F_{b_{1}}^{-1}(U)+G_{1}+G_{3}, F_{b_{2}}^{-1}(V)+G_{2}+G_{3}\right) .
$$

A. Show that thls random vector is bivarlate gamma.
B. Show constructively that the five-parameter family is comprehensive, i.e. for every possible combination of specifled marginal gamma distributions, give the values of the parameters needed to obtain the Frechet extremal distributions and the product distribution. Indicate also whether $V=U$ or $V=1-U$ is needed each time.
C. Show that by varying the five parameters, we can cover all theoretically possible combinations for the correlation coefficlent and the marginal gamma parameters.
D. Consider the simpllfled three parameter model
$\left(X_{1}, X_{2}\right)=\left(F_{b_{1}}^{-1}(U)+G_{1}, F_{\alpha_{2}}^{-1}(V)\right)$
for generating a blvariate gamma random vector with marginal parameters (α_{1}, α_{2}) and correlation ρ. Show that thls famlly is stlll comprehensive. There are two equations for the two free parameters (b_{1} and a_{1}).

Suggest a good numerlcal algorithm for finding these parameters.
20. A bivariate Poisson distribution. $\left(X_{1}, X_{2}\right)$ is sald to be bivariate Polsson with parameters $\lambda_{1}, \lambda_{2}, \lambda_{3}$, when it has characteristic function

$$
\phi\left(t_{1}, t_{2}\right)=e^{\lambda_{1}\left(e^{t t_{1}}-1\right)+\lambda_{2}\left(e^{t_{2}}-1\right)+\lambda_{3}\left(e^{t_{1}+t t_{2}}-1\right)} .
$$

A. Show that thls is indeed a blvarlate Polsson distribution.
B. Apply the trivarlate reduction principle to generate a random vector with the given distribution.
C. (Kemp and Loukas, 1878). Show that we can generate the random vector as ($Z+W, X_{2}$) where X_{2} is Polsson $\left(\lambda_{1}+\lambda_{3}\right)$, and glven X_{2}, Z, W are independent Polsson $\left(\lambda_{2}\right)$ and binomlal $\left(X_{2}, \lambda_{3} /\left(\lambda_{1}+\lambda_{3}\right)\right.$) random varlables. Hint: prove thls via generating functions.
21. The Johnson-Ramberg bivariate uniform family. Let U_{1}, U_{2}, U_{3} be ild uniform [0,1] random varlables, and let $b \geq 0$ be a parameter of a family of blvarlate uniform random vectors defined by

$$
\left(X_{1}, X_{2}\right)=\left(\frac{U_{1} U_{3}^{b}-b U_{1}^{\frac{1}{b}} U_{3}}{1-b}, \frac{U_{2} U_{3}^{b}-b U_{2}^{\frac{1}{b}} U_{3}}{1-b}\right)
$$

This construction can be considered as trivarlate reduction. Show that the full range of nonnegative correlations is possible, by first showing that the correlation is

$$
\frac{b^{2}\left(2 b^{2}+9 b+8\right)}{(1+b)^{2}(1+2 b)(2+b)} .
$$

Show also that one of the Frechet extremal distributions can be approximated arbitranily closely from within the famlly. For $b=1$, the defining formula is Invalld. By what should it be replaced? (Johnson and Ramberg, 1977)
22. Consider a family of univarlate distribution functions $\left\{1-(1-F)^{a}, a>0\right\}$, where F is a distribution function. Familles of this form are closed under the operation $\min \left(X_{1}, X_{2}\right)$ where X_{1}, X_{2} are independent random variables with parameters a_{1}, a_{2} : the parameter of the minimum is $a_{1}+a_{2}$. Use this to construct a blvarlate family via trlvarlate reduction, and compute the correlations obtalnable for blvarlate exponentlal, geometric and Welbull distributlons obtalned in thls manner (Arnold, 1987).
23. The bivariate Hermite distribution. A unlvarlate Hermite distribution $\left\{p_{i}, i \geq 0\right\}$ with parameters $a, b>0$ is a distribution on the nonnegative integers which has generating function (defined as $\sum_{i} p_{i} s^{i}$)

$$
e^{a(s-1)+b\left(s^{2}-1\right)}
$$

The bivariate Hermite distrlbution with parameters $a_{i}>0, i=1,2, \ldots, 5$, is defined on all palrs of nonnegatlve integers and has blvariate generating
function (deflned as $E\left(s_{1}{ }^{X_{1}} s_{2}{ }^{X_{2}}\right)$ where $\left(X_{1}, X_{2}\right)$ is a blvariate Hermite random vector)

$$
e^{a_{1}\left(s_{1}-1\right)+a_{2}\left(s_{1}{ }^{2}-1\right)+a_{3}\left(s_{2}-1\right)+a_{4}\left(s_{2}{ }^{2}-1\right)+a_{5}\left(s_{1} s_{2}-1\right)}
$$

(Kemp and Kemp (1985,1988); Kemp and Papageorglou (1978)).
A. How can you generate a unlvarlate Hermite (a, b) random varlate using only Polsson random variates in uniformly bounded expected time?
B. Glve an algorlthm for the efflclent generation of blvarlate Hermite random varlates. Hint: derive first the generating function of ($X_{1}+X_{3}, X_{2}+X_{3}$) where X_{1}, X_{2}, X_{3} are independent random varlables with generating functions g_{1}, g_{2}, g_{3}.
Thls exercise is adapted from Kemp and Loukas (1978).
24. Write an algorithm for computing the probabllitles of a blvarlate discrete distribution on $\{1,2, \ldots, K\}^{2}$ with speclfied marginal distributions, and achleving Frechet's Inequality. Repeat for both of Frechet's extremal distributions.

4. THE DIRICHLET DISTRIBUTION.

4.1. Definitions and properties.

Let a_{1}, \ldots, a_{k+1} be positive numbers. Then (X_{1}, \ldots, X_{k}) has a Dirichlet distribution with parameters $\left(a_{1}, \ldots, a_{k+1}\right)$, denoted $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$, if the Joint distribution has density

$$
f\left(x_{1}, \ldots, x_{k}\right)=c x_{1}^{a_{1}-1} \cdots x_{k}^{a_{k}-1}\left(1-x_{1}-\cdots-x_{k}\right)^{a_{k+1}-1}
$$

over the k-dimensional simplex S_{k} defined by the inequalities $x_{i}>0(i=1,2, \ldots, k), \sum_{i=1}^{k} x_{i}<1$. Here c is a normallzation constant. Baslcally, the X_{i} 's can be thought of as a_{i}-spacings in a unlform sample of size $\sum a_{j}$ If the a_{i} 's are all positive integers. The only novelty is that the a_{i} 's are now allowed to take non-Integer values. The interested reader may want to refer back to section V. 2 for the propertles of spacings and to section V. 3 for generators. The present section is only a reflnement of sorts.

Theorem 4.1.

Let Y_{1}, \ldots, Y_{k+1} be independent gamma random varlables with parameters $a_{i}>0$ respectively. Deflne $Y=\Sigma Y_{i}$ and $X_{i}=Y_{i} / Y \quad(i=1,2, \ldots, k)$. Then $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$ and $\left(X_{1}, \ldots, X_{k}\right)$ is independent of Y.

Conversely, if Y is gamma $\left(\sum a_{i}\right)$, and Y is independent of $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1_{k}} \ldots, a_{k+1}\right)$ then the random variables $Y X_{1}, \ldots, Y X_{k}, Y\left(1-\sum_{i=1} X_{i}\right)$ are independent gamma random varlables with parameters a_{1}, \ldots, a_{k+1}.

Proof of Theorem 4.1.

The joint density of the Y_{i} 's is

$$
f\left(y_{1}, \ldots, y_{k+1}\right)=c \prod_{i=1}^{k+1} y_{i}^{a_{i}-1} e^{-\sum_{i=1}^{k+1} y_{i}}
$$

where c is a normallzation constant. Consider the transformation $y=\sum_{y_{i}}, x_{i}=y_{i} / y \quad(i \leq k)$, which has as reverse transformation $y_{i}=y x_{i} \quad(i \leq k), y_{k+1}=y\left(1-\sum_{i=1}^{k} x_{i}\right)$. The Jacobian of the transformation is y^{k}. Thus, the joint density of $Y^{i}, \bar{X}_{1}, \ldots, X_{k}$) is

$$
g\left(y, x_{1}, \ldots, x_{k}\right)=c \prod_{i=1}^{k} x_{i}^{a_{i}-1}\left(1-\sum_{i=1}^{k} x_{i}\right)^{a_{k+1}-1} y^{\sum_{i=1}^{k+1} a_{i}-1} e^{-y}
$$

This proves the first part of the Theorem. The proof of the second part is omitted.

Theorem 4.1 suggests a generator for the Dirichlet distribution via gamma generators. There are important relationshlps with the beta distribution as well, which are revlewed by Wilks (1982), Altchison (1983) and Basu and Tiwarl (1982). Here we will just mention the most useful of these relationships.

Theorem 4.2.

Let Y_{1}, \ldots, Y_{k} be independent beta random variables where Y_{i} is beta $\left(a_{i}, a_{i+1}+\cdots+a_{k+1}\right)$. Then $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$ where the X_{i} 's are deflned by

$$
X_{i}=Y_{i} \prod_{j=1}^{i-1} Y_{j}
$$

Conversely, when $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$, then the random variables Y_{1}, \ldots, Y_{k} defined by

$$
Y_{i}=\frac{X_{i}}{1-X_{1^{-}} \cdots-X_{i-1}}
$$

are Independent beta random varlables with parameters given in the first statement of the Theorem.

Theorem 4.3.

Let Y_{1}, \ldots, Y_{k} be independent random variables, where Y_{i} is beta $\left(a_{1}+\cdots+a_{i}, a_{i+1}\right)$ for $i<k$ and Y_{k} is gamma $\left(a_{1}+\cdots+a_{k}\right)$. Then the following random varlables are independent gamma random varlables with parameters a_{1}, \ldots, a_{k} :

$$
X_{i}=\left(1-Y_{i-1}\right) \prod_{j=i}^{k} Y_{j} \quad(i=1,2, \ldots, k)
$$

To avoid trivialitles, set $Y_{0}=0$.
Conversely, when X_{1}, \ldots, X_{k} are independent gamma random variables with parameters a_{1}, \ldots, a_{k}, then the Y_{i} 's deffned by

$$
Y_{i}=\frac{X_{1}+\cdots+X_{i}}{X_{1}+\cdots+X_{i+1}} \quad(i=1,2, \ldots, k-1)
$$

and

$$
Y_{k}=X_{1}+\cdots+X_{k}
$$

are Independent. Here Y_{i} is beta $\left(a_{1}+\cdots+a_{i}, a_{i+1}\right)$ for $i<k$ and Y_{k} is gamma $\left(a_{1}+\cdots+a_{k}\right)$.

The proofs of Theorems 4.2 and 4.3 do not differ substantlally from the proof of Theorem 4.1, and are omltted. See however the exerclses. Theorem 4.2 tells us how to generate a Dirichlet random vector by transforming a sequence of beta random varlables. Typlcally, this is more expensive than generating a Dirlchlet random vector by transforming a sequence of gamma random varlables, as
is suggested by Theorem 4.1.
Theorem 4.2 also tells us that the marginal distrlbutions of the Dirichlet distribution are all beta. In particular, when $\left(X_{1}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$, then X_{i} is beta $\left(a_{i}, \sum_{j \neq i} a_{j}\right)$.

Theorem 4.1 tells us how to relate Independent gammas to a Dirichlet random vector. Theorem 4.2 tells us how to relate independent betas to a Dirlchlet distribution. These two connections are put together in Theorem 4.3, where independent gammas and betas are related to each other. This offers the exciting possibillty of using slmple transformatlons to transform long sequences of gamma random vartables into equally long sequences of beta random variables. Unfortunately, the beta random varlables do not have equal parameters. For example, consider k ind gamma (a) random variables X_{1}, \ldots, X_{k}. Then the second part of Theorem 4.3 tells us how to obtain independent random varlables distributed as beta (a, a), beta ($2 a, a$), . ., beta ($(k-1) a, a$) and gamma ($k a$) random variables respectively. When $a=1$, thls reduces to a well-known property of spacings glven in section V.2.

We also deduce that $B G,(1-B) G$ are independent gamma (a), gamma (b) random variables when G is gamma ($a+b$) and B is beta (a, b) and independent of G. In particular, we obtain Stuart's theorem (Stuart, 1962), which gives us a very fast method for generating gamma (a) random varlates when $a<1$: a gamma (a) random varlate can be generated as the product of a gamma ($a+1$) random varlate and an independent beta ($a, 1$) random varlate (the latter can be obtalned as $e^{-E / a}$ where E is exponentlally distributed).

4.2. Liouville distributions.

Sivazllan (1981) introduced the class of Llouville distributions, which generallzes the Dirichlet distributions. These distributions have a density on R^{k} glven by

$$
c \psi\left(\sum_{i=1}^{k} x_{i}\right) \prod_{i=1}^{k} x_{i}^{a_{i}-1} \quad\left(x_{i} \geq 0, i=1,2, \ldots, k\right)
$$

where ψ is a Lebesgue measurable nonnegative function, a_{1}, \ldots, a_{k} are positive constants (parameters), and c is a normallzation constant. The functional form of ψ is not flxed. Note however that not all nonnegative functions ψ can be substltuted in the formula for the denslty because the integral of the unnormalized density has to be finite. A random vector with the density given above is sald to be Llouville $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$. Sivazllan (1981) calls thls distrlbution a Liou-
ville distribution of the first kind.

Example 4.1. Independent gamma random variables.

When X_{1}, \ldots, X_{k} are independent gamma random varlables with parameters a_{1}, \ldots, a_{k}, then $\left(X_{1}, \ldots, X_{k}\right)$ is $L_{k}\left(e^{-x}, a_{1}, \ldots, a_{k}\right)$.

Example 4.2.

A random varlable X with density $c \psi(x) x^{a-1}$ on $[0, \infty)$ is $L_{1}(\psi, a)$. This famlly of distributions contalns all densitles on the positive halfilne.

We are mainly interested in generating random varlates from multivariate Llouville distributions. It turns out that two key ingredients are needed here: a Dirichlet generator, and a generator for univarlate Llouville distributions of the form given in Example 4.2. The key property ls given in Theorem 4.4.

Theorem 4.4. (Sivazlian, 1981)
The normallzation constant c for the Llouville $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$ density is glven by

where $a=\sum_{i=1}^{k} a_{i}$.
Let $\left(X_{1}, \ldots, X_{k}\right)$ be $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$, and let $\left(Y_{1}, \ldots, Y_{k}\right)$ be deffned by

$$
\begin{aligned}
Y_{i} & =\frac{X_{i}}{X_{1}+\cdots+X_{k}} \quad(1 \leq i<k), \\
Y_{k} & =X_{1}+\cdots+X_{k}
\end{aligned}
$$

Then $\left(Y_{1}, \ldots, Y_{k-1}\right)$ is Dirichlet $\left(a_{k}, \ldots, a_{k}\right)$, and Y_{k} is independent of this Dirichlet random vector and $L_{1}\left(\psi, \sum_{i=1}^{k} a_{i}\right)$.

Conversely, if $\left(Y_{1}, \ldots, Y_{k-1}\right)$ is Dirichlet $\left(a_{1}, \ldots, a_{k}\right)$, and Y_{k} is Independent of this Dirlchlet random vector and $L_{1}\left(\psi, \sum_{i=1} a_{i}\right)$, then the random vector $\left(X_{1}, \ldots, X_{k}\right)$ deflned by

$$
\begin{aligned}
& X_{i}=Y_{i} Y_{k} \quad(1 \leq i<k), \\
& X_{k}=\left(1-Y_{1}-\cdots-Y_{k-1}\right) Y_{k} .
\end{aligned}
$$

Is $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$.

Proof of Theorem 4.4.

The constant c is given by

$$
\begin{aligned}
& \frac{1}{c}=\int_{0}^{\infty} \cdots \int_{0}^{\infty} \psi\left(\sum_{i=1}^{k} x_{i}\right) \prod_{i=1}^{k} x_{i}^{a_{i}-1} d x_{1} \cdots d x_{k} \\
& =\frac{\prod_{i=1}^{k} \Gamma\left(a_{i}\right)}{\Gamma\left(\sum_{i=1}^{k} a_{i}\right)} \int_{0}^{\infty} \psi(x) x^{a-1} d x,
\end{aligned}
$$

where a property of Llouville multiple Integrals is used (Sivazlian, 1981). This proves the first part of the Theorem.

Assume next that $\left(X_{1}, \ldots, X_{k}\right)$ is $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$, and that $\left(Y_{1}, \ldots, Y_{k}\right)$ is obtalned via the transformation glven in the statement of the Theorem. This transformation has Jacoblan $Y_{k}{ }^{k-1}$. The jolnt density of $\left(Y_{1}, \ldots, Y_{k}\right)$ is

$$
\begin{aligned}
& c y_{k}^{k-1} \psi\left(y_{k}\right) \prod_{i=1}^{k-1}\left(y_{i} y_{k}\right)^{a_{i}-1}\left(\left(1-\sum_{i=1}^{k-1} y_{i}\right) y_{k}\right)^{a_{k}-1} \\
& =c \psi\left(y_{k}\right) y_{k}^{a-1} \prod_{i=1}^{k-1} y_{i}^{a_{i}-1}\left(1-\sum_{i=1}^{k-1} y_{i}\right)^{a_{k}-1} \quad\left(y_{i} \geq 0(i=1,2, \ldots, k-1), \sum_{i=1}^{k-1} y_{i} \leq 1\right) .
\end{aligned}
$$

In thls we recognize the product of an $L_{1}(\psi, a)$ denslty (for Y_{k}), and a Dirichlet $\left(a_{1}, \ldots, a_{k}\right)$ density (for $\left(Y_{1}, \ldots, Y_{k-1}\right)$). This proves the second part of the Theorem.

For the third part, we argue similarly, starting from the last density shown above. After the transformation to $\left(X_{1}, \ldots, X_{k}\right)$, which has Jacoblan $\left(\sum_{i=1}^{k} X_{i}\right)^{k-1}$, we obtain the $L_{k}\left(\psi, a_{1}, \ldots, a_{k}\right)$ density again

Dirlchlet generators are described in section 4.1 , whlle $L_{1}(\psi, a)$ generators can be handled individually based upon the particular form for ψ. Since this is a univarlate generatlon problem, we won't be concerned with the assoclated problems here.

4.3. Exercises.

1. Prove Theorems 4.2 and 4.3 .
2. Prove the following fact: when $\left(\underset{k+1}{X_{1}}, \ldots, X_{k}\right) \sim D\left(a_{1}, \ldots, a_{k+1}\right)$, then $\left(X_{1}, \ldots, X_{i}\right) \sim D\left(a_{1}, \ldots, a_{i}, \sum_{j=i+1}^{k+1} a_{j}\right), i<k$.
3. The generalized Liouville distribution. A random vector (X_{1}, \ldots, X_{k}) Is generallzed Llouville (Sivazlian, 1981) when it has a density which can be written as

$$
c \psi\left(\sum_{i=1}^{k}\left(\frac{x_{i}}{c_{i}}\right)^{b_{i}}\right) \prod_{i=1}^{k} x_{i}^{a_{i}-1} \quad\left(x_{i} \geq 0\right)
$$

Here $a_{i}, b_{i}, c_{i}>0$ are parameters, ψ is a nonnegative Lebesgue measurable function, and c is a normallzation constant. Generallze Theorem 4.4 to thls distribution. In partlcular, show how you can generate random vectors with thls distrlbution when you have a Dirlchlet generator and an $L_{1}(\psi, a)$ generator at your disposal.
4. In the proof of Theorem 4.4, prove the two statements made about the Jacoblan of the transformation.

5. SOME USEFUL MULTIVARIATE FAMILIES.

5.1. The Cook-Johnson family.

Cook and Johnson (1981) consider the multivarlate unlform distribution defined as the distribution of

$$
\left(X_{1}, \ldots, X_{d}\right)=\left(\left(1+\frac{E_{1}}{S}\right)^{-a}, \ldots,\left(1+\frac{E_{d}}{S}\right)^{-a}\right)
$$

where E_{1}, \ldots, E_{d} are ild exponential random variables, S is an independent gamma (a) random variable, and $a>0$ is a parameter. This family is interesting from a varlety of points of view:
A. Random varlate generation is easy.
B. Many multivarlate distributions can be obtalned by approprlate monotone transformations of the components, such as the multivariate logistic distributlon (Satterthwalte and Hutchinson, 1978; Johnson and Kotz, 1872, p. 291), the multivarlate Burr distrlbution (Takahasi, 1965; Johnson and Kotz, 1972, p. 288), and the multivarlate Pareto distribution (Johnson and Kotz, 1972, p. 286).
C. For $d=\mathbf{2}$, the full range of nonnegative correlations can be achieved. The independent blvarlate uniform distribution and one of Frechet's extremal distributions (corresponding to the case $X_{2}=X_{1}$) are obtalnable as limits.

Theorem 5.1.

The Cook-Johnson distribution has distribution function

$$
F\left(x_{1}, \ldots, x_{d}\right)=\left(\sum_{i=1}^{d} x_{i}^{-\frac{1}{a}}-(d-1)\right)^{-a} \quad\left(0<x_{i} \leq 1, i=1,2, \ldots, d\right)
$$

and density

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{d}\right)= & \frac{\Gamma(a+d)}{\Gamma(a) a^{d}} \prod_{i=1}^{d} x_{i}^{-\frac{1}{a}-1}\left(\sum_{i=1}^{d} x_{i}{ }^{-\frac{1}{a}}-(d-1)\right)^{-(a+d)} \\
& \left(0<x_{i} \leq 1, i=1,2, \ldots, d\right)
\end{aligned}
$$

The distribution is invarlant under permutations of the coordinates, and is multlvarlate unform. Furthermore, as $a \rightarrow \infty$, the distribution function converges to $\stackrel{d}{\Pi} x_{i}$ (the independent case), and as $a \downarrow$, it converges to $m \ln \left(x_{1}, \ldots, x_{d}\right)$ (the $i=1$
totally dependent case).

Proof of Theorem 5.1.

The distribution function is derived without difficulty. The density is obtalned by differentiation. The permutation Invarlance follows by inspection. The marginal distribution function of the first component is $F\left(x_{1}, 1, \ldots, 1\right)=x_{1}$ for $0<x_{1} \leq 1$. Thus, the distribution is multivariate unlform. The llmit of the distribution function as $a \downarrow 0$ is $\min \left(x_{1}, \ldots, x_{d}\right)$. Similarly, for $0<\min \left(x_{1}, \ldots, x_{d}\right) \leq \max \left(x_{1}, \ldots, x_{d}\right)<1$, as $a \rightarrow \infty$,

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{d}\right)=\left(\sum_{i=1}^{d} e^{-\frac{\log \left(x_{i}\right)}{a}}-(d-1)\right)^{-a} \\
& =\left(\sum_{i=1}^{d}\left(1-\frac{\log \left(x_{i}\right)}{a}+O\left(a^{-2}\right)\right)-(d-1)\right)^{-a} \\
& =\left(1-\frac{\log \left(\prod_{i=1}^{d} x_{i}\right)}{a}+O\left(a^{-2}\right)\right)^{-a} \\
& \sim e^{\log \left(\prod_{i=1}^{d} x_{i}\right)}=\prod_{i=1}^{d} x_{i} .
\end{aligned}
$$

Let us now turn to a collection of other distributlons obtalnable from the Cook-Johnson famlly with parameter a by simple transformations of the X_{i} 's. Some transformations to be applled to each X_{i} are shown in the next table.

Transformation for X_{i}	Parameters	Reference	
$-\log \left(X_{i}^{-\frac{1}{a}}-1\right)$		Gumbel's bivariate logistic (d=2) and the multivariate logistic (a=1)	Satterthwaite and Hutchinson (1978),
Johnson and Kotz $(1972, \mathrm{p}, 291)$			
$\left(d_{i}\left(X_{i}^{-\frac{1}{a}}-1\right)\right)^{\frac{1}{c_{i}}}$	$c_{i}, d_{i}>0$	multivariate Burr	Takahasi (1965), Johnson and Kotz $(1972$, p. 286)
$a_{i} X_{i}^{-\frac{1}{a}}$	$a_{i}>0$	multivariate Pareto	Johnson and Kotz $(1972, \mathrm{p} .286)$
$\Phi^{-1}\left(X_{i}\right)$	None. Φ is the nor- mal distribution function.	multivariate normal without elliptical contours	Cook and Johnson (1981)

Example 5.1. The multivariate logistic distribution.

In 1961, Gumbel proposed the bivariate logistic distribution, a special case of the generallzed multivariate logistic distribution with distribution function

$$
\left(1+\sum_{i=1}^{d} e^{-x_{i}}\right)^{-a} \quad\left(x_{i}>0, i=1,2, \ldots, d\right)
$$

For $a=1$ this reduces to the multivariate logistic distribution given by Johnson and Kotz (1972, p. 293). Note that from the form of the distribution function, we can deduce immedlately that all univariate and multivariate marginals are agaln multivarlate logistlc. Transformation of a Cook-Johnson random varlate leads to the following simple recipe for generating multivarlate logistic random varlates:

Multivariate logistic generator

Generate iid exponential random variates E_{1}, \ldots, E_{d+1}.
$\operatorname{RETURN}\left(\log \left(\frac{E_{1}}{E_{d+1}}\right), \ldots, \log \left(\frac{E_{d}}{E_{d+1}}\right)\right)$

Example 5.2.

The multivarlate normal distribution in the table has nonellipttcal contours. Kowalskl (1973) provides other examples of multivarlate normal distributions with nonnormal densities.

5.2. Multivariate Khinchine mixtures.

Bryson and Johnson (1882) proposed the famlly of distributions defined constructively as the distributions of random vectors in R^{d} which can be written as

$$
\left(Z_{1} U_{1}, \ldots, \grave{Z}_{d} U_{d}\right)
$$

where the Z_{1}, \ldots, Z_{d} is independent of the multivariate uniform random vector U_{1}, \ldots, U_{d}, and has a distribution which is such that certaln given marginal distributions are obtalned. Recalling Khinchine's theorem (section IV.8.2), we note that all marginal distributions have unimodal densitles.

Controlled dependence can be Introduced In many ways. We could Introduce dependence in U_{1}, \ldots, U_{d} by picking a multivariate unlform distribution based upon the multivarlate normal density or the Cook-Johnson distribution. Two models for the Z_{i} 's seem natural:
A. The Identical model: $Z_{1}=\cdots=Z_{d}$.
B. The independent model: Z_{1}, \ldots, Z_{d} are lld.

These models can be mixed by choosing the Identical model with probability p and the independent model with probabllity $1-p$.

Example 5.3.

To achleve exponential marginals, we can take all Z_{i} 's gamma (2). In the identical bivarlate model, the joint blvarlate density is

$$
\int_{\max \left(x_{1}, x_{2}\right)}^{\infty} \frac{e^{-t}}{t} d t
$$

In the independent bivariate model, the joint density is

$$
\frac{x_{1} x_{2}}{\left(x_{1}+x_{2}\right)^{3}}\left(2+2\left(x_{1}+x_{2}\right)+\left(x_{1}+x_{2}\right)^{2}\right) e^{-\left(x_{1}+x_{2}\right)}
$$

Unfortunately, the correlation in the first model is $\frac{1}{2}$, and that of the second model is $\frac{1}{3}$. By probability mixing, we can only cover correlations in the small range $\left[\frac{1}{3}, \frac{1}{2}\right]$. Therefore, it is useful to replace the independent model by the
totally independent model (with density $e^{-\left(x_{1}+x_{2}\right)}$), thereby enlarging the range to $\left[0, \frac{1}{2}\right]$.

Example 5.4. Nonnormal bivariate normal distributions.

For symmetric marginals, it is convenlent to take the U_{i} 's uniform on $[-1,1]$. It is easy to see that in order to obtain normal marginals, the Z_{i} 's have to be distrlbuted as the square roots of chl-square random varlables with 3 degrees of freedom. If (U_{1}, U_{2}) has blvariate density h on $[-1,1]^{2}$, then $\left(Z_{1} U_{1}, Z_{1} U_{2}\right)$ has joint density

$$
\int_{\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)}^{\infty} \Gamma^{-1}\left(\frac{3}{2}\right) 2^{-\frac{5}{2}} e^{-\frac{t^{2}}{2}} h\left(\frac{1}{2}+\frac{y_{1}}{2 t}, \frac{1}{2}+\frac{y_{2}}{2 t}\right) d t
$$

Thls provides us with a rich source of examples of blvarlate distributions with normal marginals, zero correlations and non-normal densitles. At the same time, random variate generation for these examples is trivial (Bryson and Johnson, 1982).

5.3. Exercises.

1. The multivariate Pareto distribution. The univarlate Pareto density with parameter $a>0$ is deflned by $a / x^{a+1}(x \geq 1)$. Johnson and Kotz (1872, p. 286) deflne a multivarlate Pareto density on R^{d} with parameter a by

$$
\frac{a(a+1) \cdots(a+d-1)}{\left(\sum_{i=1}^{d} x_{i}-(d-1)\right)^{a+d}} \quad\left(x_{i} \geq 1, i=1,2, \ldots, d\right)
$$

A. Show that the marginals are all unlvarlate Pareto with parameter a.
B. In the bivarlate case, show that the correlation is $\frac{1}{a}$. Since the marginal varlance is finlte if and only if $a>2$, we see that all correlations between 0 and $\frac{1}{2}$ can be achleved.
C. Prove that a random vector can be generated as $\left(X_{1}^{-\frac{1}{a}}, \ldots, X_{d}{ }^{-\frac{1}{a}}\right)$ where (X_{1}, \ldots, X_{d}) has the Cook-Johnson distribution with parameter a. Equivalently, it can be generated as $\left(1+\frac{E_{1}}{S}, \ldots, 1+\frac{E_{d}}{S}\right)$,
where E_{1}, \ldots, E_{d} are ild exponential random varlables, and S is an independent gamma (a) random variable.

6. RANDOM MATRICES.

6.1. Random correlation matrices.

To test certaln statistical methods, one should be able to create random test problems. In several applicatlons, one needs a random correlation matrix. Thls problem is equivalent to that of the generation of a random covariance matrix if one asks that all varlances be one. Unfortunately, posed as such, there are infinitely many answers. Usually, one adds structural requirements to the correlation matrix in terms of expected value of elements, elgenvalues, and distributions of elements. It would lead us too far to discuss all the possibilltles in detall. Instead, we just klck around a few ideas to help us to better understand the problem. For a recent survey, consult Marsaglla and Olkin (1984).

A correlation matrix is a symmetric positive seml-definite matrix with ones on the dlagonal. It is well known that if H is a $d \times n$ matrix with $n \geq d$, then $\mathbf{H H}^{\prime}$ is a symmetric positive seml-deflnite matrix. To make it a correlation matrix, it is necessary to make the rows of H of length one (this forces the diagonal elements to be one). Thus, we have the following property, due to Marsaglia and Olkin (1984):

Theorem 6.1.

HH^{\prime} is a random correlation matrix if and only if the rows of \mathbf{H} are random vectors on the unit sphere of R^{n}.

Theorem 6.1 leads to a variety of algorithms. One stlll has the freedom to choose the random rows of H according to any reclpe. It seems loglcal to take the rows as independent uniformly distributed random vectors on the surface of C_{n}, the unit sphere of R^{n}, where $n \geq d$ is chosen by the user. For this case, one can actually compute the explicit form of the marginal distributlons of $\mathbf{H H}^{\prime}$. Marsaglla and Olkin suggest starting from any $d \times n$ matrix of ild random varlables, and to normallze the rows. They also suggest in the case $n=d$ starting from lower triangular H , thus saving about 50% of the varlates.

The problem of the generation of a random correlation matrlx with a given set of elgenvalues is more difficult. The diagonal matrix \mathbf{D} deffined by

$$
\left|\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \lambda_{d}
\end{array}\right|
$$

has elgenvalues $\lambda_{1}, \ldots, \lambda_{d}$. Also, elgenvalues do not change when \mathbf{D} is pre and post multiplied with an orthogonal matrix. Thus, we need to make sure that there exlst many orthogonal matrices \mathbf{H} such that HDH^{\prime} is a correlation matrix. Since the trace of our correlation matrix must be d, we have to start with a matrix D with trace d. For the construction of random orthogonal H that satisfy the given collection of equations, see Chalmers (1975), Bendel and Mickey (1978) and Marsaglla and Olkin (1984). See also Johnson and Welch (1980), Bendel and Affl (1977) and Ryan (1880).

In a third approach, designed to obtain random correlation matrices with given mean \mathbf{A}, Marsaglla and Olkin (1884) suggest forming $\mathbf{A}+\mathbf{H}$ where \mathbf{H} is a perturbation matrix. We have

Theorem 6.2.

Let \mathbf{A} be a given $d \times d$ correlation matrix, and let H be a random symmetric $d \times d$ matrix whose elements are zero on the diagonal, and have zero mean off the diagonal. Then $\mathbf{A}+\mathbf{H}$ is a random correlation matrix with expected value \mathbf{A} if and only if the elgenvalues of $\mathbf{A}+\mathbf{H}$ are nonnegative.

Proof of Theorem 6.2.

The expected value is obviously correct. Also, $\mathbf{A}+\mathbf{H}$ is symmetric. Furthermore, the diagonal elements are all one. Finally, $\mathbf{A}+\mathbf{H}$ is positive seml-definite when its elgenvalues are nonnegative.

We should also note that the elgenvalues of $\mathbf{A}+\mathbf{H}$ and those of \mathbf{A} differ by at most

$$
\Delta=\max \left(\sqrt{\sum_{i, j} h_{i j}^{2}}, \max _{i} \sum_{j}\left|h_{i j}\right|\right)
$$

where $h_{i j}$ is an element of \mathbf{H}. Thus, if Δ is less than the smallest elgenvalue of A, then $\mathbf{A}+\mathbf{H}$ is a correlation matrix. Marshall and Olkin (1984) use this fact to suggest two methods for generating \mathbf{H} :
A. Generate all $h_{i j}$ for $i<j$ with zero mean and support on $\left[-b_{i j}, b_{i j}\right]$ where the $b_{i j}$'s form a zero dagonal symmetric matrix with Δ smaller than the smallest elgenvalue of \mathbf{A}. Then for $i>j$, deflne $h_{i j}=h_{j i}$. Finally, $h_{i i}=0$.
B. Generate $h_{12}, h_{13}, \ldots, h_{d-1, d}$ with a radially symmetric distribution in or on the $d(d-1) / 2$ sphere of radlus $\lambda / \sqrt{2}$ where λ is the smallest elgenvalue of A. Deffne the other elements of \mathbf{H} by symmetry.

6.2. Random orthogonal matrices.

An orthonormal $d \times d$ matrix can be considered as a rotation of the coordinate axes $\ln R^{d}$. In such a rotation, there are $d(d-1) / 2$ degrees of freedom. To see thls, we look at where the points $(1,0,0, \ldots, 0), \ldots,(0,0, \ldots, 0,1)$ are mapped to by the orthonormal transformation. These polnts are mapped to other points on the unit sphere. In turn, the mapped points deffne the rotation. We can choose the first point (d coordinates). Given the first point, the second polnt should be in a hyperplane perpendlcular to the line Jolning the origin and the first polnt. Here we have only $d-1$ degrees of freedom. Continulng in thls fashlon, we see that there are $d(d-1) / 2$ degrees of freedom in all.

Helberger (1978) (correction by Tanner and Thlsted (1982)) gives an algorithm for generating an orthonormal matrix which is uniformly distributed. This means that the first point is uniformly distributed on the unlt sphere of R^{d}, that the second point is uniformly distributed on the unit sphere of R^{d} intersected with the hyperplane which is perpendicular to the line from the origin to the flrst point, and so forth.

His algorithm requires $d(d+1) / 2$ independent normal random variables, while the total time is $O\left(d^{3}\right)$. It is perhaps worth noting that no heavy matrix computations are necessary at all if one is willing to spend a bit more time. To lllustrate this, consider performing $\binom{d}{2}$ random rotations of two axes, each rotatlon keeping the $d-2$ other axes flxed. A random rotation of two axes is easy to carry out, as we will see below. The global random rotation bolls down to $\binom{d}{2}$ matrix multipllcations. Luckily, each matrix is nearly diagonal: there are four random elements on the intersections of two glven rows and columns. The remalnder of each matrix is purely diagonal with ones on the diagonal. This structure implles that the time needed to compute the global (product) rotation matrix is $O\left(d^{3}\right)$.

A random uniform rotation of R^{2} can be generated as

$$
\left|\begin{array}{cc}
X & Y \\
-S Y & S X
\end{array}\right|
$$

where (X, Y) is a point unlformly distributed on C_{2}, and S is a random sign. A random rotation in R^{3} in which the z-axis remains flxed is

$$
\left|\begin{array}{ccc}
X & Y & 0 \\
-S Y & S X & 0 \\
0 & 0 & 1
\end{array}\right|
$$

Thus, by the threefold combInation (l.e., product) of matrices of thls type, we can obtaln a random rotation in R^{3}. If $\mathbf{A}_{12}, \mathbf{A}_{23}, \mathbf{A}_{13}$ are three random rotations of two axes with the third one fixed, then the product

$$
\mathbf{A}_{12} \mathbf{A}_{23} \mathbf{A}_{13}
$$

Is a random rotation of R^{3}.

6.3. Random $\mathbf{R} \times \mathbf{C}$ tables.

A two-way contingency table with r rows and c columtis is a matrix of nonnegative integer-valued numbers. It is also called an $R \times C$ table. Typlcally, the integers represent the frequencles with which a glven pair of integers is observed in a sample of slze n. The purpose of this section is to explore the generation of a random $R \times C$ table with given sample size (sum of elements) n. Again, this is an IIl-posed problem unless we Impose more structure on 1 lt . The standard restrictlons are:
A. Generate a random table for sample size n, such that all tables are equally 11kely.
B. Generate a random table for sample size n, with given row and column totals. The row totals are called $r_{i}, 1 \leq i \leq r$. The column totals are $c_{i}, 1 \leq i \leq c$.
Let us Just consider problem B. In a first approach, we take a ball-in-urn strategy. Consider balls numbered $1,2, \ldots, n$. Of these, the first c_{1} are class one balls, the next c_{2} are class two balls, and so forth. Think of classes as different colors. Generate a random permutation of the balls, and put the first r_{1} balls in row 1, the next r_{2} balls in row 2, and so forth. Within a given row, class i balls should all be put in column i. This ball-in-urn method, flrst suggested by Boyett (1979), takes tlme proportional to n, and is not recommended when n is much larger than $r c$, the slze of the matrix.

Ball-in-urn method

[NOTE: N is an $r \times c$ array to be returned. $B[1], \ldots, B[n]$ is an auxiliary array.]
Sum $\leftarrow 0$
FOR $j:=1$ TO c DO
FOR $i:=$ Sum +1 TO Sum $+c_{j}$ DO $B[i] \leftarrow j$

$$
\operatorname{Sum} \leftarrow \operatorname{Sum}+c_{j}
$$

Randomly permute the array B.
Set N to all zeroes.
Sum $\leftarrow 0$
FOR $j:=1$ TO r DO
FOR $i:=$ Sum +1 TO Sum $+r_{j}$ DO $N[j, B[i]] \leftarrow N[j, B[i]]+1$

$$
\text { Sum } \leftarrow \operatorname{Sum}+r_{j}
$$

RETURN N

Patefleld (1980) uses the conditional distribution method to reduce the dependence of the performance upon n. The conditional distrlbution of an entry $N_{i j}$ given the entrles in the previous rows, and the previous entries in the same row i is glven by

$$
P\left(N_{i j}=k\right)=\frac{\alpha \beta \gamma \delta}{\epsilon \eta \zeta^{\theta} \theta k!}
$$

where

$$
\begin{aligned}
& \alpha=\left(r_{i}-\sum_{l<j} N_{i l}\right)!, \\
& \beta=\left(n-\sum_{m \leq i} r_{m}-\sum_{m<j} c_{m}+\sum_{l<j, m \leq i} N_{m l}\right)!, \\
& \gamma=\left(c_{j}-\sum_{m<i} N_{m j}\right)!, \\
& \delta=\left(\sum_{l>j}\left(c_{l}-\sum_{m<i} N_{m l}\right)\right)!, \\
& \epsilon=\left(r_{i}-\sum_{l<j} N_{i l}-k\right)!, \\
& \eta=\left(n-\sum_{m \leq i} r_{m}-\sum_{m \leq j} c_{m}+\sum_{l<j, m \leq i} N_{m l}+\sum_{m<i} N_{m j}+k\right)!, \\
& \varsigma=\left(c_{j}-\sum_{m<i} N_{m j}-k\right)!, \\
& \theta=\left(\sum_{l \geq j}\left(c_{l}-\sum_{m<i} N_{m l}\right)\right)!.
\end{aligned}
$$

The range for k is such that all factorial terms are nonnegative. Although the expression for the conditional probabllitles appears complicated, we note that quite a bit of regularity is present, which makes it possible to adjust the partial sums "on the fly". As we go along, we can quickly adjust all terms. More preclsely, the constants needed for the computation of the probabllitles of the next entry in the same row can be computed from the previous one and the value of the current element $N_{i j}$ in constant time. Also, there is a simple recurrence relatlon for the probablity distribution as a function of k, which makes the distribution tractable by the sequential Inversion method (as suggested by Patefleld, 1980). However, the expected time of this procedure is not bounded unlformly in n for flxed values of r, c.

6.4. Exercises.

1. Let \mathbf{A} be a $d \times d$ correlation matrix, and let \mathbf{H} be a symmetric matrix. Show that the elgenvalues of $\mathbf{A}+\mathbf{H}$ differ by at most Δ from the elgenvalues of \mathbf{A}, where

$$
\Delta=\max \left(\sqrt{\sum_{i, j} h_{i j}^{2}}, \max _{i} \sum_{j}\left|h_{i j}\right|\right) .
$$

2. Generate $h_{12}, h_{13}, \ldots, h_{d-1, d}$ with a radially symmetric distribution in or on the $d(d-1) / 2$ sphere of radius $\lambda / \sqrt{2}$ where λ is the smallest elgenvalue of A. Deflne the other elements of \mathbf{H} by symmetry. Put zeroes on the diagonal of \mathbf{H}. Then $\mathbf{A}+\mathbf{H}$ is a correlation matrix when \mathbf{A} is. Show this.
3. Consider Patefleld's conditlonal distribution method for generating a random $R \times C$ table. Show the following:
A. The conditional distribution as glven in the text is correct.
B. (Difficult.) Design a constant expected time algorithm for generating one element in the $r \times c$ matrix. The expected time should be unlformly bounded over all conditions, but with r and c flxed.
